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Abstract

We investigate a modified version of the one dimensional totally
asymmetric simple exclusion process (TASEP). In particular, mo-
tivated by experimental findings of functional heterogeneity of
motor proteins, we analyze a TASEP where heterogeneity for the
hopping rate is allowed, as an e↵ective way to model the dynamics
of molecular motors with di↵erent velocities along microtubules.
Specifically, we consider the case of a lattice with open bound-
aries and with two species of particles – a fast and a slow one –
and we focus on the densities and current profiles in the steady
state. In order to obtain these quantities from the master equa-
tion, we first perform a mean field analysis, which has been proven
successful for the classic TASEP. To the contrary, here we find
that the mean field results disagree consistently with our Monte
Carlo simulations. Hence, we develop a refined mean field the-
ory, which turns out to be very successful and in good agreement
with the simulations. With this result at hand, we then extend
our model to introduce Langmuir kinetics to the system, in or-
der to better model the real biological process of motor dynamics.
The simulations of this new stochastic system reveal an extremely
interesting phenomenology – which includes the emergence of do-
main walls, phase coexistence and species segregation – and a rich
phase space, whose analysis and further exploration may be the
object of future studies.
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Introduction

Microtubules are cylindrical structures which assemble by polymerization
of dimers of alpha and beta tubulin [1]. They are found in the cell’s cy-
toplasm, and are fundamental components of eukaryotic cells’ cytoskeleton
[2, 3]. Among their other functions, microtubules provide a way for organelles
to be moved around the cell [4]. This active biological transport is achieved
by means of molecular motors: enzymes like kinesin which, thanks to the con-
version of chemical energy into mechanical work, can move unidirectionally
along the microtubule [5].

Such a walking process happens in a random Poisson-like fashion, is
mostly constrained to a single lane of the microtubule, and obeys exclu-
sion: two motors cannot be simultaneously attached to the same tubuline
site [6]. Thanks to these properties of the molecular motors dynamics along
microtubules, an ideal candidate for a minimal model to study such process
theoretically is the Totally Asymmetric Simple Exclusion Process (TASEP).
This model is a paradigmatic example in non equilibrium statistical physics,
and it has been widely studied in literature, as reviewd, for example, by
Chou, Mallick and Zia in [5].

However, the standard TASEP allows only one kind of motor (i.e. all the
particles in this model have the same avarage velocity), whereas, in biological
systems, it is possible that di↵erent motors walk along the same microtubule.
Moreover, in a recent study by Reddy et al. [7], it has been found that even
the same kind of motors can exhibit functional heterogeneity, meaning that,
even though they are chemically identical, they can show di↵erent behaviours
and move with di↵erent average velocities.

These findings suggest that an interesting and biologically relevant model
to study would be a heterogeneous TASEP, where the particles are allowed to
have di↵erent velocities. In the first part of the thesis, therefore, we study in
detail such a model, in the particular case of two species of particles, trying
to obtain the phase diagram at stationarity. Once we have a better under-
standing of the two species TASEP, in the final part of the thesis, we move on
studying what happens when such process is coupled with Langmuir kinetics.

v
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Chapter 1

Heterogeous TASEP

1.1 The standard TASEP

Before beginning to analyze the model that we are interested in – i.e. the
heterogeneous TASEP – it is useful to briefly recall the basic results for
the standard TASEP. In particular, we will focus on a 1D open boundaries
problem (see Figure 1.1).

Figure 1.1: Sketch of a standard 1D TASEP on an open lattice of lenght N .

The TASEP is a stochastic process and, more precisely, a Markov process,
where particles enter the lattice from the first site with rate ↵, then hop
forward on the lattice with hopping rate h = 1, one site at the time, and
only if the next lattice site is empty: because of the exclusion property,
each site can be occupied at most by one particle at the time. Finally, once a
particle has reached the last lattice site, it exits the lattice with rate �. Under
these assumptions it is straightforward to derive the evolution equation for
the average occupation of each site. In the bulk one has:

d

dt

hnii = hni�1(1� ni)i � hni(1� ni+1)i = hji�1i � hjii (1.1)

where ni is the occupation of the i-th site, and hjii := hni(1� ni+1)i is the

1



2 CHAPTER 1. HETEROGEOUS TASEP

average current from site i to site i+ 1. For what concerns the first and the
last lattice site, on the other hand, one finds, respectively:

d

dt

hn1i = ↵ h1� n1i � hn1(1� n2)i
d

dt

hnNi = hnN�1(1� nN)i � � hnNi
(1.2)

From these equations we see that, in order to compute the time evolution
of the average occupation, we need also the higher moments of its distri-
bution. One way to go around this inconvenience and be able to compute
the steady state density and average current would be to perform a mean
field approximation and disregard possible contributions of the correlations.
However, even though such an approach leads to a good approximation and a

Figure 1.2: Steady state Phase diagram in the limit N ! 1 of a standard
TASEP.

correct phase diagram in the hydrodynamic limit – as Chou, Mallick and Zia
explain in their review [5] – in this particular case an exact solution can be
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obtained by means of a matrix ansatz [8, 9, 5]. In the limit of N ! 1, this
solution for the steady state distributions yields the phase diagram drawn
in Figure 1.2: three phases are possible and the transitions between them is
driven by the entrance end exit rates. For low ↵ and high � the system is in
a low density (LD) phase, for low � and high ↵ it is in a high density phase
(HD), while for both ↵ and � bigger than 1/2, the system is in the so called
maximal current (MC) phase, in which, as the name sugests, the average
bulk current assumes its maximum value. The transitions between the MC
phase and the LD and between the MC and HD are continuous, while the
one between HD and LD phases is not. More quantitatively, the value of the
density in the three phases is given by:

⇢LD(↵) = ↵

⇢MC =
1

2

⇢HD(�) = 1� �

(1.3)

where we called ⇢ the average density: ⇢ := hni. More details about the phase
diagram of the standard TASEP can be found, for example, in [5, 10, 11].

1.2 Two species TASEP

After revisiting the basic properties of the standard TASEP, we are now
ready to introduce the model that we are interested in.

As anticipated in the introduction, the basic model that we will focus
on in the first part of the thesis is a standard one dimensional TASEP with
open boundaries, where we allow heterogeneity in the hopping rate. The
defining properties of such model are summarized in Figure 1.3: two species
of particles can enter the 1D lattice – of lenght N – on the left with total
entry rate ↵, then they can only hop forward with hopping rates h1 = 1 for
the first species and h2 = q < 1 for the second one. Both species respect
the exclusion principle: a particle can hop to the next site only if this one is
not occupied by any particle. Finally, once a particle reaches the last lattice
site on the right, it leaves the system at rate �. The last free parameter of
the model is the relative fraction of fast particles (particles with the bigger
hopping rate): p 2 (0, 1), which enters in the single entrance rates for the two
di↵erent species: the fast particles enter the system at rate p · ↵, while the
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slow ones at rate (1� p) · ↵. Note that the values p = 1 or p = 0 have been
excluded, because, for p = 1 or p = 0, we recover, respectively, a standard
TASEP or a standard TASEP with reduced hopping rate q < 1.

Figure 1.3: Sketch of the 2 species TASEP model.

A configuration C of the system is defined by the occupation state of each
lattice site (unoccupied, occupied by a fast particle, or occupied by a slow
particle). As for the standard TASEP, this is also a Markov process, and the
time evolution of the probability of a particular configuration C̃ is given by
the master equation:

d

dt

P (C̃) =
X

{C}

h
!(C ! C̃)P (C)� !(C̃ ! C)P (C̃)

i
(1.4)

where the sum runs over all the 3N possible configurations of the system,
and !(C ! C̃) and !(C̃ ! C) are, respectively, the probability – per unit
of time – to go from the configuration C to C̃ and the one to go from C̃ to
C, both equal to 0 in case the two configurations di↵er in the occupation of
more than one lattice site.

1.3 Mean Field Approximation

Our first goal is to derive an expression for the densities of the two species
of particles and the respective currents in the stationary state.

For what concern the notation, we will call ni the occupation state of the
i-th site with respect to the fast particles: ni = 1 if the site is occupied by a
fast particle and 0 otherwise, while mi denotes the occupation with respect
to the slow particles. Finally, in the following will be convenient to consider
also the total occupation, which we will call ⌧i (obviously, ⌧i = ni+mi). Once
averaged, these occupations will be called, respectively, ⇢i := hnii, µi := hmii
and ✓i := h⌧ii.

This being said, we can now write down the evolution of the occupation
variables. In the bulk we will have:
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d

dt

⇢i = hni�1(1� ni �mi)i � hni(1� ni+1 �mi+1)i
d

dt

µi = q[hmi�1(1� ni �mi)i � hmi(1� ni+1 �mi+1)i]
(1.5)

whereas the occupations on the first lattice site obey the following:

d

dt

⇢1 = p↵ h1� n1 �m1i � hn1(1� n2 �m2)i
d

dt

µ1 = (1� p)↵ h1� n1 �m1i � q hm1(1� n2 �m2)i
(1.6)

and, finally, for the last site, one finds:

d

dt

⇢N = hnN�1(1� nN �mN)i � � hnNi
d

dt

µN = q hmN�1(1� nN �mN)i � � hmNi
(1.7)

From Eqs. (1.5)–(1.7), we see that, as expected, to compute the evolution
of the densities, we need also the higher moments of the occupation variables.
In order to circumvent this problem, our first attempt will be to perform
a mean field analysis which has been shown to give quite accurate results
in other cases, like the standard TASEP [9, 12], or the tandard TASEP
coupled with Langmuir Kinetics [13]. Such analysis consists in neglecting
the correlations between di↵erent sites of the lattice, so that we can write:
h⌧i⌧ji ⇡ h⌧ii h⌧ji.

