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Abstract

Localization techniques for supersymmetric quantum field theories allow one to produce non-perturbative
results such as computing partition functions exactly, in stark contrast to general field theories. In many
two-dimensional examples of supersymmetric theories, the path integral or partition function is related
geometric invariants and appears as a solution to certain differential equations with geometric and physical
interpretation. Recently a program has been initiated to “lift” these constructions from two- to three-
dimensional theories. Beem, Dimofte and Pasquetti argued that the natural 3D analogue of the differential
equations whose solutions determine the partition function in two-dimensions are q-difference equations,
i.e. functional equations involving q-shifts. Their structure and features resemble those of differential
equations, but their general theory is less developed. Nevertheless, the global behavior of their solutions
is expected to be relevant and interesting for physics, as in the case of differential equations. The aim of
this work is to study the monodromy of certain examples of q-difference equations and its relevance to
supersymmetric gauge theories. We review the setting in which they arise in physics, and then we provide
a preview of the techniques to be used by studying the monodromies of differential equations. Finally we
compute the connection matrix, the q-analogue of monodromy, for two examples of q-difference equations
and discuss their physical meaning.
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Notation

The q-analogue of a number z ∈ C is

[z]q :=
1− qz

1− q
,

with q ∈ C∗ \ S1.

q-Pochhammer symbol with integer index:

(z; q)n =


(1− z)(1− qz) . . . (1− qn−1z) n = 1, 2, . . .

1 n = 0

[(1− zq−1)(1− zq−2) . . . (1− zqn)]−1 n = −1,−2, . . . .

q-Pochhammer symbol with infinite index:

(z; q)∞ =


∞∏
k=0

(1− zqk), if |q| < 1

∞∏
k=1

1
(1−zq−k)

, if |q| > 1

The inversion formula
(z; q)∞ =

1

(pz; p)∞
, q = p−1.

q-Pochhammer symbol with complex index:

(z; q)α =
(z; q)∞

(qαz; q)∞
, |q| ≷ 1

(z; q)α = (pz; p)
−1
−α , p = q−1.

Notation for products:
(z1, . . . , zn; q)α = (z1; q)α . . . (zn; q)α ,

which we also use for repeated functions like Γ(x)Γ(y) = Γ(x, y).

The derivative symbol

ϑz = z
d

dz
.

The q-shift operator:
σq : f(z) 7→ f(qz), σq ≡ qϑz

also denoted as p̂ in Part I.

The q-derivative operator:

Dq =
1

z

σq − 1

q − 1
.

The (classical) binomial coefficient:(
n

m

)
=

n!

m!(n−m)!
=

Γ(n+ 1)

Γ(m+ 1, n−m+ 1)
, n,m ∈ C.

The q-binomial coefficient:(
n

m

)
q

=
(q; q)n

(q; q)m (q; q)n−m
≡ Γq(n+ 1)

Γq(m+ 1, n−m+ 1)
, n,m ∈ C.
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0. Notation

Throughout the text we will ‘pick logarithms’ in their principal branch:

a = qα, b = qβ , c = qγ , etc.

Often we will parametrize
q = e~

with ~ ∈ C.

The Heine series or basic hypergeometric series

2φ1

(
a, b
c

∣∣∣∣ q; z) :=

∞∑
n=0

(a, b; q)n
(c, q; q)n

zn, |z| < 1

can be generalized to the generalized basic hypergeometric series

rφs

(
a1, . . . , ar
b1 . . . , bs

∣∣∣∣ q; z) :=

∞∑
n=0

(a1, . . . , ar; q)n
(b1, . . . , bs, q; q)n

[
(−1)nq(

n
2)
]1+s−r

zn.
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1. Introduction

Quantum field theories are perhaps the most important object of study in modern theoretical physics.
From the standard model of particle physics, to condensed matter physics, string theory and quantum
gravity, it is the modern framework physicists use to describe the world. The interaction between physics
and mathematics as experienced by a physics student usually boils down to a daily (ab)use of well-
established mathematical framework to solve and understand physical questions. A shining exception to
this trend are classical and quantum field theories that have also “returned the favor” to mathematics.
Field theories studied in physics have become an ample source of questions and directions for pure
mathematics, whose investigation has lead to breakthrough results in both mathematics and physics. This
surge of results has lead to the revitalization physicists’ interest in pure mathematics and mathematicians’
interest in physics, which in turn has given birth to a field of study best described by the term “Physical
Mathematics” coined by string theorist Greg Moore∗. It is therefore easy to see why a deeper and more
detailed understanding of quantum field theories is imperative, even if particular examples have little
hope to ever contribute to a phenomenological application.

A particular class of very well studied quantum field theories are supersymmetric gauge theories and
supersymmetric conformal field theories, both in mathematics and physics. As their name suggests,
they are quantum field theories with supersymmetry allowing for the interchange between bosons and
fermions, as well as internal gauge symmetries or conformal symmetry respectively. The main motivation
for their study in physics comes from string theory: supersymmetric gauge theories and conformal theories
describe string compactification and the low energy effective field theory. The study has lead to a number
of seminal breakthroughs in the context of string theory and pure mathematics inspired by string theory,
the most notable of which is mirror symmetry.

The extended symmetry allows supersymmetric theories to be further analyzed than their “less symmetric”
counterpart field theories, mainly through the emergence of powerful computational tools like localization
and deformation invariance. Despite their “distance” from experimental data, the study of supersymmetric
theories has lead to deeper insight of the general structure of quantum field theories, and perhaps will
pave the way for a general, precise definition of a quantum field theory, which is still elusive.

A fundamental object in a quantum field theory is the path integral without insertions or partition func-
tion. It serves as a generating function for correlation functions of operators corresponding to observables.
For general non-supersymmetric field theories one can compute it only perturbatively as it involves func-
tional integration on an infinite dimensional space. For theories with supersymmetry, or more generally
a nilpotent fermionic symmetry, under assumptions of genericity the path-integral localizes to a finite
dimensional integral which can be computed exactly, including non-perturbative contributions. Often,
the partition functions of theories defined on specific geometries are define or are related to invariants
associated to the geometries.

In supersymmetric field theories in two dimensions (with N = (2, 2) supersymmetry), there has been
further progress in the systematic study of the theories, their space of inequivalent vacua and the compu-
tation of their partition functions. In cases of interest, where the two-dimensional field theory admits a
so-called geometric phase, the partition functions are defined on general grounds by differential equations-
constraints, similarly to Ward identities constraining correlation functions in quantum field theories. The
global behavior of their solutions, i.e. monodromies or Stokes data, encodes physically interesting infor-
mation.

A general goal of the study of supersymmetric gauge theories, is to “lift” the established results and con-
structions to three-dimensional supersymmetric gauge theories. In a particular class of three-dimensional
gauge theories which we study, one may indeed find counterparts to two-dimensional “machinery” as well

∗ http://www.physics.rutgers.edu/∼gmoore/PhysicalMathematicsAndFuture.pdf
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1. Introduction

as novel tools to help understand the theories and in particular, compute their partition functions. In
this particular class, the three-dimensional counterpart of differential equations defining/constraining the
partition functions are “lifted” to q-difference equations.

The study of q-difference equations is somewhat lacking in progress compared to that of their “sister”
differential equations. Yet, their structure and their features usually go “hand in hand”: q-difference
equations can be thought of as one-parameter deformation of differential equations and correspondingly,
differential equations arise as a limit of q-difference equations. One thus often tries to study q-difference
equations with a “compass” provided by more concrete results of differential equations. As in the case
of differential equations, it becomes a mathematically and physically interesting question to ask about
the global data of q-difference equations: q-monodromy and q-Stokes phenomena. Do these objects
exist? What is their mathematical meaning? What physical information do they encode? Although
we give no conclusive answers to these questions in this work, we hope to illuminate some aspects
of these questions, in particular about the monodromy of q-difference equations. As a last note, we
mention that the appearance of q-difference equations in (supersymmetric) gauge theories is one of many
(possibly related) instances: q-difference equations play an intimate role in representation theory of
quantum groups (q-Knizhnik-Zamolodchikov equations), quantum cohomology groups, knot invariants,
the Geometric Langlands program. We expect in the future their presence in physical context to be
ubiquitous and therefore we strongly support their further study, both for mathematics and for physics.

The outline of this work is as follows: Part I is devoted to background material involving the appearance
of q-difference equations in gauge theories, as well as some results related to our later study of particular
cases of q-difference equations. Chapters 2 and 3 are a short exposition of a three-dimensional gauge-
theoretic “recipe” to compute exact partition functions given by Beem, Dimofte and Pasquetti. Chapter 4
gives an ultra-short exposition of two-dimensional gauged linear sigma models, a particular case of which
will serve as a motivation for the study of a q-difference equation. In Part II, we first devote chapter 5 to
the study of monodromy of differential equations. This investigation serves as a guide for our subsequent
study of q-difference equations in chapter 6, where the bulk of our work lies. In chapter 6, we first
introduce some generalities on q-difference equations, q-difference systems and their (local) solutions. We
then study two particular cases of q-difference equations motivated by the physical settings presented in
Part I. We study the monodromy properties of these equations, in the form of the connection matrices,
adapting existing literature. We use techniques developed by mathematicians to derive a new connection
matrix as a degenerate limit. Lastly, we end with a discussion and outlook of further directions of study.

2
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2. A perturbative calculation of 3D partition

functions

In this and the following chapters we want to give a brief exposition of the existing literature that serves
as the main motivation for this work. In particular we will present the main ideas and some technicalities
presented in the seminal work of Beem, Dimofte and Pasquetti in [BDP14]. This work is one instance
of appearance of q-difference equations with applications to gauge theory, and our study of q-difference
equations in later chapters will revolve around applications as presented in this paper. This chapter is
devoted to the perturbative calculation of partition functions by reduction to quantum mechanics, while
the next one is reserved for the non-perturbative completion of the calculation.

2.1 Outline: A three-dimensional lift

We first give some overview of the work, as well as some general remarks about the existing literature.
The main aim of our work in broad terms, as well as that in [BDP14], is to study gauge theories,
compute (often topological) invariants like partition functions and indices. Of particular interest are
superconformal N = 2 gauge theories on curved three-dimensional manifolds that still preserve some
supersymmetry, specifically three-manifolds that are realized as fibrations over an S1 base. Such theories
and also supersymmetric gauge theories in general have been the subject of intense research in the past
years, in particular because one can under certain assumptions obtain exact, non-perturbative results
from these theories [Tes14]. This is in stark contrast with traditional quantum field theories, where
perturbative methods are the main “game in town” to obtain correlation functions, partition functions
and understanding of the theory in general.

Techniques, in particular like localization, from theories on curved manifolds with deformed supersym-
metry algebras — to accommodate the curvature — have been used to produce interesting results in
low-dimensional supersymmetric field theories [Pas12; DGG11a; DGG11b]. Here, we focus on N = 2
SCFTs and their massive deformations are studied. The field content is determined as follows: for every
U(1) subgroup of the flavor symmetry group it is possible to turn on a real mass deformation [Ton00;
DT00]. In particular, one needs theories where such deformations are sufficient to induce strictly gapped
vacua and one also requires that the U(1)R R-symmetry is preserved (Examples: N = 2 SQED, SQCD,
and more). The backgrounds that are studied are the ellipsoid S3

b and the twisted product S2 ×q S1

where log q denotes the holonomy with which the S2 fibers over S1. The partition function of S3
b (of form

∼ trH e
−βH plus insertions) and the superconformal index of S2×q S1 (∼ trH(−1)F e−βH plus insertions)

have been computed in the literature and can be rederived through the methods developed in [BDP14].

The main ideas in the work of Beem, Dimofte and Pasquetti can be summarized as:

1. The calculation of the partition function (or index) of a N = 2 supersymmetric gauge theory TM on
a certain class of three-dimensional manifolds M3 (including products and twisted products of the
form C × S1, where C is a Riemann surface) with “enough” flavor symmetry can be calculated, by
the computing quantities called “holomorphic blocks” B(x; q) instead of the partition function itself.
Here, x is a general symbol for the exponentiated masses (deformations) that were introduced for
U(1) factor in the flavor symmetry group and q a general symbol for the fugacities associated to the
global symmetries. The partition function is then computed as a “sum of products” of such blocks

ZM3(parameters) =
∑
α

Bα(x; q)Bα(x̃; q̃) =: ‖Bα(x; q)‖2g .

5



2. A perturbative calculation of 3D partition functions

The summation is over the label α, which as we will see labels the discrete classical vacua of the
(effective) theory on one lower dimension, and the holomorphic blocks Bα(x; q), Bα(x̃; q̃) are the
same, universal functions. Their different arguments x, q, x̃, q̃ related with the parameters of the
theory. The very right-hand side of the equation is indicative notation which we explain later.

This bold-looking statement is not so unfamiliar: the name “blocks” already refers to standard two-
dimensional conformal field theories where one can express higher-order correlators from sums of
simple products of the so-called conformal blocks of the form

∑
FijCi(z)Cj(z̄), with clear holomor-

phic × anti-holomorphic structure. A very much related phenomenon is the main result of the so
called Alday-Gaiotto-Tachikawa (AGT) correspondence [AGT10; Tes14] where the authors found
that four-point functions of two-dimensional Liouville field theories (CFTs) can be expressed as an
integral (sum) of products of partition functions of four-dimensional supersymmetric gauge theories.
From a computational point of view, these examples have the same structure: computing a quantity
as a sum of products of (generally) simpler, universal functions where only the arguments of said
functions need to be identified appropriately. In the context of conformal blocks, the identification
is simply complex conjugation. In more complicated settings, this identification scheme depends
on the field content as well as the geometry, i.e. the choice of background manifold, metric etc.
This apparently ubiquitous feature is called factorization of partition functions/indices, and the
statement that partition functions are of this form is called the factorization conjecture.

2. The blocks Bα(x; q) also necessarily have interesting properties themselves. They are called holo-
morphic because we will demand that they satisfy certain analyticity constraints with respect to
the arguments x. More interestingly, they are in fact partition functions themselves of theories
(deformed from the original) on the “pieces” coming from the Heegaard splitting of the initial
manifold M3 into two handlebodies, which in our case will always be of the form of a twisted
product R2 ×q S1 (twisted solid torus). This what we will refer to as “cigar” or “cigar geome-
try”. They take the form of a BPS index counting BPS states in the massively deformed vacua
Bα(x; q) ∼ trH(R2;α)(−1)Re−βHq−J+R

2 xe, where R is the U(1)R generator, J is the U(1) generator
of the (massive) little group in 3d, x is the exponentiated mass associated to the flavor deformation
and e is the U(1) charge (in fact x ∼ edeform.+ie

∫
A where A is a gauged flavor symmetry field and

e is the generator (charge) of the corresponding flavor symmetry). The full partition function is
then computed by the “sum of products” factorization formula, which we can think of as gluing the
two Heegaard pieces (and the gauge theories defined on them) along their common boundary T 2

back together. The gluing then involves an element g of the automorphism group PSL(2;Z) of the
torus.

3. The blocks are computed by reducing their calculation to an amplitude computation in supersym-
metric quantum mechanics on the boundary T 2 of the two Heegaard pieces. This involves some
more steps which we will lay out later. In short, one “stretches” the geometry of each piece of
R2 ×q S1 ∼= D2 ×q S1. After reducing the S1 factor by Kaluza-Klein (KK) reduction, one can
interpret the “stretch” as the “infinite time” limit of a supersymmetric quantum mechanical theory
“living” on the boundary T 2, which in turn projects the states on the T 2 boundary |0q〉 on the exact
SUSY groundstates |α〉 [CV91; Hor03; Wit10]. The block then can be computed precisely by the
overlap of these states

Bα(x; q) = 〈0q|α〉 ,

while the full partition function is the overlap

ZM3 = 〈0q|0q̃〉 =
∑
α

〈0q|α〉 〈α|0q̃〉 =
∑
α

Bα(x; q)Bα(x̃; q̃) =: ‖Bα(x; q)‖2g . (2.1)

The most important and useful property of the blocks is that they satisfy certain q-difference
equations. We will explore the appearance and construction of these equations in detail.

4. In practice, the above methods translate to the following procedure: writing q = e~∗ one can “sum-
up” the contributions to the quantum mechanical superpotentialWQM ∼ 1

~ [. . .]+O(~0), from which
one can then also determine the (classical) vacua by the vacuum equations. The computation of
the partition function (block) then localizes along the gradient flow lines of (the imaginary part of)
the QM superpotential [Wit10] starting at each of the classical vacua α, and the path integral can
be computed peturbatively in ~.

Supplementing the aforementioned vacuum equations with equations that determine the Fayet-
Iliopoulos (FI) coupling constants (really, these are also mass deformations of the dual, topological

∗ This will be explained further later in subsection 3.1.1.
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2. A perturbative calculation of 3D partition functions

U(1) symmetry groups), one obtains polynomial constraints f(x; p) = 0 in the (exponentiated)
masses of the flavor group x and the effective FI parameters p. These polynomial constraints
are then promoted to q-difference operators by enforcing that they obey the q-difference algebra
x̂ip̂j = q−δij p̂j x̂i. As it turns out, the full, non-perturbative (localized) path-integral calculation
is equivalent to solving the q-difference constraints given by the “quantized” f(x̂; p̂) · Bα(x; q) = 0
polynomials. A complete dictionary is presented to

(a) collect and sum up the relevant terms for the QM superpotential WQM from the field content,

(b) read-off the relevant q-difference constraints f(x̂; p̂) from WQM,

(c) systematically solve the constraints f(x̂; p̂) · Bα(x; q) = 0 by expressing the solutions (path-
integrals) as contour integrals over an integrand that is the non-perturbative completion of the
perturbative integrand, and thus obtain the blocks Bα(x; q), as well as prescribe the non-trivial
cycles over which the integrands have to be integrated.

These are the main aspects of the innovative work of the authors in [BDP14].

2.2 Setup and Geometry

2.2.1 Field content

We first discuss more explicitly the theory which we are describing, always following [BDP14]: these are
three-dimensional N = 2 supersymmetric theories that are superconformal in the infrared and admit a
Lagrangian description in the ultraviolet.

The setup consists of r gauge vector multiplets {Va} and chiral matter multiplets {ΦI}, and we assume
that the gauge group is Abelian. The vector multiplet in three-dimensions can be written [IS13] as a
linear multiplet Σα = εαβD̄αDβVa (where D, D̄ denote standard covariant derivatives in supersymmetry
[Hor03]). Using these, the kinetic part of the Lagrangian takes the form

Lkin. =

∫
d4θ

( r∑
a=1

1

e2
a

Σ2
a +

∑
I

Φ†I
(∑

a

QaIVa
)
ΦI

)
,

while the F-term is as usual

LF =

∫
d2θW (θ) + h.c.,

with argument such that the U(1)R symmetry is preserved.