1.3.1 Degrees of freedom

Before rewriting the equations (1.5)–(1.7) using the mean field assumption,
it is interesting and useful to note that, under this hypothesis, the number of
degrees of freedom at stationarity reduces from two to one, so that we only
need to compute one of the three densities ⇢i, µi and ✓i in order to have all
of them.

Because of particle conservation in the bulk, this result is true, and eas-
ily proven also without the need of the mean field assumption, for the total
avarage number of particles in the system. Since there is no attachment or de-
tachment of particles in the bulk, in fact, in the steady the quantity hN⇢/Nµi
(where N⇢ is the total number of particle of the first pecies in the lattice
and Nµ the one of slow particles) will be given by p(1 � p)�1, since p is the
relative probability of a fast particle to enter the lattice.
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However, under the mean field hypothesis, this results holds also locally
for each site, and not only for the total number of particles in the system.
Intuitively, this is clear: in the stationary state, given that a site is occupied,
we’ll have a probability p that this particle is a fast one and a probability
(1� p) that is a slow one instead, so that, 8i, ⇢i = p✓i and µi = (1� p)✓i.

This can also be proven more rigorously, for example in the following way.
The density of, let’s say, the fast particles at site i-th is given by:

⇢i =
X

{C1
i }

P (C1
i ) (1.8)

where the sum runs over all the configurations C1
i of the lattice where the site

i-th is occupied by a fast particle (which we implicitely assumed to be the
first species, hence the index 1), and P (C1

i ) is the probability of the particular
configuration. Now we can focus on one of these configurations and, after
some straightforward manipulations of the probabilities, write:

P (C1
i ) = P ((⌧j = kj8j 6= i) ^ ⌧i = 1)

= P ((⌧j = kj8j 6= i) ^ ⌧i = 1|(⌧j = kj8j 6= i) ^ ⌧i 6= 0)P ((⌧j = kj8j 6= i) ^ ⌧i 6= 0)
(1.9)

where ⌧j is the occupation of the j-th site: ⌧j = 0 means that the site is
empty, ⌧j = 1 means that it is occupied by a fast particle (first species) and
⌧j = 2 means that it is occupied by a slow one (second species), while the
vector (k1, . . . , ki�1, ki+1, . . . , kN) 2 {0, 1, 2}N�1 is a fixed (N�1) dimensional
array.

If we now treat the occupations of di↵erent sites as independent events,
the conditional probability in the second line of eq. (1.9) simplifies to:

P ((⌧j = kj8j 6= i) ^ ⌧i = 1|(⌧j = kj8j 6= i) ^ ⌧i 6= 0) �! P (⌧i = 1|⌧i 6= 0)

which is just the probability that, given a particle on the i-th site of the
lattice, this is a fast one. And, in the stationary state, this is nothing else
that the fraction of fast particles in the system, which is given by p.

So that we have proven that

P ((⌧j = kj 8 j 6= i) ^ ⌧i = 1) = pP ((⌧j = kj 8 j 6= i) ^ ⌧i 6= 0)

In the exact same way, one can show that:

P ((⌧j = kj 8 j 6= i) ^ ⌧i = 2) = (1� p)P ((⌧j = kj 8 j 6= i) ^ ⌧i 6= 0)
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Therefore, putting all together, we find that in the mean field approximation
the following holds:

⇢i =
X

k2{0,1,2}N�1

P (⌧j = kj 8 j 6= i ^ ⌧i = 1)

= p

X

k2{0,1,2}N�1

P (⌧j = kj 8 j 6= i ^ ⌧i 6= 0)
(1.10)

and, similarly:

µi =
X

k2{0,1,2}N�1

P (⌧j = kj 8 j 6= i ^ ⌧i = 2)

= (1� p)
X

k2{0,1,2}N�1

P (⌧j = kj 8 j 6= i ^ ⌧i 6= 0)
(1.11)

so that we see that ⇢i/µi = p(1� p)�1, which, with straightforward algebra,
translates into:

⇢i = p✓i ^ µi = (1� p)✓i (1.12)

This proves our intuition about the fact that, if we neglect correlations
between di↵erent sites, our theory has only one degree of freedom, the other
one being determined by equations (1.12). In the following analysis, there-
fore, we will use this fact and concentrate only on the total density ✓i.

1.3.2 Stationary State distribution

We are now ready to compute the steady state distribution and the current
for the total density in the mean field limit.

If we sum up the equations (1.5), (1.6) and (1.7) after setting to 0 the
left hand side (we are interested in the steady state), apply the mean field
assumption, and use the relations (1.12) that we just proved, we find that
the evolution of the total density, respectively of the first lattice site, in the
bulk and of the last site, is governed by the following equations:

0 = ↵(1� ✓1)� [p+ q(1� p)]✓1(1� ✓2)

0 = ✓i�1(1� ✓i)� ✓i(1� ✓i+1)

0 = [p+ q(1� p)]✓N�1(1� ✓N)� �✓N

(1.13)
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looking at these equations, we immediately note that they can be rewritten
so that they take the exact same form as the mean field equations of the
standard TASEP:

0 = ↵

⇤(1� ✓1)� ✓1(1� ✓2)

0 = ✓i�1(1� ✓i)� ✓i(1� ✓i+1)

0 = ✓N�1(1� ✓N)� �

⇤
✓N

(1.14)

with the new entrance and exit parameters ↵⇤ and �

⇤ defined by:

↵

⇤ := ↵[p+ q(1� p)]�1 and �

⇤ := �[p+ q(1� p)]�1 (1.15)

In a completely similar fashion we can also compute the total current in
the bulk:

hjii = hni(1� ⌧i+1)i+ q hmi(1� ⌧i+1)i
MF
=

MF
= [p+ q(1� p)]✓i(1� ✓i+1)

(1.16)

and we see that also the current assume the same form it has in the mean
field analysis of the standard TASEP, modulo the factor [p+ q(1� p)].

What we have found, therefore, is that, in the mean field approximation,
our model reduces to a standard TASEP with rescaled hopping rate q

⇤ =
[p+q(1�p)], which is exactly what one would intuitively expect: if there is no
correlation between the positions of fast and slow particles, one has nothing
else that two TASEPs taking place on the same lattice, one consisting of a
fraction p of particles, with hopping rate h1 = 1, and the other consisting of a
fraction (1�p) of particles, with hopping rate h2 = q, resulting in an e↵ective
hopping rate, for the total system, of heff = ph1+(1�p)h2 = p+(1�p)q = q

⇤.
Now, the behaviour of the TASEP in the steady state is well known

[9], and from that it is straightforward to obtain the same knowledge for a
TASEP with a reduced hopping rate. From equations (1.13) and (1.14), we
can, therefore, easily draw the phase diagram of our model, at the steady
state, in the mean field limit. What we obtain is the diagram shown in Figure
1.4, where MC stands for Maximal Current phase, LD for Low Density phase
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and HD for High Density phase, with the densities in these three regions given
by:

✓LD(↵) =
↵

q

⇤ =
↵

p+ q(1� p)

✓MC =
1

2

✓HD(�) = 1� �

q

⇤ = 1� �

p+ q(1� p)

(1.17)

and where, exactly as in the standard TASEP, the transitions between the

Figure 1.4: Mean Field Phase diagram for the 2-TASEP

HD phase and the MC phase and between the LD phase and MC phase are
continuous, while the one between the LD and the HD phases is not.

As last remark for this section, we just note that what has been done for
the mean field analysis of the two species TASEP can straightforwardly be
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extended to an arbitrary number n of species, with hopping rates {hi}i=1...n,
each of them having an entrance rate given by ↵pi (with, of course,

P
i pi =

1): what one obtains is a standard TASEP with e↵ective hopping rate he↵ =P
i pihi.

1.4 Monte Carlo Simulations

In the previous section, we analyzed our two species TASEP in the mean
field approximation and we obtained the phase diagram shown in Figure 1.4.
In order to be able to tell how good this approximation is and, consequently,
how accurate the results obtained are, we have written a program in C++
to simulate our model. In particular, in our simulations we used the Gille-
spie Algorithm [14] to implement the update rule of the lattice state, so
that the obtained stochastic evolution is exact and doesn’t su↵er any time
discretization issue.

In order to better understand why we chose to use this algorithm and how
it works, it is useful to revisit some basic theory about Poisson processes.

1.4.1 Poisson Stepper

The easiest Poisson process one can think of is the so called Poisson stepper,
which is sketched in Figure 1.5: a particle moving on a 1D lattice and allowed
to hop only forward to the next lattice site. In particular, the hopping
process is stochastic, and the particle hops forward with rate ⌫, meaning
that the probability that a jump event occurs in a infinitesimal time interval
dt is given by ⌫dt, with at most one event taking place at any given time
interval [t, t + dt]. Finally, a definying and very important property of a
Poisson process is that the stochastic events (in this case the jumps) are, by
assumption, statistically independent.

Figure 1.5: Sketch of a Poisson stepper on a 1D lattice with hopping rate ⌫.

From these properties of the Poisson stepper, it is relatively straightfor-
ward to derive the probability distribution of a very important observable
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related to the process, namely the waiting time distribution, the distribu-
tion, i.e, of the time that one has to wait before an event occurs. In order
to derive it, let’s call T the waiting time between two successive events and
S(t) the probability that T > t. Then we will have that:

S(t) =

Z 1

t

p(t0)dt0 ) p(T ) = �dS(T )

dT

(1.18)

where p(T ) is the quantity that we want to compute: the probability distribu-
tion of T . Now, thanks to the statistical independece of the events assumed
for the process, we can easily derive a di↵erential equation for S(t):

S(t+ dt) = Prob{T > t+ dt}
= Prob{T > t}Prob{No events in (T, T + dt]}
= S(t)(1� ⌫dt)

(1.19)

where, from the first to second line we used the assumed independence of
di↵erent events, while from the second to the third just the defining property
of our Poisson stepper. If now we rewrite S(t+dt) as S(t+dt) = S(t)+S

0(t)dt,
we obtain a di↵erential equation for S, from which we can easily derive S(t):

S

0(t) = �⌫S(t) ) S(t) = e

�⌫t (1.20)

where we have implicitely set S(0) = 1, which just means that we assume
that, at time t = 0, the stepper has not yet jumped. Having the explicit
expression of S(t), we can finally write p(T ), using the relation (1.18):

p(T ) = ⌫e

�⌫T (1.21)

which is the well known exponential distribution for the waiting time of a
Poisson process, and which will turn out to be extremely useful as one wants
to simulate numerically such a process.

1.4.2 Gillespie Algorithm

In order to numerically simulate a Poisson process as the one described in the
previous section, one could proceed in di↵erent ways. One possibility could
be, for example, to divide the total simulation time in small intervals �t, and
for every interval draw a binary random variable with probability for its two
outcomes of, respectively, p0 = ⌫�t and p1 = 1 � p0, to decide whether or
not an event should occur in that time interval. In order for this approach to
give accurate results, though, one needs to set �t ⌧ ⌫

�1 since, by definition
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of the process, at most one event can occurr in a time interval dt. This leads
to a big waste of computing time during which nothing happens (p0 ⌧ 1),
or to unaccurate and inexact results, if �t is not chosen small enough.

Another, more clever way to proceed is by exploiting the waiting time
distribution (1.20) that we found above. One could, in fact, draw a random
variable which is distributed according to (1.20) and then update the system
according to the result. In this way, the stochastic evolution of the system is
exact – given, of course, that the random variable is properly distributed –
and the system moves at every update. This is exaclty the idea behind the
Gillespie algorithm, described in his original paper [14].

Practically, all that is needed is a uniform random variable generator.
Given a random variable ⌘ uniformely distributed between 0 and 1, in fact,
it is possible to obtain a random variable ⇣ distributed according to a generic
distribution p(⇣): we can impose that the probability for ⌘ to be in [⌘, ⌘+d⌘]
is the same as the one of ⇣ to be in [⇣, ⇣ + d⇣]:

p(⇣)d⇣ = 1d⌘ ) d⌘

d⇣

= p(⇣) (1.22)

So that, if we now identify ⇣ with the waiting time T and p(⇣) with p(T )
given by (1.20), we find how to obtain T from the uniform variable ⌘:

⌘ = 1� e

�⌫T ) T = � ln(1� ⌘)

⌫

= � ln ⌘0

⌫

(1.23)

for a new uniform random variable ⌘

0.

1.4.3 The general case

The simple Poisson process described above can easily be generalized. Let S
be a system with a discrete configuration space, and let {Ci}i=1...N be the N

di↵erent possible configurations of S. At every time t the system can jump
in a Poisson fashion to the configuration Ci with rate µi(t), meaning that
the probability for the system to change configuration in the time interval
[t, t + dt] will be given by: (

P
i µi(t)) dt, while the conditional probability

that the new system configuration will be Cj, knowing that the system has
jumped, is given by:

pj = µj(t)

 
X

i

µi(t)

!�1

(1.24)

Within this set up, it is straightforward to generalize what has been
said in the previous section, in order to simulate numerically the stochastic
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evolution of such a system. In this case, the waiting time distribution will
be given by:

p(T ) = µ(T ) exp

⇢
�
Z t

t0

µ(T )dt

�
(1.25)

while the relation (1.23) becomes:

ln(1� ⌘) = �
Z T

t0

µ(t)dt (1.26)

where we have implicitely defined µ(t) :=
P

i µi(t). So that to update the
system we just have to draw a uniformely distributed random variable, con-
vert it into a waiting time value using (1.26), and then, by means of another
uniformely distributed random variable, decide in which of the allowed con-
figurations the system will evolve. This last step is simply achieved: the
range of the second uniform random variable is divided in N sections so that
the lenght of the i-th secton is proproional to µi(t). In this way, the prob-
ability that the drawn value of the uniform random variable will be in the
i-th section is exactly the one given by (1.24).

1.4.4 Simulating the heterogeneous TASEP

The formalism developed in the last subsection can be exploited also to im-
plement a numeric simulation of our heterogeneous TASEP. As reminded
before, in fact, the TASEP – as well as the TASEP coupled with LK and
the heterogeneous versions of them – is a Markov process, meaning that the
state of the system at time t+dt depends only on its state at time t, and not
on the state at previous times: the system has no memory and the stochas-
tic events (i.e. the system jumping in a new configuration) can be regarded
as statistically independent. Thanks to this property, therefore, we can de-
scribe our system as done in the previous section, where the configurations
{Ci}i=1...3N are all the possible configurations of the lattice, while, for what
concerns the rates µi(t), in this case they do not depend on time but only
on the current configuration of the lattice, so that they are better rewitten
as: {µij}i,j=1...3N , with µij being the probability per unit time of jumping to
the i-th configuration, given that the system is in the j-th one. With this
notation equation (1.26) simplifies and can be written explicitely:

Tj = � ln(1� ⌘)

µj

(1.27)

where Tj is the time one has to wait before the system jumps in a new
configuration, given that it is in the j-th one, while µj is given by µj =

P
i µij
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and ⌘ is a uniformely distributed random variable. This is precisely the setup
that we used to write the program to simulate the evolution of our system.

In practice, we defined a class lattice containing information about the
various parameters of the system (N, ↵, �, q, p, and, for later use, the LK
parameters !s) as well as the configuration Cj of the lattice (which site is
occupied and by which species of particle). As auxiliary private members,
we also had the total number of occupied sites, of empty sites and the total
number of what we called blocks, namely occupied sites followed by an empty
one (i.e. number of particles that may jump forward in the following step):
this variables, together with the occupation state of the first and the last sites,
are used to compute the total rate µj of the current lattice configuration Cj.
The total rate µj is also stored as a private member of the class. In order to
make an instance of the class (i.e. a given lattice) evolve, we defined a method
which updates the state of the lattice according to the Gillespie algorithm:
a uniform random variable ⌘ is drawn and is converted in a waiting time T

using the relation (1.27), where µj is the private member of the object. At
this point, knowing the total number of occupied sites, of empty sites, of
blocks, and the state of the first and last sites, we know how many states the
lattice could evolve into, and knowing the various parameters of the model,
we also know the relative probability of each of these configurations. Using a
newly drawn uniform random variable, therefore, and applying the method
described in the previous subsection, we decide what should happen: either
a new particle enters the lattice (if the first site is empty) or a particle leaves
it (if this can happen), or a particle jumps forward. If this last event is the
chosen one, using another uniformely distributed random variable, we decide
which one of the available particles will jump forward. Once this decision has
been done, the state of the lattice, as well as all the other private members
of the object, are updated consequently. Eventually, the method returns the
waiting time T that has taken the system to evolve, so that it can be used
to monitor the total evolution time.

To compute the average steady state densities and current, we exploited
the fact that, in the stationary state, it is equivalent to sample time-wise or
ensemble-wise, under the assumption that the system does not get stuck in
a state for a time which is comparable with the simulation lenght. Altough
nothing guarantees a priori that this is a safe assumption to make, at no point
in our simulations we had reason to question the validity of our sampling
method.

We started from an empty lattice and made the system evolve till it
reaches a state close enough to stationarity and then sampled at equally
spaced times. Since it is not clear, a priori, how much time the system needs
to get close to the steady state, we first simulated the system setting both
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hopping rates to 1, so that we could exploit the fact that the properties of the
standard TASEP at the steady state are well known to evaluate a reasonable
time T ⇤

q=1 from when to start the sampling. For the general case, we then set
T

⇤
q<1 = T

⇤
q=1q

�1, given that in the case q < 1, time scales have to be rescaled
by q

�1. This choice for T ⇤
q<1 has proven to be a good one, since the results of

the simulations have not shown significant changes upon using a consistently
increased starting sampling time.

1.4.5 Simulations results

Having a program that simulates the stochastis evolution of the system, the
first thing that we checked was how the total density ✓ (which, according to
the equations (1.14), should be constant in the bulk) changes in the expected
LD and HD phase upon varying, respectively, ↵ and �, and its behaviour at
the interface between these regions of the ↵� plane and the MC one.

In order to do this, we started by looking at what happens around values
of ↵ and � corresponding to values for the e↵ective parameters (1.15) of
↵

⇤ = 1/2 and �

⇤ = 1/2. The results of these first simulations are shown in
the two plots of Figure 1.6, for a fixed choice of p and q. What we observe

(a) (b)

Figure 1.6: Simulation results for ✓ as a function of ↵ in a neighborhood of
↵

⇤ = 1/2 (a) and as a function of � in a neighborhood of �⇤ = 1/2 (b). Both
plots show a constant behaviour of the total density ✓ across the scanned
values of ↵ and �. This suggests that, for these values of the entrance and
exit parameters, the system is in a MC-like phase and does not exhibit the
transitions predicted by the mean field theory.

in these plots is that the total density ✓ is constant - modulo some obvious
fluctuations - upon varying ↵ and �, both above and below ↵

⇤ = 1/2 and
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�

⇤ = 1/2. Moreover, we notice that this constant value is not compatible
with the expected one of ✓ = 1/2 in the MC phase (Eq. (1.14)) – the only
one where a constant total density is expected. This tells us that the mean
field approximation is probably not as accurate as we hoped.

After these first findings, we explored the phase space further, and finally
found regions where the total density is no longer constant but, rather, de-
pending on ↵ or �, in a similar fashion to what one would expect in the
predicted LD and HD phases. Moreover, we recovered the continuous tran-
sitions between these phases and the previously discovered constant density
phase (which, from now on, will be referred to as the MC phase). These
findings are shown in Figures 1.7 and 1.8.