“Gauging” of global symmetries These terms remain invariant under some manifest global symme-
tries (acting explicitly on fields), as well as topological U(1) symmetries that shift the dual gauge fields
of the gauge multiplets. If we consider the Cartan subgroup

∏N
i U(1)i of the flavorpromoted symmetry

group, we can introduce N non-dynamical fields Aµi that couple to these U(1)i currents, and similarly
introduce background gauge fields AR for the R-symmetry. These can be to background vector superfields
V̂i that are again written as a linear multiplet Σ̂i. When the scalar components m3d

i of these multiplets
are non-zero, they are real mass deformations of our theory and appear as

∫
d4θ

(
Φ†em

3dθθ̄Φ
)

terms,

leading to terms of the form (m3d)2 |Φ|2 + im3dεαβψ̄αψβ . The mass deformations for the topological U(1)
symmetries appear as Fayet-Iliopoulos terms for the (dynamical) gauge fields. A requirement of the setup
is that these real mass deformations render all the vacua massive, i.e. “lift” all the flat directions in the
(classical) moduli space. We also require that the theory has enough flavor symmetry such that the mass
deformations completely “lift” all flat directions in the moduli space. In particular, after dimensional
reduction on a space of the form M2 × S1 we want to have discrete massive vacua at generic points of
the mass parameters.

Lastly, we can include (Abelian) gauge-invariant Chern-Simons (CS) terms of the form

LCS =

∫
d4θ

(
1

2
kabΣaVb + kiaΣaV̂i +

1

2
kijΣ̂iV̂j

)
.
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2. A perturbative calculation of 3D partition functions

The first term is a gauge-gauge CS term (σ2
a contribution), the second is a gauge-flavor CS term, which

is equivalent to a Fayet-Iliopoulos term for the dynamical gauge fields, and the last term is a ‘pure’ back-
ground flavor-flavor CS term. The pure background term induces so-called “contact terms” in the calcu-
lation of partition functions and we will discuss them later. One thing to note here is that the levels kij
sometimes have to be chosen to be fractional, due to the appearance of the so-called “parity anomaly” when
fermions are integrated out: the effective CS level becomes keff.ij = kij + 1

2

∑
ferm. charge

f
i charge

f
j sign(mf )

and must be an integer. Note that when the VEV of the fermion changes sign, the CS levels “jump”.

2.2.2 Stretching and Deforming

As mentioned in the outline, one “splits” the three-manifold into two pieces via the Heegaard splitting.
In particular, the cases of interest, the “squashed 3-sphere” S3

b = {b2 |z1|2 + b−2 |z2|2 = 1 and the twisted
fibration S2 ×q S1 as the gluings of solid tori D2 ×q S1: In the case of S3 the gluing map is the S
element of the PSL(2,Z) plus an orientation reversal, while in the case of S2 × S1 it is just the identity
map id plus orientation reversal. This also signifies the use of the notation q for the fugacity later on:
one can view q as the modular parameter q = e2πiτ of the boundary tori, and thus in the S3 case we
have τ 7→ τ̃ = −S · τ = − 1

τ , while in the S2 ×q S1 case we have τ 7→ τ̃ = − id ·τ = −τ where we
distinguish the two halves by a tilde in the corresponding parameters.. We investigate partition functions
on the “halves” D2 ×q S1, as the factorization conjecture asserts that they should form building blocks
for partition functions and supersymmetric indices on other three-dimensional theories. Of course this
cannot work in the simple, naive way: The partition functions of the original theory on a solid torus
will not correspond to the blocks; the solid tori cut from different three-manifolds do not have the same
metric, and more importantly, the partition function of the pieces are not necessarily the same. One has
to deform the Heegaard decomposition so that one obtains the factorization (2.1) exactly, with correct
relations between (x, q) and (x̃, q̃). This is in fact the 3-dimensional analogue of the topological/anti-
topological twisting (and fusion) of Cecotti and Vafa [CV91]. This construction requires describing the
S3
b and S2×q S1 as T 2 fibrations over an interval, where the cycles of T 2 smoothly become degenerate on

the boundary, and the interval is “stretched” to infinite length. Therefore, each D2 ×q S1 which is a D2

fibration over S1 ≡ S1
β (notation which we will use later), we view the disc as an “elongated” cigar, i.e. a

degenerate S1 ≡ S1
ρ fibration over a semi-infinite R+. The 0 ∈ R+ is called the “tip” of the cigar, and we

obtain the “degenerate” T 2 fibration over R+. The resulting space consists, topologically at least, of two
such “halves” D2×q S1 which are glued together via some element of the modular group of the boundary
torus along with an orientation reversal. One chooses a metric that preserves the U(1) rotations of D2

as isometries, and the D2 fibration is chosen with U(1) holonomy q.

Holomorphic blocks are then defined to be the partition functions on these halves D2 ×q S1. One can
also interpret these partition functions as wavefunctions 〈0q| ∈ H(T 2) in the “flat” region T 2 × R of the
“stretched” D2 ×q S1. The infinite stretching projects [Hor03; CV91] this wavefunction to the space of
sypersymmetric ground states |α〉 on T 2, i.e.

Bα(x; q) := 〈0q|α〉 .

Gluing two such blocks via some modular element, say g = S or g = id, we recover the expression

Z = 〈0q|0q̃〉 =
∑
α

〈0q|α〉 〈α|0q̃〉 ∼
∑
α

Bα(x; q)Bα(x̃; q̃).

Evidently, the relations between the “tildes” depends on the choice of modular element g.

The two halves can be naturally fused together as long as the Hilbert spaces on their (asymptotic)
boundaries are dual. Similarly to the two-dimensional case, an infinite “stretching” of the D2 cigars to
an infinte flat region R2 ×q S1 projects any state onto the ground state of the asymptotic boundary
in H0(T 2). The resulting partition function is thus quasi-topological, i.e. invariant under all but finite
deformations of the N = 2 theory and is by construction of factorized form, as above.

The cigar geometry

The observable we are interested in is the partition function on the twistedD2×qS1, which is topologically
an (open) solid torus. The metric is given by

ds2 = dr2 + f(r)2(dϕ+ εβdθ)2 + β2dθ, (2.2)
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2. A perturbative calculation of 3D partition functions

where r ∈ [0,∞), ϕ, θ are 2π-periodic and f(r) ∼ r for small r, and f(r) → ρ for large r, where ρ is
a constant, whence the notation S1

ρ earlier. In particular, note that this cycle S1
ρ shrinks at the “tip”

r = 0. This metric shows that the cigar D2 has (asymptotic) radius ρ and the “twisting” of the product
consists of a rotation of the D2 by 2πβε around the S1 (denoted as S1

β — the “non-contractible loop”)
parametrized by θ. In other words, the variable z = reiϕ is identified as

(z, 0) ∼ (q−1z, 2π), where q = e2πiεβ = e~.

This space does not admit covariantly constant spinors [BDP14]; however, one can twist the theory to
preserve some fermionic symmetry still be able to use localization techniques. There are again two choices
for twisting, a “topological” and an “anti-topological”, corresponding to preservation of different pairs of
scalar supercharges ( (Q−, Q̄+) or (Q+, Q̄−) respectively) [CV91; Hor03].

Twisting

As per usual [CV91], the twist is implemented by “mixing” the geometry — here, the spin connection
— with the gauge group —here, the newly introduced “background” gauge fields coming from the R and
flavor symmetries. We impose for topological or anti-topological twisting respectively

ARµ = AR0µ + ωµ, ARµ = AR0µ − ωµ,

where ARµ is a background gauge field associated to the R-symmetry, AR0µ denotes a non-trivial, flat
connection with holonomy

∮
S1
β
AR0 = π, and ωµ is a U(1)-valued spin connection associated to the metric

of the cigar. We define also
Aflavor
µ = Aflavor

0µ + κωµ,

where Aflavor
0 is again a flat connection for the cigar metric, κ ∈ R and ω is a u(1)-valued spin connection

for the cigar metric. The A0 connection has holonomies around C = S1
β , S

1
ρ (for some fixed ρ)

1

2π

∮
S1
β

Aflavor
0 =: ϑ,

∮
S1
ρ

Aflavor
0 = 0,

We are especially interested for the holonomies of the spin connection ω at the “tip” (r → 0) and the flat
region (r →∞) of the D2 cigar:

1

2π

∮
S1
β |r=0

ω = −βε,
∮
S1
β |r→∞
ω = 0,

1

2π

∮
S1
ρ

ω = 1.

We thus obtain the following holonomy table
∮
C w with cycles C and 1-forms w:

S1
β S1

ρ

r → 0, r → ∞

ω −2πβε, 0 2π
AR0 π -

Aflavor
0 2πϑ 0

from which we can infer all the different holonomies of the introduced background gauge fields, in par-
ticular Aflavor ≡ A (we shall drop the label “flavor” in the following).

Non-compactness of the cigar also requires some boundary conditions on the boundary S1 (r → ∞):
fields are “sitting” in the vacuum of the R2 ×q S1 theory.

In the ρ → ∞ limit, the partition function can be schematically written as a BPS index, as taking the
limit ρ→∞ doesn’t change the partition function. We have

trH(D;α)(−1)Re−2πβHq−J∓
R
2 exp

(
ie

∮
S1
β |r=0

Aflavor

)
,

where J is the U(1)E generator, R the U(1)R generator, and e = (e1, . . . , eN ) are the flavor charges with
corresponding connections Aflavor = (A1, . . . , AN ).

We note that the Hamiltonian from above is not Q-exact. The complexified fugacities x± are introduced
to render the Hamiltonian Q-exact

x± := exp(X±) = exp

(
2πβm3d ∓ i

∮
S1
β |r=0

Aflavor

)
= exp

(
2πβm3d ∓ (2πiϑ− κ~)

)
, (2.3)
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2. A perturbative calculation of 3D partition functions

since we set the spin connection contribution at the tip 2πiεβ = ~. The sign ± correspond to topological
and anti-topological twisted masses respectively. We can now write

e−2πβH exp

(
ie

∮
S1
β |r=0

Aflavor

)
= e−βH+xe+ = e−βH−xe−,

where H± = 2π(H ± Z) = π{Q,Q†}. In this way, one can interpret the partition functions (stemming
from Hamiltonians that are not Q-exact) as BPS indices with Q-exact Hamiltonians:

ZαBPS(x+; q) = trH(D;α)(−1)ReβH+q−J−
R
2 xe+ (topological),

ZαBPS(x−; q) = trH(D;α)(−1)ReβH−q−J+R
2 xe− (anti-topological).

In order for these traces to converge and be (meromorphic) functions of their arguments x±, q, we need
to analytically continue q a bit inside and outside the unit circle in the q-plane. This is related to the
conjecture of this work that holomorphic blocks have a single series expansion both inside and outside
the circle, i.e. we want

Bα(x; q) ∼

{
Zα
BPS

(x; q) for |q| < 1

ZαBPS(x; q) for |q| > 1,

where both expressions are meromorphic functions of their arguments.

In the finite ρ region, one has to reduce the theory to supersymmetric quantum mechanics on R+ obtained
by Kaluza-Klein reduction on the tori of the fibers. The non-compactness of the geometry (the 0 of R+)
implies one has to pick boundary conditions at the “tip”, in particular that the state 〈0q| at the cigar is
annihilated by the (preserved by twisting pairs) (Q−, Q̄+) or (Q+, Q̄−). Similarly, the state “deep” in the
cigar, close to the T 2 boundary is a unique supersymmetric groundstate |α〉 ∈ H(T 2) to which the state
|0q〉 is projected under infinite “time” (ρ) evolution [Wit10]. The blocks are then simply the overlap of
these states, i.e.

Bα(x; q) =

{
〈0q|α〉anti-top |q| < 1

〈α|0q〉top |q| > 1

and they will depend on the parameters x, q which are defined by

q = exp(2πiβε) = exp(2πiRe τ), x = eX = exp(2πβm3d + 2πiϑ+ k~),

where τ = εβ + iβρ−1 is the complex parameter of the boundary T 2.

2.2.3 Gluing

We now consider the gluing of the two halves in the two cases of interest. The fusion of blocks is the
three-dimensional lift of the two-dimensional Cecotti-Vafa construction [CV91; CGV14; Hor03], where
one considers the partition function on two stretched cigars D2 glued together to a topological sphere
S2 = D2 ∪ϕ D2 with chiral operators inserted at the tips. These partition functions satisfy a set of
differential equations, the tt∗ equations, imposed by the insertions which exhibit properties of special
geometry. In three dimensions, the analogue of the chiral operator insertions will be the line-operators
and the corresponding statement is that our partition functions satisfy q-difference equations coming
from the algebra of line-operators (cf. subsection 3.1.2).

Recall from the introduction that a fusion with the element S of the modular group lead to the ellipsoid
partition function S3

b , while a fusion with the identity element id lead to the sphere index on S2 ×q S1.
We investigate the first case first.

S-Fusion

Gluing with S ∈ PSL(2,Z) we have that the complex structure modulus of the torus changes

τ = βε+ iβρ−1 7−→ τ̃ = −S · τ =
1

τ̄
=

ε+ iρ−1

β(ε2 + ρ−2)

ρ→∞−→ 1

εβ
,

and in fact in the large ρ limit we have individually β̃ = ε−1 and ε̃ = β−1. We thus have in this limit

q = exp

(
i

∮
S1
β |r=0

ω

)
= e2πiβε ≡ e~ 7−→ q̃ = exp

(
i

∮
S1
β̃
|r=0

ω̃

)
= e

2πi
βε = e−

4π2

~ .
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2. A perturbative calculation of 3D partition functions

Now we consider the effect of the gluing on holonomies of a background gauge field. As before, we consider
connections Aflavor = A0 + κω with κ ∈ R and holonomies

1

2π

∮
S1
β

A0 =: ϑ,

∮
S1
ρ

A0 = 0,
1

2π

∮
S1
β |r=0

ω = −βε,
∮
S1
β |r→∞
ω = 0,

1

2π

∮
S1
ρ

ω = 1.

and similarly for the tildes. The S-gluing requires that on the “edge” (r →∞, r̃ →∞) we need to match
the holonomies in “swapped” circles∮

S1
β |r→∞
A =

∮
S1
ρ̃

Ã, and
∮
S1
β̃
|r̃→∞
Ã =

∮
S1
ρ

A

which implies that we must impose
κ̃ = ϑ, ϑ̃ = κ.

Choosing anti-topological twist on the left and topological twist on the right we will have holomorphic
variables x = expX and x̃ = exp X̃ where (recall the definitions (2.3)):

X = 2πβm3d + (2πiϑ− κ~), X̃ = 2πβ̃m3d − (2πiϑ̃− κ̃~̃) =
2πi

~
X.

This is exactly the relation between (x; q) and (x̃; q̃) found in the literature [Pas12], which is written in
terms of the parameters of the ellipsoid partition function b, µ as

x = exp(2πbµ), q = exp(2πib2)

x̃ = exp(2πb−1µ), q̃ = exp(2πib−2),
(2.4)

where 2πib2 = ~, 2π, ib−2 = ~̃ and one can compute that µ = 1
2m

3d(b−1β + bβ̃) + i(ϑb−1 − κb).

Identity fusion

Gluing with the identity, we carry out similar steps as in the S-fusion and we have

τ 7→ τ̃ = −τ̄ = −βε+ iβρ−1

thus in the large ρ limit we have simply β̃ε̃ = −βε, where again individually

β̃ = β, ε̃ = −ε

hold, which in turn implies that
q = e~ 7→ q̃ = e−~ = q−1.

We move on to match holonomies of background gauge fields, now matching circles without swapping
and we obtain

ϑ = ϑ̃, κ = −κ̃ mod Z.
The last relation implies that there is a magnetic flux F = dA through S2:

−m :=
1

2π

∫
S2

F = κ+ κ̃.

We can therefore set κ = −m2 + κ0 and κ̃ = −m2 − κ0. Again, choosing anti-topological twisting on the
left and topological on the right, we can write the relations between left and right parameters in terms
of m,ϑ, κ0 as

q = q̃−1, x = expX = q
m
2 ζ, x̃ = exp X̃ = q

m
2 ζ−1, (2.5)

where ζ = exp(2πiϑ− κ0~) and we have set the masses m3d to zero in (2.3).

2.3 Computing blocks from SUSY quantum mechanics

In this section we want to lay out the detailed methods used to compute the blocks on the “pieces”
D2×q S1. As explained in the outline, this involves reducing the theory on the pieces to supersymmetric
quantum mechanics and compute the blocks as partition functions. We compute these as a localized finite
dimensional contour integral in the (complex) space of gauge scalars, with systematically prescribed
integrand and contour. This calculation is still perturbative in ~, as it is essentially a semi-classical
WKB approximation. However, the non-trivial statement from [BDP14] is that one can find the non-
perturbative completion, systematically, for both the integrand and the contour. This endeavor involves
using the q-difference equations which the blocks satisfy, and we will explain it in chapter 3.
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2. A perturbative calculation of 3D partition functions

2.3.1 Kaluza-Klein compactification

As we have stated, for the reduction we “work” in the “flat” region of the elongated cigar, in particular in
the ρ� β (and ~ = 2πiβε) region of the cigar. The space is locally T 2 ×R, where T 2 = S1

β × S1
ρ and we

want to reduce the theory to N = 4 quantum mechanics on the R factor. We do this in two steps: first
reduce the S1

β , and then the S1
ρ factor (albeit a slightly “off-set” factor in the T 2).

The first reduction yields an effective two dimensional N = (2, 2) theory, whose dynamics are specified
by twisted F-terms. Wilson lines around the S1 defined by the background flavor connections Ai com-
plexify real mass parameters mi = m3d

i + i
R

∮ 1

S
Ai (i runs from 1 to N , where N is the rank of the flavor

symmetry which we “gauged”) and similarly Wilson lines defined by the gauge connections Aa complexify
the real scalars σa = σ3d

a + i
R

∮
S1 Aa of gauge multiplets (a runs from 1 to r, the rank of the dynami-

cal gauge group). Assuming that the Abelian symmetries are compact, invariance under (large) gauge
transformation is implemented by periodicity of said scalars:

σa ∼ σa +
2πi

R
, mi ∼ mi +

2πi

R
.