Figure 1.7: Simulations data for the total density as a function of ↵ (scat-
tered points) at the boundary between two phases, plotted against the mean
field prediction (continuous line). The plot shows a continuous phase tran-
sition between a LD-like phase, where the density grows with the entrance
paramenter ↵, and the previously discovered MC phase where the total den-
sity, for the particular choice of p and q, assumes a constant value of ✓ ⇡ 0.6.
This transition is qualitatively the same as the one predicted by the mean
field theory, but, as can be seen here, it happens at a much lower value of ↵.

From these plots we see that the qualitative behaviour is exactly the one
given by the phase diagram in Figure 1.4, but the critical values of ↵ and �
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Figure 1.8: Simulations data for the total density as a function of � (scattered
points) at the boundary between two phases, plotted against the mean field
prediction (continuous line). As in Figure 1.7, also this plot shows a con-
tinuous phase transition, this time between a HD-like phase, with a density
dependence on �, and the MC phase. Again, this transition is qualitatively
the same as the one predicted by the mean field theory, but, as can be seen
here, it happens at a much lower value of �.

at which the transition between the LD and HD phases and the MC one are
completely di↵erent from the ones predicted by the mean field analysis, as
well as the value of the total densities in these three di↵erent phases.

As last thing, we also checked the expected avarage current in the bulk
as a function of ✓ (equation (1.16)) against the simulations, and – at this
point not with surprise – we found that, also for this quantity, the mean field
predictions are by no means in agreement with the simulations, as it is shown
in the plot in Figure 1.9.

As it is clear, the simulations that we performed show that the results
obtained by the mean field approximation cannot be regarded as a good
description of our system at the steady state. Therefore, in the next chapter
we will try to develop a more accurate theory which goes beyond the simple
mean field one.
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Figure 1.9: Here the simulation results for the average bulk current as a
function of the total density ✓ are plotted against the theoretical values ob-
tained by means of the mean field analysis (1.16). The true value of the
average current turns out to be much lower than the one that the mean field
theory predicted, showing that the reduced hopping rate q heavily influences
the mobility along the lattice. Moreover, we also see that, while the mean
field current-density relation is symmetric in ✓, the true relation is not, so
that the MC phase density – as we found out above – is no longer given by
✓MC = 1/2, but, rather, assumes an higher value.



Chapter 2

Refined Mean Field Theory

As we saw in the last chapter, a simple mean field approximation doesn’t
provide a satisfying description for the stationary state of our model. There-
fore it is necessary to develop a more refined approximation, in order to get
results which are in better agreement with the simulations.

First of all, we have to identify the reason why the mean field analysis
has failed. Intuitively, this could be traced back to the fact that, having
particles that hop at very di↵erent rates, some jamming phenomena will
emerge, where fast particles will accumulate beyond a slow one, so that
correlations between the positions of particles cannot really be neglected.
This idea is also supported by the kymographs that we obtained from the
simulations, an example of which can be seen in Figure 2.1.

These kymographs show how, under the right conditions, the hetero-
geneous TASEP process that we are considering appears made of clusters,
rather than single particles, which moves to the right with a rate proportional
to the smaller hopping rate q – where, with clusters, we refer to the ensemble
of one slow particle and the fast ones that accumulate behind it.

These findings suggested the idea to try to map our heterogeneous TASEP
to a standard TASEP where particles have a finite size d and occupy more
than one lattice site. However, in our case, the clusters won’t have all the
same size (which is nothing else than the number of the fast particles in
the cluster plus one slow particle). We decided, therefore, to use, as a first
approximation for the particles size d, the average lenght of a cluster. This
is easily computed as follows (see also Fig. 2.2):

hli = 1 +
1X

d=0

d(1� p)pd =
1

1� p

(2.1)

For a cluster of lenght d to enter the system, in fact, a slow particle must

19
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Figure 2.1: Section of a simulated kymograph for the system close to the
steady state, for given q and p. Here we can see the jamming of fast particles
(blue points) behind a slow one (light blue). This give rise to a system which
seems to be made of clusters wich move forward with average velocity of the
order of q (the proceeding of non-empty clusters, in fact, is similar to the one
of empty ones, i.e. single particles of the second species).

first enter and then we need that other d � 1 fast particles enter the lattice
after that one, and before the next slow one. And since these elementary
events are independent by assumption, the probability of the whole event to
happen is given by (1 � p)pd. The 1 is then added to take into account the
empty clusters, the ones, i.e., consisting only of a slow particle.

Figure 2.2: Example of a lattice section, with clusters of di↵erent sizes

As last remark, we note that, for the finite size particles TASEP approx-
imation to be consistent, we need to impose some contraints on the hopping
rate q and the relative fraction of fast particles p. We want, in fact, our
clusters to behave as closely as possible to rigid particles of lenght hli. How-
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ever, they are not single bodies: once the slow particle at the right end of
one cluster hops forward, a hole is created inside that cluster, and if the slow
particle cap hops forward again before that hole has travelled all the way left
and exited the cluster, then we will have two holes, and so on if this happens
again. And it is clear that the more holes in the cluster, the less appropriate
our description of it as a single particle of definite size will be. We decided,
therefore, to constraint the parameters q and p so that at most one hole at
the time is present in each cluster. This is done by requiring the avarage
time that the slow particle at the right end takes to hop forward to be much
bigger than the avarage time needed by the hole to exit the cluster. These
two quantities are given, respectively, by q

�1 and hli � 1. So that, in the
following, we will be imposing:

1

q

� hli � 1 ) qp

1� p

⌧ 1 (2.2)

2.1 Refined MF analysis for the current

We will now apply the ideas explained in the previous section to derive a
more accurate expression for the steady state current and, from it, obtain
expressions for the densities. In particular, the total average current between
the site i-th and the (i + 1)-th one is given by ji = j

i
⇢ + j

i
µ, where j

i
⇢ is the

contribution to the average current given by the fast particles, while j

i
µ the

one given by the slow ones. So that, we can analyze these two contributions
separately. We will start with the average current associated with the slower
particles: jiµ.

2.1.1 Slow particles

We start analyzing the contribution to the current due to the slow paticles.
The quantity that we need to compute is:

j

i
µ = qP{mi+1 = ni+1 = 0|mi = 1}P{mi = 1} (2.3)

where the second factor is nothing else than the density µi itself (µi =
1(P{mi = 1}) + 0(P{mi = 0})), while the first one is the conditional proba-
bility that the (i+1)-th site is empty given that the i-th site is occupied by a
slow particle. It gives, therefore, the fraction of slow particles which are free
to jump forward. This is the term where correlations come into play. Hence,
let’s now focus on it.

As we explained above, as long as the condition given by (2.2) is satisfied,
we can think of the system as being made of clusters of an avarage lenght hli
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whose right tips consist of slow particles, and that have at most one hole in
them. We can therefore, map this model to a TASEP with particles of finite
size hli and hopping rate given by q.

Such problem has been treated in detail by Lakatos and Chuo in [15]. In
this work, in fact, the authors found that a simple mean field analysis fails
also in the case of a standard TASEP with extended particles and, therefore,
they derived a more accurate approximation for a TASEP with particles of
size d > 1 and hopping rate h = 1. In particular, analysing the system in the
Maximal Current Phase, they found the following expression for the avarage
current in the stationary state:

jd(�) = �

1� �d

1� �(d� 1)
(2.4)

where � is their particle density and d the size of the particles.
If we now replace d with the avarage lenght of our clusters hli, � with µ,

and divide by µ (in order to isolate the first factor on the RHS of equation
(2.3)), we obtain the following expression for the fraction of slow particles
free to hop forward:

fp(µ) := P{mi+1 = ni+1 = 0|mi = 1} =
1� µ hli

1� µ(hli � 1)
(2.5)

where the subscript p makes explicit the dependence on the fraction of fast
particles, encoded in the avarage lenght hli. With this quantity at hand, it
is now straightfoward to write down the approximate slow particles current:
keeping in mind that for us the hopping rate is given by q < 1, we have:

j

µ
p,q(µ) ⇡ qfp(µ)µ (2.6)

2.1.2 Fast particles

Let’s now consider the current associated to the fast particles. We want to
compute the ⇢�current at the i-th site, which is again given by:

j

i
⇢ = P{mi+1 = ni+1 = 0|ni = 1}P{ni = 1} (2.7)

where, as before, ni and mi are, respectively, the number of fast and slow
particles at site i. Exactly as before, the second factor of the right hand
side of (2.7) is nothing else than the density, ⇢i, while the first is the most
interesting and less trivial one, and the one that we have to find a good
approximation for. The good news is that, under the assumption that, in
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each cluster, there is, at most, one hole at the time, computing this quantity
is not too complicated, as it will become clear in the following.

In such regime, in fact, given a closed cluster of lenght hli – which means
one slow particle followed by hli � 1 fast ones – we know that it will become
open (namely, that the slow particle at the rightmost end of the cluster
will jump forward, so that a hole will enter the cluster) on average every
(qfp(✓))�1 time units (we have implicitely assumed that at each slow particle
corresponds a cluster, and used the result according to which only a fraction
fp(µ) of them is free to jump forward). So, the first fast particle of the cluster
will be free to move, on average, every (qfp(✓))�1 time units. The second one
has to wait until also the first fast particle of the cluster has jumped, so that
it will be free to move on avarage every (qfp(✓))�1 + 1 time units, the third
one only every (qfp(✓))�1 + 2 time units, and so on, till the last one, which,
on average, will be free to jump forward every (qfp(✓))�1 + hli�2 time units.
Averaging over the whole cluster, we find the following approximation for our
probability:

[P{mi+1 = ni+1 = 0|ni = 1}]�1 ⇡ 1

hli � 1

hli�2X

i=0

✓
1

qfp(µ)
+ i

◆
=

=
2 + qfp(µ)(hli � 2)

2qfp(µ)

(2.8)

We can now use this result to write a refined expression for the current due
to the fast particles (2.7):

j

⇢
p,q(⇢, µ) ⇡

2qfp(µ)

2 + qfp(µ)(hli � 2)
⇢ (2.9)

2.1.3 On the degrees of freedom

In the first chapter, we had proven the relations (1.12), which allowed us to
obtain the local densities ⇢i and µi from the total density ✓i and which, de
facto, reduced the number of degrees of freedom of the problem, allowing us
to concentrate only on the total density.