This is a special property unique to two-dimensional N = (2, 2) theories that are descendants of a three-
dimensional theory. Any chiral multiplet φ in three dimensions yields a KK tower φn, and if φ has real
mass m3d under some U(1) symmetry the mode will have mass

mn = m3d +
2πin

R
, n ∈ Z

The twisted superpotential, which is a function of the dynamical (Σa, containing σa) and background (Mi,
containing mφ) twisted chiral multiplets W̃ (Σa,Mi), will receive one-loop corrections from integrating
out the massive modes and their contribution can be summed [Wit93; BDP14]

δW̃ 2d(Mφ) =
∑
n∈Z

(Mφ +
2πin

R
)
(

log(RMφ + 2πin)− 1
)
' r

4
M2
φ +

1

R
Li2(−e−RMφ),

where Mφ is a linear combination of of Σa and Mi containing mφ. Any such chiral multiplet φ yields
such a contribution to the twisted superpotential. Furthermore, the twisted superpotential can include
tree-level Chern-Simons terms, as

1

R
W̃ 2d

CS(Σa,Mi) =
1

2
kabΣ

aΣb + kaiΣ
aMi +

1

2
kijMiMj ,

i.e. pure gauge, mixed gauge-flavor and pure background interactions.

There is a caveat to this story: this superpotential is not invariant under large gauge transformations,
because we have implicitly exchanged the dummy field Aa in the path integral with its field strength,
which are auxiliary fields of the twisted chiral multiplets. Invariance is achieved if we require quantization
of flux of the field strengths, i.e.

∫
Fa = 2πZ (e.g. by inserting a Dirac comb∑

na∈Z
exp(−2πina

∫
d2θΣa) (2.6)

in the path integral). Without this factor, the action is multivalued as already signified by the dilogarithm
appearing in the asymptotic expansion of the superpotential: it has multiple sheets labeled by integers
(b, c) ∈ Z2 related to the principle branch by

Li2(−e−x) 7→ Li(−e−x) + 2πib(x+ iπ) + 4π2c.

The addition of the Dirac comb factor means we are summing over all sheets of the covering space M̃ of
our scalar manifoldM (constant shifts in the dilogarithm vanish in the superspace integration). Thus in
the end the integrand of the path integral is single-valued.

Reducing one more dimension we obtain at the small ~ and ρ→∞ limit where R = β
√

1 + ε2ρ2 → 1
2πi~ρ

that the superpotential is

WQM(Σa,Mi) ≡ 2πρW̃ =
i

~

[∑
φi

(
1

4
M2
φ + Li2(e−Mφ)) +

1

2
kabΣ

aΣb + kaiΣ
aMi +

1

2
kijMiMj

]
, (2.7)
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2. A perturbative calculation of 3D partition functions

where the summation is over the chiral fields φi of the theory and all the fields involved are “cylinder-
valued” i.e. 2πi-periodic. This dimensionless superpotential thus defines a one-dimensional (quantum
mechanical) N = 4 Landau-Ginzburg model with target spaceM := (C∗)r — the space of gauge scalars.
Since the path integral is modified by the Dirac comb term, it is more natural to formulate it on the
covering space M̃ and then sum over deck transformations, which then descends to a single-valued
integrand onM.

2.3.2 Determining the classical vacua and boundary conditions

Vacua

For this one dimensional theory on R+ we need the boundary conditions at t = 0 and t→∞, i.e. a choice
of (gapped!) massive supersymmetric vacuum. The equations that determine the vacua are[NW10]

∂W̃

∂σa
= 2πina, (2.8)

which is written using the single-valued (C∗)r-variables sa = eσa and xi = emi as

exp

(
sa
∂W̃

∂sa

)
= 1. (2.9)

This equation has a finite number of distinct solutions s(α)
a if and only if all vacua α are massive, and

hence we need enough flavor symmetry in our theory.

Boundary condition in the flat region

Formulating the sigma model on M̃ rather than M for single-valuedness of the fields we have that for
each fixed term ~n = {nα} in the Dirac comb (2.6) the vacuum of choice α will impose the boundary
condition that the fields approach the “image of the vacuum α on the appropriate sheet” of M̃ where
(2.8) can be solved for na. This is a boundary condition at infinity (flat region) that is invariant under
large gauge transformations, implemented here geometrically by deck transformations of the covering
space M̃ .

Completion to a Lagrangian submanifold

We make a small digression, which is relevant for our later discussion of line operator identities and
q-difference equations. Equation (2.9) can be supplemented [DGG11b; DGG11a; KW06] by

exp

(
xi
∂W̃

∂xi

)
= pi, i = 1, . . . , N, (2.10)

which define the effective background FI parameters pi associated to the flavor symmetries i =
1, . . . , N . Then, using (2.9) together with (2.10) we can eliminate the si, and thus define N polyno-
mial equations:

fi(x, p) = 0

that “cut out” a middle-dimensional algebraic variety LSUSY ∈ (C∗)2N spanned by (xi, pi). The
subscript is chosen deliberately: The variety is in fact a Lagrangian subvariety of (C∗)2N with
respect to the Kähler form (inherited from the canonical Kähler form in the space of logarithms
Xi, Yi)

Ω =

N∑
i=1

dxi
xi
∧ dpi
pi
.

These polynomial equations will become difference equations upon quantization, corresponding to
the line operator identities.

Note that, if the superpotential is non-degerate, the distinct solutions s(α)
a of (2.9) can also be

recovered from the set of polynomial equation defining the Lagrangian subvariety alone: the solutions
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2. A perturbative calculation of 3D partition functions

of (2.9) completely determine the pi = p
(α)
i in (2.10) as functions of the xj .

Boundary condition at the origin

The boundary condition at t = 0 corresponds to the “tip” of the cigar in D2 ×q S1. It is constructed as
described in [Wit10]: every field sa is assigned a weight, or equivalently, a supersymmetric wavefunction
of the sigma model onM = (C∗)r is inserted at the “tip” t = 0. Such supersymmetric wavefunctions take
values in the exterior bundle

∧∗M [Wit88], with one contribution (factor) coming from bosons and one
contribution (form factor coming from fermion. The correct fermion factor is the holomorphic top-form

Ω̄ =
ds1

s1
∧ · · · ∧ dsr

sr

while the bosonic part is now determined perturbatively in ~ by a WKB approximation using the twisted
superpotential W̃ . This means that in small ~ perturbation theory, we can determine the wavefunction
by summing up contributions to the (two dimensional) twisted superpotential as done previously in
subsection 2.3.1 and obtain

Ψ0(sa,mi; ~) = Ω̄ exp

(
1

~
W̃~(sa,mi; ~)

)
, (2.11)

where W̃~ is given by

W̃~(sa,mi; ~) =
∑
φi

[
1

4
m2
φ + Li2(e−mφ−

~
2 ; ~)] +

1

2
kabσ

aσb + kaiσ
ami +

1

2
kijmimj ,

the mφ are the masses of chiral fields in our theory, sa = eσa and Bn are the Bernoulli numbers. The
polylogarithm Li with two arguments is defined as

Li2(x; ~) :=

∞∑
n=0

Bn~n

n!
Li2−n(x),

and it differs from the expression in (2.7) because of twisting, i.e. mφ → mφ + (Rφ − 1)(iπ + ~/2) where
Rφ is the charge of the chiral φ.

2.3.3 Computing the path integral via localization

We finally want to actually evaluate the partition function on R+ which will yield the holomorphic block
on D2 ×q S1. The relevant machinery is thoroughly discussed in [Wit10]. Due to the insertion of the
Dirac comb (2.6), the bosonic contribution is labeled by integer valued vectors ~n and is given in terms of
superfields Σa

I~n =

∫
dt d4θgab̄Σ

aΣ̄b̄ +

∫
dtdθ2WQM

~n (Σa,Mi) + c.c,

where the kinetic (D-)term is Q-exact, hence does not depend on the Kähler metric overall [IS13]. As
per usual when the integrand is Q-exact, the path integral can be localized to configurations that are
invariant under the action of the supercharges at t = 0. These are configurations which satisfy gradient
flow equations, with respect to ImQQM on M̃ , as a function of t, similarly to extremizing potentials in
toy models. Explicitly, for each critical point α the path integral localizes to loci (middle-dimensional
contours) Γα ⊂ M = (C∗)r defined with asymptotics s(α)

a = exp(σ
(α)
a ) at t → ∞ and such that they

satisfy the flow equation [Wit10]
dσa
dt

= gab̄
d ImWQM

dσ̄b̄
.

This signifies that the state, meaning the differential form, that “hits” the boundary when t = 0, is simply
the Poincaré dual to the downward gradient-flow cycle associated to α, i.e.

Ψα(sa,mi) ' PD[Γα].

This is precisely the state |α〉 living in the “flat region” we have mentioned since the outline, and Ψ0 in
(2.11) is precisely |0q〉 corresponding to the state on the tip (even though both are states in H(T 2)). The
partition function is then the overlap between these two states:

Bα(x; q) ≡ ZQM ' 〈0q|αq〉 =

∫
M

Ψ0 ∧ ?Ψα ≡
∫

Γα
Ω exp

(
1

~
W̃~(sa,mi; ~)

)
. (2.12)
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2. A perturbative calculation of 3D partition functions

where in the last step we have used the natural pairing of Poincaré duality. This is a valid expression
for small ~. However, the approximation “took place” only in the calculation of the integrand by WKB
approximation, and consequently also in the calculation of the contours vie the flow equations. In other
words, the calculation holds also non-perturbatively as long as Γα and W̃~ receive appropriate non-
perturbative completion, possibly involving the multiple sheets of M̃. As we will see, the form of these
contour integrals will be fixed using the line-operator identities in 3.2.2.