Unfortunately, this very useful result holds exactly only in the mean field
limit, and, as we saw in the section on Monte Carlo Simulations, this limit
does not accurately describe our system. However, since the relations (1.12)
would simplify our problem considerably, it would be of great help if they
held to some extent in the case of the heterogenous TASEP.
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As already explained before, thanks to particle conservation in the bulk,
global relations of the kind of (1.12) always hold for the average total num-
ber of particles, even if correlations cannot be neglected. For this reason, if
the density happens to be constant along the lattice, then one can straight-
fowardly argue that (1.12) hold also in their local form.

We therefore ran some more simulations for di↵erent values of the pa-
rameters ↵ and �, to check whether or not the system at stationariety shows
constant density profiles. The results of these simulation are shown in Figure
2.3. From these plots we can see that, a part from the regions near the tips,

(a) (b)

(c)

Figure 2.3: Simulation data of the density profiles of the two species of
particle, for a lattice of lenght N = 1100, and with p = 0.51 and q = 0.07,
for di↵erent values of the entrance and exit parameters: (a) ↵ = 0.037 and
� = 1. (b) ↵ = 1 and � = 0.037. (c) ↵ = 0.3 and � = 0.3. In all three
cases we witness a constant average density in the bulk for both species of
particles.
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the average densities of both species of particles remain constant along the
lattice, so that, according to what has just been said, we can argue that it is
safe to consider the relations (1.12) valid also in the heterogeneous TASEP
case.

Using the relations (1.12) and the expressions found previously for jp,q(⇢)
and jp,q(µ), we can, therefore, write the refined mean field version for the
avarage current as a function of the total density ✓:

j

tot
p,q(✓) ⇡


(1� p)qfp(✓) + p

2qfp(✓)

2 + qfp(✓)(hli � 2)

�
✓ (2.10)

where fp(✓) is given by fp(✓) := fp(µ)|µ=(1�p)✓ =
1�✓
1�p✓

.
We can now finally test this result against the simulations, to check

whether or not the refined mean field analysis that we developed so far repre-
sents a better description of the system. In Figure 2.4, therefore, we plot the
same simulation data as in Figure 1.9 against the theoretical current given
by (2.10).

Figure 2.4: Comparison between simulations and refined mean field theory
for the avarage bulk current as a function of the total density ✓. We note
that with the refined mean field expression for the current (2.10) we obtain
a much better agreement than with the simple mean field one, including the
asymmetric relation between ✓ and j.
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2.2 Refined mean field analysis for the den-
sities

Having found an approximate expression for the current-density relation
which is in good agreement with the simulations, (2.10), we can now use
it to derive an approximation for the total density in the Maximal Current
phase, and then match it to the Low Density and High density phases.

2.2.1 Maximal Current Phase

In order to get the value of the total density ✓ in the Maximal Current Phase,
we need to find the value of ✓ that maximises the current in equation (2.10).
To this end, we computed the derivative of jtotp,q(✓) with respect to ✓ and then
fed the result to Mathematica to obtain its zeroes.

Unfortunately, the expressions that one gets as an answer, being several
pages long, are of no practical use, and don’t convey any intuition. We
thought, therefore, that, since for q ! 1 we recover the behaviour of the
standard TASEP, the most interesting regime is the one for low hopping
rates and, consequently, it makes sense to try to make the results tractable
by expanding them for small hopping rates q.

This approach simplifies things immensely. At first order in q, in fact,
the derivative with respect to ✓ of the current (2.10) reads:

@✓j
tot
p,q(✓) =

1� 2✓ + p✓

2

(p✓ � 1)2
q + o(q2) (2.11)

whose zeroes in ✓ are easily found:

✓1 =
1�

p
1� p

p

^ ✓2 =
1 +

p
1� p

p

(2.12)

Of these two candidate values for the Maximal Current density, only the
first one, ✓1, is a sensible choice, since the second one is always bigger than
1, which the density cannot be. So that the refined mean field value of the
density in the Maximal Current phase is given by:

✓MC =
1�

p
1� p

p

(2.13)

Firstly, we notice that this density does not depend on q, as one would
expect intuitively, given that for q ! 1 one recovers the standard TASEP
and, therefore, a MC phase density of ✓MC = 1/2, as it is also shown in Figure
2.5(b). This can be justified if we remember that the expression (2.13) has
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been obtained in the limit q ! 0 and, therefore, it should be regarded as
valid only in a small neighborhood of q = 0.

(a) (b)

Figure 2.5: (a) Simulation data for the maximal current value in the bulk
as a function of q, plotted against the mean field and the refined mean field
predictions for a fixed value of p = 0.6 (To compute these values, the simu-
lated total density ✓ has been plugged in in the equations (1.16) and (2.10)).
We see that our mean field theory works very well for low q, as expected
from (2.2), while for q ! 1, we recover a good agreement with the mean
field theory and a current that asymptotically reaches the standard value of
jMC = 1/4. (b) Here the MC phase density is plotted as a function of the
hopping rate q, for the same fixed value of p as in (a). Again we see that for
very small q, the simulations agree with our theory, as we expected, while,
as q grows, the MC density decrease till the mean field value of ✓MC = 1/2.

Secondly, we also note that, for p ! 1, the density (2.13) does not ap-
proach the Maximal Current density of the standard TASEP, which, again,
would be ✓MC = 1/2. This discontinuity can be understood if we remember
that we derived the current (2.10) under the assumption (2.2) which forces
the hopping rate to go to zero with p going to one and to do so faster than
p reaches this limit. As p approaches 1, therefore, the condition (2.2) forces
the system extremely far from the standard TASEP, so that, in the models
space, there will be a jump from the models that one gets for p ! 1 and the
one at p = 1, and this justifies, at least intuitively, the discontinuity in the
Maximal Current density.
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2.2.2 Low Density Phase

As shown by the Monte Carlo Simulations, the Phase Diagram that we expect
for our model is qualitatively the same as the one of the standard TASEP. In
the previous subsection we derived an approximate expression for the avarage
total density in the MC phase, and now we want to match it continously to
the one in the Low Density phase.

At the light of the simulations data (see, as an example, Figure 1.7)
we are brought to believe that a sensible approach - which happens to be
also the easiest that one can think of - is to approximate our model in the
Low Density phase as a standard TASEP with reduced hopping rate q. This
appears sensible if we think that, in the Low Density phase, very few particles
will be in the system, so that correlations won’t be likely to play a crucial
role and we can, therefore, imagine the dynamics to be determined by the
slowest particles. Under this assumption, the avarage total density in the LD
phase will have, therefore, the following form:

✓LD(↵) =
↵

q

(2.14)

From this expression for ✓LD(↵) we can derive the critical value of the
entrance parameter ↵ at which the phase transition between LD and MC
happens, i.e. that value ↵̃ such that ✓LD(↵̃) = ✓MC . We find:

↵̃ = q✓MC =
1�

p
1� p

p

q (2.15)

As before, we can now compare this result with our simulations. In
particular, we use again the same values of p and q as in the case of the
previous plots. What we obtain is showed in the plot at Figure 2.6.

This plot confirms that our ideas regarding the behaviour of the system
in the LD phase were reasonable and confirms that our refined mean field
theory describes the model much more accurately than the simple mean field
one.

Now, the only thing left to do in order to be able to draw a complete
Phase Diagram, is to study what happens in the High Density phase.

2.2.3 High Density Phase

As the last step, we now have to focus on the High Density Phase. First of
all, from plots 1.7 and 1.8 (and from other similar ones that we obtained for
di↵erent values of p and q), we conclude that it is safe to assume that the
critical values of ↵ and � at which the transitions between LD and MC, and
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Figure 2.6: Comparison between simulations and refined mean field theory for
✓(↵) at the interface between LD and MC. We observe that our assumption
that in the LD phase is the dynamics the slow particles to shape the density
profile leads to a correct prediction for the functional dependence of ✓LD on
the entrance rate ↵.

between HD and MC are the same. With this information, we only need to
specify the dependence on � of the HD density and then impose a continous
matching with the MC density at � = �̃ = 1�

p
1�p
p

q.
Inspired by the success obtained in the LD phase and looking at the plot

in Figure 1.8, the first and simplest ansatz is a linear dependence of the total
density ✓ on the exit parameter �:

✓HD(�) = 1� � (2.16)

where, as explained before, the constant  is simply found by imposing con-
tinuity at the phase transition:

✓HD(�̃) = ✓MC )  =
1� ✓MC

�̃

(2.17)

This result is, as done above for jp,q(✓) and ✓LD(↵), confronted with the
simulation data plotted in Figure 1.8. The plot is shown in Figure 2.7.

The first thing that we notice from this plot is that the agreement between
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Figure 2.7: Comparison between simulations and refined mean field theory
for ✓ at the interface between HD and MC. Conversely to what has been ob-
served in the LD phase, here a simple linear dependence of ✓HD on � doesn’t
faithfully describe the density behaviour on varying the exit rate. This is
most likely due to the fact that, in th HD phase, the lattice is extremely
crowded, and the frequent interactions between slow and fast moving parti-
cles cannot be neglected and give rise to this non linear dependece.

theory and simulation is, also in this case, much better than in the case of
the mean field approximation (see Figure 1.8), and that our assumption for
the critical value of � at which the phase transition happens (namely that it
is the same as the critical value of ↵ for the LD-MC transition) was correct.
On the other hand, we also notice that the hypotized linear dependence of
✓HD on the exit rate � does not seem to capture the true behaviour of the
HD phase density, and – more surprisingly – that it seems to disagree also
on the slope that it assumes for small values of �.