15



2. A perturbative calculation of 3D partition functions

16



3. A non-perturbative completion

In this chapter we want to complete the “recipe” given by the authors of [BDP14], namely make use of the
“modern technology” of line operators to determine the non-perturbative completion of the holomorphic
blocks, given by (2.12). Motivated by a “trivial”, but ultimately important example —the free chiral
theory T∆—, we review the appearance of line operators and their identities which translate to q-difference
constraints for the blocks and hence also for the partition function. Using the q-difference equations which
can be determined in two ways, we present the full “recipe” to write down solutions and hence determine
the blocks.

3.1 Line operators and q-difference equations

3.1.1 A “trivial” example: the free chiral theory

Before we embark on the full computation of blocks, following [BDP14] we review a basic, but very
important example, the free chiral multiplet. The results for this case have been worked out in the
literature [HHL11; Pas12; DGG11a] for the two backgrounds of interest (S3

b and S2 ×q S1). The precise
field content is specified from the following table

T∆ :

chiral fields:{φ}, charges:
F R
1 0

, CS matrix:
F R

F − 1
2

1
2

R 1
2 − 1

2

 , (3.1)

where the CS matrix denotes the CS levels (couplings) for each pair of background gauge fields coming
from flavor (F) or R-symmetry. After weakly gauging the flavor symmetries, the F-F CS terms are pure,
the F-R terms are mixed (flavor-R) and the R-R are “contact” terms. The notation T∆ is from [DGG11b]:
the free chiral corresponds to “an ideal tetrahedron”. As we will see, it serves as the “building block” for
more complicated theories, much like triangulations of manifolds. Turning on masses m3d changes the
CS matrix, and the “bare” CS matrix above cancels the anomaly from fermions in the chiral multiplet φ
(cf. end of subsection 2.2.1. Usually, one only needs to cancel anomalies for dynamical gauge symmetries,
but in this case we need to cancel anomalies coming also from flavor symmetries, as these are weakly
gauged. In fact, factorization of the partition function into holomorphic blocks is in fact only possible
when all flavor anomalies cancel.

The ellipsoid partition function and sphere index

The ellipsoid S3
b partition function is expressed in terms of (µ, b), where b is the real deformation parameter

for the ellipsoid geometry and µ is the complexified mass parameter corresponding to the flavor symmetry
as determined by (2.4). As we saw before, they relate to our variables as X = 2πbµ and ~ = 2πib2. The
partition function has been computed in [HHL11] and can be written [BDP14] as

Zb∆(X; ~) =

{
C2
∏∞
r=0

1−qr+1x−1

1−q̃−rx̃−1 , |q| < 1

C2
∏∞
r=0

1−q̃r+1x̃−1

1−q−rx−1 , |q| > 1

where we recall that q = e~ = e2πib2 , q̃ = e−
2π2

~ = e2πib−2

and x = eX , x̃ = eX̃ = e
2πi
~ X , and the constant

is C = exp
(
− 1

24 (~− 4π2

~ )
)

= (qq̃)−1/24. In more useful (and consistent with our later survey) notation,
we write (3.2) in terms of q-Pochhammer symbols, where we can write in uniform notation

Zb∆(X; ~) = (qq̃)−1/24
(
qx−1; q

)
∞

(
q̃x̃−1; q̃

)
∞ , |q| ≷ 1. (3.2)
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3. A non-perturbative completion

We refer the reader to the appendix A.1.1 for some properties of the q-Pochhammer symbols (unique
power series expansion for both “chambers” |q| ≷ 1 and the uniform notation etc.).

Similarly, the index for S2 ×q S1 was computed in [DGG11a, page 56] to be

I∆(m, ζ; q) =

∞∏
r=0

1− qr+1x−1

1− q̃−rx̃−1
,

and in “modern” notation
I∆(m, ζ; q) =

(
qx−1; q

)
∞

(
q̃x̃−1; q̃

)
∞ , (3.3)

where as before q̃ = q−1, x = q
m
2 ζ, x̃ = q

m
2 ζ−1.

A first block and its properties

We can now “read-off” what the blocks should be using

ZM3 = 〈0q|0q̃〉 =
∑
α

〈0q|α〉 〈α|0q̃〉 =
∑
α

Bα(x; q)Bα(x̃; q̃) =: ‖Bα(x; q)‖2g (2.1)

where the sum disappears since there is a unique vacuum. With some a posteriori wisdom, we define the
“tetrahedron block” to be the manifestly holomorphic function

B∆(x; q) =
(
qz−1; q

)
∞ ≡

1

(x−1; q−1)∞
=

∞∑
n=0

x−n

(q−n, q)n
=

{∏∞
k=0(1− qr+1x−1) for |q| < 1,∏∞
k=0(1− q−rx−1)−1 for |q| > 1,

where we have used the inversion property (A.1.6). One mismatch is of course the prefactor C = (qq̃)1/24

in the case of S3
b (3.2), where we “glue” the two blocks coming from D2 ×q S1 by S ∈ PSL(2;Z), which

we will discuss in more detail in subsection 3.2.5 and attribute to pure, background CS contact terms.
The calculations and investigations should always be modulo any such contact terms, which is ultimately
related to working “modulo elliptic factors” for q-difference equations, as we will see in 6.1.2.

Among the properties of this special function, one should note that it is still a piecewise defined function;
in other words, it converges to two different functions for |q| > 1 and |q| < 1, which both have the
same power series expansion for |z| < 1, but nevertheless does not admit analytic continuation from
|q| < 1 to |q| > 1. This is a prevalent phenomenon throughout this work, in fact it is part of the
factorization conjecture: the blocks have an identical series expansion for |q| ≷ 1 that however converges
to different functions for each “chamber”, with no analytic continuation between the two regimes. However,
a remarkable feature of the partition function is that once the two blocks, none of which admit an analytic
continuation across the unit q-circle, are multiplied (fused), the resulting partition function does admit
such a continuation at least when ~ ∈ C \ R−. This was established for the case of the free chiral on
these backgrounds [Dim+09; DG11], and it is conjectured in [BDP14] that this property will persist for
general theories and backgrounds (admitting this description).

The first q-difference equation

Maybe the most important feature of the free chiral theory is the fact that its block satisfies an operator
constraint that is written as

(p̂+ x̂−1 − 1)B∆(x; q) = 0,

where the operators p̂, x̂ satisfy the so-called q-Weyl algebra p̂x̂ = qx̂p̂, or more generally for larger rank,
the algebra generated by x̂i, p̂i with

x̂ix̂j = x̂j x̂i, p̂ip̂j = p̂j p̂i, p̂ix̂j = qδij x̂j p̂i.

This operator equation follows from the so-called line operator identities that the block satisfies [DGG11a;
DGG11b]. As the name suggests, they come from line operators that can be “inserted” in the partition
functions of the Heegaard pieces, with Wilson operators corresponding to “position” operators x̂i and
dual ’t Hooft operators corresponding to “momentum” operators p̂i. We will study their appearance in
greater detail in the next section.

In the (modern, mathematical) notation of the second part of this work, the constraint is written

[σq,x + x−1 − 1]B∆(x; q) = 0 (3.4)
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3. A non-perturbative completion

i.e. B∆(qx; q) = (1− x−1)B∆(x; q), which is satisfied in both inside and outside the unit circle as can be
checked by (3.1.1). This is our first explicit example of a q-difference equation. A more general study of
difference equations is presented in the subsection 3.1.2.

The “classical” limit

One can also consider the “classical” limit q → 1 ⇔ ~ → 0 (from either side of the unit q-circle), where
the blocks take the form

B∆(x; q)→ exp
1

~

[ ∞∑
n=0

Bn~n

n!
Li2−n(x−1)

]
,

where Bn are Bernoulli numbers and Lin(x) are polylogarithms. A proof of this non-trivial expansion is
discussed in the appendix in A.1.3.

The term “classical limit” is motivated by the notation q = e~ whence q → 1 corresponds to ~ → 0.
However, this limit is not classical in the standard sense, as we are using ~ = 2πiβε (cf. subsection 2.2.2).
The limit q → 1 really corresponds to the vanishing of the “twisting” controlled by ε (cf. (2.2)). This
notation and terminology is a hereditary trait, from the literature, where the parametrization by ~ — a
universal constant, which we now take as a dimensionless parameter in C — is used to parametrize actual
classical limits. An example is given by [Dim11; DGG11b; GS12] where the ~ → 1 limit corresponds
exactly to classical limits of quantized Chern-Simons gauge theories on three-manifolds with boundary.
The classical theories obtained are an intermediate step in the categorification of geometric data (three-
manifolds, two-manifolds, bordisms etc) which is useful as a preview for the program of Quantization in
general. Geometrically, ~ = 2πiβε, where β “controlls” the size of the base cycle S1 and ε the “twisting”
of the fiber. The classical limit then corresponds to zero twisting, while the size of the cycle survives.
In the boundary T 2 quantum mechanics picture, the limit is indeed the “classical” limit, whence the
semi-classical WKB approximation becomes dominant.