Although, at this stage, we could be satisfied with such result – being
the agreement with simulations much better than the one given by the mean
field approach, and being the relative error of the order of 10�2 – we can
nonetheless make some further considerations about the density dependence
on � in the HD phase.

In particular, it is easy to derive an expression for ✓HD(�) whcih is exact
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in the limit of very small �. For � ! 0, in fact, we can imagine the lattice
to fill up completely before the particle on the last site leaves it. And after
that, once a hole has entered the system from the right, it will exit from
the left (i.e. the lattice will fill up completely again) before another hole
enters. More quantitively, as it is shown in Figure 2.8, once the lattice is
completely filled up, it will take, on average, ��1 time units for a hole to
enter the system and then it will take on average 1 or q�1 time units for the
last site to become occupied again – depending on which species of particle
occupies the (N � 1)th lattice site – given that � is small enough, so that no
other holes enter the system in the meantime.

(a) (b) (c)

Figure 2.8: Average time for a hole to enter the lattice (a), and avarage times
for the last lattice site to become occupied (in the limit of a full lattice) in
the case of a fast particle (b) and a slow one (c).

From this consideration, we can easily compute the quantity ✓N(�) which
is the particle density on the last site, and which will provide the value of
the bulk density in the HD phase. Called t = �

�1 the average time during
which the last site is occupied and ⌧ = p+(1� p)/q the average time during
which it is empty (where we have used the fact that we have a fraction p of
particles of the first species and a fraction (1�p) of the second one), we have
that:

✓N(�) =
t

t+ ⌧

=
q

q + �(pq + 1� p)
⇡ 1� pq + 1� p

q

� (2.18)

where, in the last step, we used the fact that here we are considering � ! 0.
As we see from this equation, in the small � regime, we recover a linear de-
pendence of the density on the exit parameter, but with a di↵erent coe�cient
than the one that we obtained in the refined mean field, given by equation
(2.17). As said before, in fact, this is an exact result, and in Figure 2.9, it is
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Figure 2.9: Simulation and theoretical values (equation (2.18)) of ✓HD(�) for
� ! 0. As we expected, the result derived in (2.18) agrees perfectly with the
simulations, sustaining the claim that, for � ! 0, this is an exact result.

plotted against the simulation data for the same values of q and p used for
the plot in Figure 2.7.

For what concerns higher values of �, things are, unfortunately, not so
straightforward. One possible way to go is to make an educated guess on the
functional form of ✓HD(�) such that for low � the linear behaviour (2.18) is
recovered, and then match it at �̃ with the MC phase density ✓MC .

The easiest ansatz that we could think of is a density of the form:

✓HD(�) ⇡ 1� ̂�

1+⌘� (2.19)

where ̂ is exactly the coe�cient given by equation (2.18), since, for � ! 0,
equation (2.19) becomes: ✓HD(�) = 1� ̂�+ o(�2), whereas the factor ⌘ can
be obtained by imposing that ✓HD(�̃) = ✓MC . This yields:

⌘ =


ln((1� ✓MC)/̂)

ln(�̃)
� 1

�
�̃

�1 (2.20)

Having values for the two parameters ̂ and ⌘ that enter in the equation
(2.19), we can now plot it againts the same simulation data of the plot in
figure 2.7. The result is shown in Figure 2.10. From this plot we see that
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Figure 2.10: Improved density relation in the HD phase plotted against the
simulation data, with ̂ and ⌘ given, respectively, by equations (2.18) and
(2.20). We note that the agreement between theory and simulations is now
almost perfect for low � and, also for higher values of the exit parameter,
the agreement has improved with respect to the linear case of Figure 2.7.

the agreement between equation (2.19) and simulations is not only almost
perfect in the small � region, as we expected, but is also much better than
the linear case (Figure 2.7) for bigger values of �. Therefore, even though
our intuition for equation (2.19) is not as good as for the very small � regime,
we decided to keep this functional dependence for ✓HD(�).

2.2.4 The Phase Diagram

Now, we can finally combine the results found so far to draw the Phase
diagram of our model in the steady state. The result is shown in Figure 2.11.

What we have obtained is a Phase Diagram qualitatively identical to
the one given by the mean field theory, but with quantitative values for the
densities and the critical values of the parameters that are in much better
agreement with the simulations, as shown above.

In particular, under the condition (2.2) and for small hopping rate q, we
recover a phases diagram characterized, as for the standard TASEP, by three
di↵erent phases, in which the avarage total density ✓ assumes the following
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values:

✓LD(↵) =
↵

q

✓MC =
1�

p
1� p

p

✓HD(�) = 1� pq + 1� p

q

�

1+⌘�

(2.21)

with ⌘ given by equation (2.20).
As an example, in Figure 2.12, we plotted the density profiles in the three

phases for a particular choice of ↵, �, p and q. As we can see, a part from
boundary e↵ects due to the finite size of the system (here N = 1100), the
agreement between our Refined Mean Field theory and the simulation is, as
expected, much better than in the simple Mean Field case.

2.2.5 Boundary e↵ects

For what concerns the boundaries, the discrepancies between the bulk density
and the boundary one in the rightmost part of the lattice in the LD phase,
in the leftmost part of the lattice in the HD phase, and on both sides of
the lattice in the MC phase, can be explained in complete analogy to the
standard TASEP, where such e↵ects are also present (see, for example, [9]
and [16], or [13]). Briefely, What happens in the standard TASEP is that,
at the boundaries, the value of the density is determined by the reservoirs
densities – namely ✓ = ↵ on the left and ✓ = 1 � � on the right. In the
LD phase is the left boundary which dictates the density along the whole
lattice, while in the HD phase is the right boundary the one which drives
the transition and imposes its density value. This leads to boundary layers
to arise on the left or on the right, respectively in the HD and in the LD
phase, because, at the boundaries, the density is bounded to the reservoir’s
one, while, in the bulk, it is dedermined by the opposite lattice end. In the
MC phase, on the other hand, the bulk density is neither the left or the right
one, so that boundary layers appear on both ends of the lattice.

From the plots in Figure 2.12, we see that this phenomenon appears, as
one would expect, in our case as well. One interesting and new phenomenon,
though, is present here, which, at first, does not seem to be in agreement
with the behaviour of the standard TASEP. If we zoom-in on the left tip of
the lattice in the LD phase (see Figure 2.13(a)), in fact, we see that the fast
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particle density ⇢ – and, therefore, the total one as well – does not remain
constant till the beginning of the lattice as one would expect in the LD phase
– as we explained above and as, for example, does the slow particle density
– but, rather, it decays. And, as it is shown in the plots in Figure 2.13, it
decays until it reaches, near the first lattice site, the left boundary density
value that we would expect from a standard TASEP with hopping h = 1 and
entrance parameter given by p↵.

This last observation gives us a hint on the reason behind this phe-
nomenon. What seems to happen, in fact, is that, in the LD phase, near
the left end of the lattice, the two species of particles ignore each other: both
densities ⇢ and µ assume the value that they would have in a one species
TASEP, namely a density of p↵ for a TASEP with hopping rate h = 1 and
entrance rate p↵ and a density of (1� p)↵q�1 for a TASEP with h = q and
entrance rate (1 � p)↵. Then, as one moves to the right, the fast particles
begin to feel the presence of the slow ones, and, consequently, their average
velocity is reduced, so that, e↵ectively – as we argued before in order to jus-
tify the choice of the density in the LD phase (2.14) – they behave as slow
particles, and one is left with a standard TASEP with hopping rate he↵ = q

and entrance rate ↵.
These considerations suggest that this phenomenon is, in fact, explainable

in total analogy with the boundary e↵ects of the standard TASEP: here as
well each species density is, near the first lattice site, bound to the density
value of the reservoir, which is exactly p↵ for the first species and (1�p)↵q�1

for the second species. As we explained above, whenever, the bulk density
disagree with the reservoir value, one boundary layer does appear, and this
is exactly the case for the fisrt species particle density on the left lattice end
in the LD phase.
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Figure 2.11: Refined mena field Phase diagram for the 2-TASEP, where
the values for the bulk density in the three phases are given by equations
(2.21). The qualitative structure is the same as in the standard TASEP
phase diagram: a LD, a HD and a MC phase. Quantitatively, though, the
transition between the phases happen at di↵erent values of the parameters
from the ones predicted by the mean field theory, and the values of the bulk
densities in these regions are also di↵erent from the mean filed ones.
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(a) (b)

(c)

Figure 2.12: Simulation data (scattered points) of the density profiles in the
three phases plotted against the refined mean field prediction for the total
density ✓ (continous red line), for a lattice of lenght N = 1100, and with
p = 0.51 and q = 0.07: (a) LD phase, with ↵ = 0.037 and � = 1. (b) HD
phase, with ↵ = 1 and � = 0.037. (c) MC phase, with ↵ = 0.3 and � = 0.3.
Also in this plots we notice the good agreement between the simulated bulk
densities and our refined theory.
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(a) (b)

(c)

Figure 2.13: (a) Detail of the left tip of the lattice of Figure 2.12(a). The
continuous red line indicates the refined mean field predicted value of the ⇢

density in the bulk, while the orange line is the value that the density would
assume in a standard TASEP with entrance rate of p↵. In the plots (b) and
(c) a zoom of the left lattice end is also presented, for ↵ = 0.01, q = 0.06
and di↵erent values of p: p = 0.6 in (b) and p = 0.3 in (c). In all three cases,
we witness a non constant fast partciles density in the region near the left
lattice end: it grows from a value of ⇢ = p↵ to the predicted one of ⇢ = p↵/q

in the bulk, marked, respectively, by the orange and red continous lines.