For us, the limit is of great technical as well as conceptual importance. On the one hand one can use “two-
dimensional” constructions, investigations and results and “lift them” to three dimensions by q-generalizing
the relevant objects (functions, equations). This is however a degenerate process: there are infinite q-
generalizations to any object. This is a reflection of the greater mathematical and physical complexity
that three-dimensional gauge theories possess. We discuss this procedure in slightly more detail in A.3.
On the other hand one can also work in the opposite direction: investigate “three-dimensional” results
and constructions by checking against the “two-dimensional” limit q → 1 (e.g. for consistency). Such
investigations are of interest in pure mathematics as well (cf. section 6.1). One has to note that the
perspective of two versus three dimensions being the q = 1 versus q 6= 1 is specific to this construction,
which is motivated by the work in [BDP14]. The perspective of q-generalized versus not-q-generalized is
much more broad.

3.1.2 Line operators and q-difference equations

Where do q-difference equations occur?

Similar to the blocks of the free chiral, N = 2 theories on S3
b , S

2×q S1, but also on other spaces that are
realized as fibrations over S1 have blocks that are constrained by operator equations involving q-difference
operators, p̂i or σq,zi . Their appearance in calculations of partition functions and indices is motivated by
many seemingly separate known facts. We state some of the perspectives here

• These equations are a consequence of identities in the algebra of Wilson and ’t Hooft line operators
corresponding to the ‘gauged’ Abelian flavor symmetry [DGG11a; DGG11b] that “wrap” around
the S1 factor of the base and act on the tip of the cigar. Their insertion can be viewed as the three-
dimensional analogue of the chiral operator insertions at the tip of the two-dimensional cigar in the
Cecotti-Vafa construction. In particular for each U(1)i flavor symmetry (in the Cartan subgroup of
the global symmetry group), there is [KW06; Kap06] a Wilson line x̂i measuring the holonomy of
the corresponding gauge field, and thus acts by multiplication by the complexified mass xi on the
partition function, i.e.

x̂iB(x; q) = xiB(x; q),

and also a corresponding ’t Hooft line p̂i that shifts the masses as xi 7→ qxi, i.e.

p̂iB(x; q) = B(x1, . . . , qxi, . . . xN ; q).
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3. A non-perturbative completion

This shift operator can be written as p̂i = q
∂

∂ log x = exp(~ ∂
∂X ) ≡ σq,xi , and we have the Weyl

q-commutation relations
p̂ix̂j = qδij x̂j p̂i

and the x̂i, p̂i furnish a representation of the q-Weyl algebra. These line operators can best be
thought of as “living” in a four-dimensional bulk theory with underlying manifold D2 ×q S1 × R+,
with the boundary R+ 3 σ = 0 corresponding to the Heegaard piece. In the bulk they are line
operators corresponding to dynamical gauge fields and their duals, whose holonomy is measured on
the S1 factor of the base. Their ordering along R+ is irrelevant in the bulk, but q-commutes when
they act on the boundary partition functions, hence they follow the q-Weyl algebra.

• Another way to interpret these constraints is through the AGT correspondence [AGT10]. As we
discussed in the introduction to the first chapter, one can relate the partition functions of four-
dimensional theories (which in our case constitute the bulk, and the three-dimensional theory is
the boundary) to four-point correlators in some two-dimensional conformal field theory and thus
to conformal blocks. Then the q-difference constraints of the three-dimensional partition functions
are interpreted as the standard Ward-Takahashi identities satisfied by the conformal blocks.

• A related concept to the Ward-Takahashi identities satisfied by the conformal blocks, but also to
the tt∗-equations in the two-dimensional case (or in greater generality, the Picard-Fuchs equations
[Cer+93]) is the Knizhnick-Zamolodchikov (KZ) equation related to a Lie algebra g. As described
in [EFK98], the “lift” of the KZ equation to a quantum algebra ĝq is precisely the so-called q-
KZ equation which is a q-difference equation. Much of the construction of the (differential) KZ
equation, including solutions, formalism, global properties, are still interesting to look at in the case
of a q-deformation. We expect the investigation of the relation between these seemingly distinct
studies/constructions to be fruitful.

Explicit realization from quantum mechanics

Focusing on our examples where the Heegaard pieces are D2×q S1, the blocks on such spaces satisfy thus
identities of the form

fa(x̂, p̂; q) ·B(x; q) = 0, (3.5)

where f̂a are polynomials in x̂i, p̂i and q, and a runs up to the number N of total flavor symmetries.
We have not chosen the label f by chance; in the “classical” limit q → 1 the equations fa(x, p; 1) = 0
for all a define a Lagrangian submanifold LSUSY of (C∗)2N with respect to the canonical symplectic
form Ω =

∑
i

dpi
pi
∧ dxi

xi
. But this is precisely the Lagrangian submanifold we discussed in the digression

2.3.2. In the “quantum” setting (q ∈ C \ S1) the blocks Bα(x; q) are a complete basis of solutions to the
q-difference equations (3.5), in particular they are solutions with certain analytic properties, justifying
the term holomorphic block. These are the main features of the q-constraints satisfied by the blocks that
we take advantage of.

The polynomials fa(xi, pj) defined by (2.9) and (2.10) also define the q-difference equations for the
blocks

fa(x̂i, p̂j)B(x; q) = 0,

after promotion of xi, p)j to operators in a q-difference algebra. The blocks Bα(x; q) then form a
complete basis of solutions to these q-difference equations.

Fusing the blocks and factorization

In the case of fused geometries like S3
b and S2 ×q S1, the line operators can act on two places, the two

tips of the fused cigars. Since they don’t “interfere”, the partition function of a fused geometry will in
fact satisfy two sets of identities

f̂a(x̂, p̂; q) · Zfused = 0 = f̂a(ˆ̃x, ˆ̃p; q̃) · Zfused

where the tilde’s commute with the simple operators. This provides some strong evidence for factorization
into blocks and was in fact one of the motivations behind the factorization conjecture in [Pas12].
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3. A non-perturbative completion

Combining the requirements for the shift operators p̂, ˆ̃p with the earlier relations between (x; q) and (x̃, q̃)
in the cases of S3

b and S2 ×q S1 we find the following relations

S3
b : x̂ = e2πbµ, p̂ = eib∂µ , q = e2πib2 and

ˆ̃x = e2πb−2µ, ˆ̃p = eib
−1∂µ , q̃ = e2πib−2

;

S2 ×q S1 : x̂ = q
m
2 ζ, p̂ = e∂m+ ~

2 ∂log ζ , q = e~ and
ˆ̃x = q

m
2 ζ−1, ˆ̃p = e∂m−

~
2 ∂log ζ , q̃ = e−~

and one can check that these satisfy a q-Weyl algebra.

3.2 Non-perturbative construction of blocks

In this section we want to complete the construction from [BDP14], by providing ways of computing the
non-perturbative completion of the holomorphic blocks. The main agent used is an integral formula for
the blocks which, in complete generality, should provide solutions to the line operator identities.

3.2.1 Uniqueness of blocks and of factorizations in the free chiral

We have established that the holomorphic block of the free chiral theory is given by (3.1.1). It is however
an acceptable question to ask, whether this block is unique. In other words, we are asking if it is a
unique solution to the q-difference equation such that the factorization formula (2.1) yields the (unique)
partition function. It is clear that any solution B∆(x; q) needs to satisfy the following requirements

1. B∆(x; q) is a meromorphic (piecewise) function for x ∈ C and q ∈ C \ S1 with no analytic continu-
ation from one chamber to the other |q| ≷ 1.

2. There is a correspondence between the pieces of B∆(x; q) in the chambers |q| < 1 and |q| > 1, and
they both possess the same convergent q-hypergeometric series.

3. B∆(x; q) is a solution to (1− p̂)f(x; q) = x̂−1f(x; q), in both chambers.

4. Of course, Zb∆(X; ~) = ‖B∆(x; q)‖2S and I∆(m, ζ; q) = ‖B(x; q)‖id with appropriate relations for
the arguments dictated by the elements S, id ∈ PSL(2;Z).

As we will discuss in 6.1, solution to q difference equations as in point 3. are only unique up to an elliptic
factor, i.e.

B(x; q) = c(x; q)B∆(x; q)

if (1 − p̂)c(x; q) = 0 or equivalently c(qx; q) = c(x; q). This means that c(x; q) is “invisible” to the q-
difference operators. An additional restriction of the possible prefactor c(x; q) is given by the factorization
conjecture: In the examples S3

b and S2 ×q S1 from (3.2) and (3.3) we must have

‖c(x; q)‖2g =

{
(qq̃)−1/24 g = S

1 g = id

The constraints 1.-4. as well as the one above still do not uniquely determine the possible factors, but
these can be nicely parametrized in terms of ratio of Jacobi theta functions ∗. We refer the reader to the
appendix A.2.1 for a short survey of Jacobi theta functions and their properties. In particular we may
write

c(x; q) =
∏
i

Θq

(
(−q1/2)bi+1zai

)ni
where ai, bi, ni ∈ Z with the conditions∑

i

nia
2
i = 0,

∑
i

aibini = 0, and
∑
i

nib
2
i = 0.

The first two imply ellipticity (by repeated use of the q-difference equation (A.2.11) that the Jacobi theta
function satisfies) and the last one ensures correct behavior when gluing.

∗In fact, all meromorphic elliptic functionsM (Eq) , i.e. meromorphic functions on Eq = C∗/qZ can be written as such
a ratio [HSS16].
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3. A non-perturbative completion

3.2.2 Generalization: properties of arbitrary blocks

We have now reached the main part of the “recipe” for computing holomorphic blocks of partition func-
tions. We generalize the requirements for the blocks that were revealed in the case of the free chiral, and
discuss further properties.