Chapter 3

Heterogeneous TASEP and LK

Since we are interested in modeling motor dynamics on microtubules, we
want our model to be as close as possible as the real process inside cells.
In order to achieve this goal, one first step is to introduce, on top of our
TASEP-like dynamics, also the possibility of attachment and detachment of
motors on and from the lattice, as it happens in the real biological system,
where motors can attach to the microtubule from the sourrounding medium
and can detach to it, after walking for a fraction of the lane.

3.1 The Langmuir Kinetics

In literature, the attachment-detachment process is re↵ered to as Langmuir
Kinetics (LK) and, when considered alone, on a 1D lattice, leads to the
system that we’re now going to briefly describe.

βα 1 q

α β

ωatt ωatt
ωdet ωdet

βα 1 q

α βωD
1ωD

2 ωA
1ωA

2

ωDωD ωAωA

q

Figure 3.1: Lattice with Langmuir Kinetics

As seen in Fig. 3.1, particles attach at rate !A and detach at rate !D

form any latice site. As before, we are interested in the density profile at the
steady state. Defined ni the occupation variable for the ith site, the time
evolution of its avarage is easily derived:

d

dt

hnii = !A(1� hnii)� !D hnii (3.1)

39
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so that, in the steady state ( d
dt
hnii = 0), it’s easy to compute the avarage

density:

hniiss =
K

K + 1
(3.2)

where K is defined as K := !A/!D. In the case where we have two species of

βα 1 q

α β

ωatt ωatt
ωdet ωdet

βα 1 q

α βωD
1ωD

2 ωA
1ωA

2

ωD
1ωD

2 ωA
1ωA

2

q

Figure 3.2: Lattice with 2 Species Langmuir Kinetics

particles, with their own attachment and detachment rates, !1
A,!

2
A,!

1
D,!

2
D

(see Fig. 3.2), things become only slightly more complex. with the same
notation for the two species occupation as before, we have that:

d

dt

hnii = !

1
A(1� hnii � hmii)� !

1
D hnii

d

dt

hmii = !

2
A(1� hnii � hmii)� !

2
D hmii

(3.3)

And equating the time derivatives to 0, we can again easily obtain the steady
state density profiles:

hniiss =
K1

1 +K

hmiiss =
K2

1 +K

(3.4)

where we have K1/2 := !

1/2
A /!

1/2
D and K := K1 + K2. All these are exact

results, and simulations agree perfectly with them.

3.2 TASEP and LK

As stated in the introduction of the chapter, we now want to study the steady
state densities of a two species TASEP coupled with LK. The model we are
interested in, therefore, is the one represented in Figure 3.3: particles can
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Figure 3.3: Lattice with 2-TASEP dynamics coupled with LK

enter the lattice at the first site with rate ↵ (more precisely, with rate p↵ for
the fast particles and (1 � p)↵ for the slow ones), leave it from the last site
with rate �, attach and detach from any other site respectively with rates
!

1
A,!

2
A,!

1
D,!

2
D, and jump forward if the next site is empty, with hopping rate

of 1 and q < 1, respectively for the particles of the first and second species.
Again, as for the model analyzed in the previous sections, we are now

interested in deriving an accurate expression for the two species densities in
the steady state.

3.2.1 Mean Field Analysis

As already done before, one can easily derive the time evolution of the density
profiles in the bulk:

d

dt

⇢i = hni�1(1� ni �mi)i � hni(1� ni+1 �mi+1)i+

+ !

1
A(1� hnii � hmii)� !

1
D hnii

d

dt

µi = q hmi�1(1� ni �mi)i � q hmi(1� ni+1 �mi+1)i+

+ !

2
A(1� hnii � hmii)� !

2
D hmii

(3.5)

whereas for the first and last lattice sites, we have the same equations as in
(1.7) and (1.6):

d

dt

⇢1 = p↵ h1� n1 �m1i � hn1(1� n2 �m2)i
d

dt

µ1 = (1� p)↵ h1� n1 �m1i � q hm1(1� n2 �m2)i

d

dt

⇢N = hnN�1(1� nN �mN)i � � hnNi
d

dt

µN = q hmN�1(1� nN �mN)i � � hmNi

(3.6)
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As expected, we find the that in order to calculate the time evolution of the
avarage occupation, we need also the higher moments of its distribution.

Although a mean field approximation has failed in the analysis of the
two species TASEP, it may nonetheless be worth trying again with such an
approach in this case, if we consider that the Langmuir kinetics may reduce
the contributions due to the correlations. With this hope, we try, therefore,
once more to perform a mean field analysis.

With the same notation as before, under the mean field assumption and
in the steady state ( d

dt
⇢i =

d
dt
µi = 0), equations (3.5) become:

0 = ⇢i(1� ⇢i � µi)� ⇢i(1� ⇢i+1 � µi+1)+

+ !

1
A(1� ⇢i � µi)� !

1
D⇢i

0 = qµi(1� ⇢i � µi)� qµi(1� ⇢i+1 � µi+1)+

+ !

2
A(1� ⇢i � µi)� !

2
Dµi

(3.7)

In order to be able to find an explicit expression for the desities ⇢i and µi

which solve these equations, it is useful to consider the continuum limit of
the system: i.e. we coarse grain the lattice, considering infinitely many sites
(N ! 1) while keeping the lenght of the lattice, L, constant (for simplicity
we will set L = 1). For large N , we will then consider the quasi-continuoous
variable x := i/N instead of i, and rewrite the equations (3.7) expanding in
the lattice constant " := L/N = 1/N :

0 ="@x[⇢(x)(1� ✓(x))]� !

1
A(1� ✓(x)) + !

1
D⇢(x) + o("2)

0 ="@x[µ(x)(1� ✓(x))]� !

2
A

q

(1� ✓(x)) +
!

2
Dµ(x)

q

+ o("2)

(3.8)

An important remark to make before proceeding is that, as explained in
detail in [13], in order for the LK process not to become dominant over the
TASEP one in the infinite lattice sites limit, we need the attachment and
detachment rates to scale as 1/N : !1/2

A/D = ⌦1/2
A/D/N , for some constant ⌦1/2

A/D.
The reason behind this is that if the LK rates remain constant, then the
particles on the lattice will, on average, always spend the same amount of
time on it, travelling for the same average number of sites, before detaching.
But, as the number of sites increases, such average number will become a
negligible fraction of the total lattice lenght, so that the TASEP dynamics
will be dominated by the LK one, and its e↵ects will no longer be relevant.
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Therefore, we rewrite !1/2
A/D as !1/2

A/D = "⌦1/2
A/D, so that the equations (3.8),

at first order in ", become:

0 =@x[⇢(x)(1� ✓(x))]� ⌦1
A(1� ✓(x)) + ⌦1

D⇢(x)

0 =@x[µ(x)(1� ✓(x))]� ⌦2
A

q

(1� ✓(x)) +
⌦2

D

q

µ(x)

(3.9)

whereas, for what concerns the boundary conditions at the left and right
ends of the lattice, equations (1.6) in the continuum limit and at first order
in " translate into:

p↵(1� ✓(0))� ⇢(0)(1� ✓(0)) = 0

(1� p)

q

↵(1� ✓(0))� µ(0)(1� ✓(0)) = 0

(3.10)

which gives:

⇢(0) = p↵

µ(0) =
1� p

q

↵

✓(0) = ↵(p+
1� p

q

)

(3.11)

while equations (1.7) become:

⇢(1)(1� ✓(1))� �⇢(1) = 0

µ(1)(1� ✓(1))� �

q

µ(1) = 0

(3.12)

As pointed out in [13], at first order in ", we obtain a system of first order
di↵erential equations for the densities ⇢(x) and µ(x), but we have two dif-
ferent boundary conditions: one at x = 0 and one at x = 1: the problem is
overdetermined.

On top of that, in our case, we have also an additional issue concerning
the right boundary. If we try to solve (3.12) for ✓(1), in fact, we obtain two
di↵erent results depending on whether we assume ⇢(1) 6= 0 and, therefore,
obtain ✓(1) from the first equation of the (3.12), or, instead, we assume
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µ(1) 6= 0 and get ✓(1) from the second one. In the first case, in fact, we
obtain:

✓(1) = 1� �

⇢(1) = 1� �

µ(1) = 0

(3.13)

while, in the second we get:

✓(1) = 1� �

q

⇢(1) = 0

µ(1) = 1� �

q

(3.14)

What is interesting to notice is that, according to these results, no matter
which boundary condition among the (3.13) and (3.14) is satisfied, in both
cases we witness species segregation at the rightmost end of the microtubule,
a phenomenon that has been described also by Pinkoviezky and Gov [17].

To obtain the mean field densities at the steady state we should now
solve equations (3.8). A possible way to proceed is the one exploited in
[17], which seems to give nice results which are in good agreement with the
simulations. However, in this work, the authors were considering di↵erent
species di↵ering only in the LK rates and not in the hopping ones. And,
although at some point they claim that their mean field results apply also in
the case of di↵erent hopping rates, this is not further justified and, therefore,
before trying anything else, we would like to test the validity of the mean
field approach in our case.

To this end, a sensible approach is to rewrite equations (3.9) in a region
of the parameters space where they simplify and where it is possible to easily
get an analytic solution.

Such a result is achievable for various choices of the LK parameters. One
particular region of the LK rates that we found interesting to explore is the
one defined by the following constraints:

⌦1
D =

⌦2
D

q

⌦1
D = ⌦1

A +
⌦2

A

q

(3.15)
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In this region, in fact, if we define ⌦ := ⌦1
D and sum equations (3.9), we

obtain a di↵erential equation for ✓(x) which depends only on ⌦:

(2✓(x)� 1)(@x✓(x)� ⌦) = 0 (3.16)

This first order di↵erential equation, with 2 di↵erent boundary conditions, is
studied in detail in [13], for it is the equation obtained in the mean field and
continous limit for a standard TASEP coupled with LK, in the symmetric
case: K := ⌦A/⌦D = 1. Depending on the values of ⌦, ↵ and �, one
expects di↵erent behaviour of the density profile with di↵erent matchings of
the three solutions of (3.16). However, it is important to stress that while
the contraints (3.15) leave us with 2 free LK parameters – ⌦ and, let’s say,
K1 := ⌦1

A/⌦
1
D – the solutions of (3.16) only depend on ⌦ and the boundary

conditions (i.e. on ↵ and �). So that, now, if the mean field approximation
provides, indeed, an accurate description, we expect not only to recover the
density profiles obtained in [13] as solutions of (3.16), but also that this
profiles do not depend on K1.

3.2.2 Simulations

Based on the considerations made in the last section, we now want to test
the mean field prediction. To this end, we set the LK parameters so that the
conditions (3.15) are satisfied and simulate the system evolution for di↵erent
values of K1 till reaching a state near to stationariety, and then compute
the time avarages for the occupations along the lattice. What we expect, as
said, is not only to recover the profiles described in [13], but also that all the
curves coincide. The results of such simulations are presented in the plot in
Figure 3.4.

The first thing that strikes the eye as one looks at these plots is that
the profiles obtained for di↵erent values of K1 are not compatible with each
other. The only regions where they agree, in fact, are the plateaux in the
middle of the lattice and the right tip of the lattice, where they assume a
linear behaviour. As one could expect, the behaviour of the density profiles in
these regions is exactly the one predicted by the mean field result represented
by equation (3.16): for the choosen values of ⌦, ↵ and �, in fact, equation
(3.16), together with the boundary conditions, yields a density profile which
is constant in the bulk – specifically with a value of ✓(x) = 1/2 – and that
linearly increases in the last section of the lattice, with a slope given by
⌦, more precisely: ✓�(x) = ⌦(x � 1) + 1 � �/q, where we have chosen the
right boundary condition to be given by equations (3.14), rather than (3.13),
because, for this particular choice of the LK rates, we have segregation at the
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Figure 3.4: Simulated total density profiles for N = 1000, ⌦ = 1.7 and
di↵erent values of K1.

rightmost tip with the slow particles taking over the fast ones – see Figure 3.6.
As an example, this expected behaviour is plotted against the simulations
data for K1 = 0 in Figure 3.5.

What is clear from the plots in Figures 3.4, 3.5 and 3.6 is that, also when
LK is added to the model – at least for our choice of the LK rates (3.15) – the
di↵enrence between the hopping rates of the two species increases sensibly the
contribution to the steady state density profiles of the correlations, a↵ecting
the accuracy of the mean field predictions.

In particular, for the specific choices of the parameters – which, being
the total phase space 8-dimensional, is by no means representative for the
general behaviour of the system – we observe two interesting phenomena.

The first one is the minimum in the density in the first part of the lattice,
caused by the fast decrease of the first species particles, whose average density
decays from the left tip value (determined by the entrance rate ↵) to the bulk
value, which is, on contrary, determined by the LK rates.

The second phenomenon is connected with the species segregation. Look-
ing at the total density plots in Figure 3.4, in fact, we have already observed
that, near the end of the lattice, the density profiles seems to agree perfectly
with the mean field prediction. And, indeed, it does so, and the reason for
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Figure 3.5: In this plot, the density profile of Figure 3.4 for K1 = 0 (dot-
ted data) is plotted against the result predicted by the mean field theory
(continous red line).

that is immediately clear if one plots separately the fast and slow particle
densities, as it is done for some values of K1 in Figure 3.6. From these plots,
in fact, one can see that the region of the lattice in which the total density
✓(x) start assuming the linearly increasing behaviour predicted by the mean
field theory coincides exactly with the region in which the fast particle den-
sity starts decreasing until vanishing completely by the end of the lattice.
This means that, in this last fraction of the lattice, there are almost no fast
particles left, resulting in the fact that, here, only one species of particles is
present in the system, so that is no surprise that the mean field approxima-
tion works well. As K1 is increased, in fact, the fast particles populate also
further regions of the lattice – as we can clearly see from Figure 3.6(b) and
3.6(c) – and this leads to a deviation from the mean field prediction that
propagates further in the lattice and closer to the lattice right end.

This suggests that segregation is, in fact, not so easily justified just by
means of equations (3.13) and (3.14). Intuitively, what happens at the end of
the lattice is that, given the low � value, and since the fast particles detach
more often than the slow ones, the slow hopping particles tend to occupy all
free sites, so that the fast particles can hardly reattach, resulting in a decay
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(a) (b)

(c)

Figure 3.6: Density profiles for the two species ⇢(x) and µ(x) (blue and
light blue respectively) together with the total density ✓(x) (green), for three
di↵erent values of K1: K1 = 0 (a), K1 = 0.1 (b) and K1 = 0.2 (c). In all
cases (as well as for all the other values of K1 plotted in Figure 3.4), we
witness species segregation at the end of the lattice. In particular, the slow
particles take over the fast ones, whose density decays before reaching the
end of the lattice.

of the ⇢-density. If this interpretation is correct, therefore, we can conclude
that species segregation is driven by LK and depends strongly on the choice
of the dynamic parameters.

At the light of this, another interesting parameter space region to look at
is the one where the relative fraction of fast particles in the system is kept
equal to the one given by the fraction of the entry rates p. This is achieved
by setting:
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⌦1
A = p⌦A

⌦2
A = (1� p)⌦A

⌦1
D = ⌦2

D = ⌦D

(3.17)

for some ⌦A and ⌦D.
In this regime, we recovered the behaviour that has also been found in the

standard TASEP coupled with LK, for example by Frey and colleagues in [16]
and [13]. We found, namely, that for particular choices of the parameters, a
domain wall appears in the system, separating a low density region from a
high density one, as can be seen in the plots of Figure 3.7, from which we
see not only that there is no segregation of species at the end of the lattice,
but also that the single species densities continue to obey the relations 1.12
throughout the lattice, excluding the left tip, where a similar phenomenon
to the one analized previously appears.

These findings confirm what we had imagined before: being the parameter
space so vast, the phenomenology of the model is extremely variegated and
rich. For this reason – together with the fact that a simple mean field analysis
seems not to provide accurate predictions for every choice of the parameters –
a detailed and complete analysis of the phase space of this model appears to
be better suited for further work and research.
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(a) (b)

(c)

Figure 3.7: Density profiles for LK parameters given by 3.17, with ↵ = 0.016,
� = 0.048, q = 0.08, p = 0.6, and di↵erent choiches of ⌦A and ⌦D: (a)
⌦A = 5.7 ⇥ 10�6, ⌦D = 1.9 ⇥ 10�6; (b) ⌦A = 7.5 ⇥ 10�6, ⌦D = 2.5; (c)
⌦A = 1.11 ⇥ 10�5, ⌦D = 3.7 ⇥ 10�6. We can see that, in this case, the
relations 1.12 are satisfied throughout the lattice, till the right tip, so that
no species segregation is present. We notice that, instead, a domain wall
appears in the bulk, separating a low density region on the left from an high
density one on the right, and giving rise to a profile density which has the
exact same shape as the one found by Frey and collaborators in [13].



Conclusions

Motivated by the fact that heterogeneity of motor properties (in particular of
their average velocity) is found in biological systems, we decided to analyze a
modified version of the standard TASEP, where various species of particles,
di↵ering in the hopping rate, are allowed to walk on the same lattice.

In the first part we found that having particles with di↵erent hopping
rates has a big impact on correlations of the occupation variables, so that a
simple mean field analysis fails to predict accurate values of the steady state
densities and average current. We discovered that having slow particles in
the system leads to jamming and clustering phenomena. We then exploited
such a clustering behaviour shown by the system in certain regions of the pa-
rameters space to derive a refined mean field theory, which gave very accurate
results.

Unfortunately, as it is shown by the plot in Figure 2.5, the predictions of
our theory start deviating from the simulation results as the slow hopping
rate q approaches 1. While for q ! 1 the mean field description can be
regarded as a good enough approximation, for intermediate values of the slow
hopping rate neither of the two theories provide satisfying results. What
one expects, though, is just a quantitative change of the critical values of
the entrance and exit parameters. To get a quantitative estimate of such a
change, further research could focus on trying to estimate the contributions
of correlations in such a regime as well, so that the exact phase space for the
heterogenous TASEP would be known for all regimes.

We then went on to analyze what happens when an heterogeneous TASEP
is coupled to LK. In particular, we allowed the two species of particles to also
have di↵erent attachment and detachment rates. In doing so, we obtain an
eight-dimensional parameter space, which is, as one can imagine, very vast
to explore.

Before trying to solve the general model’s equations in the mean field
limit, we wanted to test if such an approach was even worth the try. We
therefore decided to restrict ourselves to a two dimensional surface of the LK
space, where the di↵erential equation in the continous limit for the total
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density ✓ becomes easily solvable. The simulations showed that, in this
regime, the system shows very interesting behaviours non predicted by the
mean field analysis, one of these being species segregation at the right tip of
the lattice.

Further exploration of the parameter space showed that, with di↵erent
choices of the LK rates, it is possible to maintain the relations 1.12 trhough
the lattice. Moreover, in such a regime, we also observed the emergence of
a domain wall in the bulk of the lattice, separating a low density region on
the left from an high density one on the right. This phenomenology is in
all similar to the one observed by Frey and colleagues in the study of the
standard TASEP coupled with LK [13].

These findings suggest that the addition of a second species, which can
have its own dynamical rates, only greately enriches the possible behaviour
and phenomenology shown by the model, making a simple mean field anal-
ysis less e↵ective in certain regimes. Future work and research could focus
on trying to go beyond a phenomenological analysis of the heterougenous
TASEP coupled with LK, in particular in biologically interesting regimes.
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