The main tool discovered by the authors of [BDP14] is a general expression of the blocks as a contour
integral. The form of our integral is basically a non-perturbative completion of the quantum mechanical
integral we presented in (2.12):

Bα(x; q) =

∫
Γα

ds

2πis
[CS contribution]× [matter contribution] =:

∫
Γα

ds

2πis
Υ(s, x; q),

where the integral is over a middle-dimensional cycle Γα ⊂ (C∗)r (where r = rankG of the gauge group
G) determined by the (classical) vacuum α and the integrand Υ(s, x; q) remains to be determined. Recall
that physically, x = xi = x1, . . . , xN are the exponentiated and complexified (by the flavor Wilson loops)
massive deformations, s = sa = s1, . . . sr the exponentiated scalar of the gauge multiplet (cf. subsection
2.2.1). The integral should generate solutions to the identities inherited from line operators of the four-
dimensional bulk theory. Chiral matter contributions (plus W-bosons of non-Abelian gauge symmetries)
will be products of the basic “tetrahedron” block of the free chiral B∆(x; q). These, along with the Chern-
Simons contributions are by construction meromorphic functions of xi and sa. This integral will formally
solve the line operator identities as long as it converges, which implies that ∂Γ is empty or at asymptotic
infinity and Γα stays away from the poles of the integrand. In fact it is conjectured that all blocks Bα(x; q)
can be realized by integration over appropriate cycles Γα. The cycles are in 1-1 correspondence with the
vacua α of the theory and we can determine them perturbatively using gradient flows and correct them
afterwards. This discussion is saved for 3.2.7.

The critical points of the integrand α (perturbatively in ~) are in one-to-one correspondence with the
vacua specified by the finite distinct solutions of (2.9). Since the points are the “true supersymmetric
vacua” they do not change under small deformations. We will exploit this in practice, and compute the
QM superpotential directly from the integrand by expanding Υ = exp

(
W̃
~ +O(~0)

)
and determining the

vacua from W̃ . From these points α we can construct the cycles Γα by the downward “gradient flow”,
while we still need to adjust them to avoid singularities.

We want the blocks Bα(x; q) to have similar properties as the tetrahedron blocks B∆(x; q):

1. The Bα(x; q) are meromorphic functions of x ∈ C and q ∈ C \ S1 with no analytic continuation
between the regimes |q| ≷ 1.

2. Each Bα(x; q) has a single convergent perturbative expansion in ~ both inside and outside the unit
q-circle for fixed α and x.

3. For each α, the block Bα(x; q) can be written as a single q-hypergeometric series both inside and
outside the unit q-circle.

4. The blocks Bα(x; q) form a basis of solutions for the set of q-difference equations fi(x̂, p̂; q) ·
Bα(x; q) = 0 obtained from the line operators, where for the tetrahedron block f(x̂, p̂; q) =
p̂+ x̂−1 − 1.

5. Finally, the products (explicit factorizations) Zb(X; ~) = ‖Bα(x; q)‖2S and I(m, ζ; q) = ‖Bα(x; q)‖2id
reproduce the S3

b and S2×qS1 partition functions, and the S3
b partition function can be analytically

continued from ~ < 0 to ~ > 0 across the half line ~ = 2πib2 ∈ iR+.

Properties 1.,2., and 4. follow from the construction of the integral: the integrand satisfies all these
conditions and we just need to extend them to the integral. 3. and 5. are conjectures, the last one being
the main conjecture of this paper.

3.2.3 Uniqueness of arbitrary blocks, Stokes phenomena and q-monodromy

Since the blocks Bα(x; q) are “built up” from the fundamental tetrahedron block B∆(x; q) they will also
inherit the “ambiguity” of elliptic factors c(x; q) which are “invisible” for the difference equations and also
vanish for factorizations. This is natural, since the general blocks also satisfy q-difference equations and
hence they are determined only modulo elliptic factors.
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3. A non-perturbative completion

Furthermore there is another complication/feature of blocks which we have not discussed yet. When there
is more than one vacuum, the corresponding solution space of the q-difference equations has dimension
greater than 1 and the solution space exhibits interesting global properties: monodromies and Stokes
phenomena of the blocks as functions of the parameters x. Hence, when there are multiple massive
vacua α which lead to multiple blocks Bα(x; q), we can trace a full set of solutions (known as a “solution
vector”) {Bα(x; q)}α and follow a path in the parameter space of x. Passing through distinct loci in the
parameter space the blocks may be independently rescaled by elliptic prefactors as above and also “mix
up” by linear combinations. The total effect is that when passing through the “special loci”, also known
as Stokes walls, the solutions “jump” according to

Bα(x; q)→

{∑
βM

α
βB

β(x; q) |q| < 1∑
β(M−1T )αβB

β(x; q) |q| > 1,
(3.6)

where M ∈ GL(|{α}| ,M (Eq)) is in general an elliptic function-valued matrix, where the “jump” from
different regimes is chosen so as to reserve fused products. A specific realization of this phenomenon is
the monodromy of a q-difference equation, where explicit Stokes walls might not exist, but loops around
distinguished points induce a general linear transformation on the solutions. In the case of q-difference
equations, this will be an elliptic-valued transformation (constant with respect to q-difference equations,
cf. section 6.1).

The two different jumps for the two different chambers |q| ≷ are not chosen by accident. They come
from an interesting input from a very basic physical observation: partition functions should not depend
in the choice of chamber; thus after fusing two blocks B(x; q) and B(x̃, q̃) the “jumps” induced by the
Stokes phenomenon or monodromy should disappear. Given that |q| < 1 ⇔ |q̃| > 1 and vice versa, the
two blocks will be in opposite chambers and the “jumps” will be complementary according to (3.6) and
cancel.

The broader question of monodromies and other global topological of q-difference equations, also known
as the Riemann-Hilbert correspondence for q-difference equations [Bir13; RSZ09] is the main subject
of interest for this work, with “an eye” towards applications in supersymmetric gauge theories. It is a
question with much deeper roots and implications, both mathematical and physical, than the author
can hope to “tame” within a year. As we will see in the non-trivial example (cf. subsection 3.3.3), the
global data of the q-difference equations dictated by line operator identities encode crucial information
about realization of 3D mirror symmetry. Motivated also by the physical importance of monodromies of
differential equations (tt∗, Picard-Fuchs equations) [Cer+93; Ton00; DT00; Hor03], one is lead to believe
investigation of q-monodromies and global behavior of q-difference equations will be of similar physical
and mathematical importance.

3.2.4 Explicit line operator identities

It was argued in subsection 3.1.2 that one can obtain the q-difference equations coming from the line
operator identities by determining the Lagrangian submanifold from the effective (perturbative) QM
superpotential as in subsection 2.3.2. We now want to discuss another way to obtain the q-difference
equations, as presented in [BDP14]. We assume our superconformal field theory has a UV Lagrangian
description as a gauge theory, and we start from some number of free chiral multiplets (whose line operator
identities are given by (3.4)) and then we apply a set of elementary moves/modifications to obtain the
theory in question. Such modifications include adding Chern-Simons terms, adding superpotential terms
and gauging flavor symmetries. This approach is complementary to simply “reading-off” the line operator
identities from the asymptotic expansion of the resummed twisted superpotential, i.e. the SUSY quantum
mechanics approach. Nevertheless, both are necessary to understand the procedure, in particular the
discussion about the contribution of Chern-Simons terms in the next subsection.

We start from N copies of the free chiral multiplet theory T∆

T× := T∆1 ⊗ . . .⊗ T∆N
,

with U(1)N Abelian flavor symmetry, where the i-th U(1) factor acts on the φi-th free chiral and has CS
level − 1

2 . The operators f×i of T× on D2 ×q S1 are simply N copies of the tetrahedron operator

f×i = p̂i + x̂−1
i − 1 ' 0,

where ' implies that annihilation of blocks. Recall that the x̂i are Wilson loops that act by multiplication,
while p̂i are (dual) ’t Hooft loops that act as q-shifts i.e. p̂ix̂j = qδij x̂j p̂i, making these identities q-
difference equations.
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3. A non-perturbative completion

This theory can now be modified in multiple ways.

1. A redefinition of the flavor symmetry by a rational linear transformationM ∈ GL(N,Q) (equivalent
to a redefinition of a basis for the U(1)’s). This induces the transformation

x̂i 7→
∏
j

(x̂j)
M−1
ij , p̂i 7→

∏
j

(p̂j)
Mij .

Note that this may introduce roots of these operators, which can (need to?) be eliminated by overall
multiplication by root factors.

2. A redefinition of the R symmetry by adding it to a multiple of the flavor U(1)i currents (similarly
to the topological twisting), or equivalently, a shift of the U(1)i gauge field by Ai 7→ Ai + σiAR
where σi are constants. This induces the mapping

x̂i 7→ (−q 1
2 )σi x̂i,

for Wilson line operators.

3. Dual to the above is an introduction of a flavor/R mixed term (background CS interaction) of the
form ∼

∑
i σ

(P )
i

∫
AidAR, where σ

(P )
i are again constants, which induces the transformation

p̂i 7→ (−q 1
2 )σ

(P )
i p̂i.

4. Addition of Chern-Simons terms for the flavor symmetries, e.g. terms of the form
∑
ij

1
2kij

∫
AidAj

(flavor-flavor) for kij ∈ Z which introduces the transformation

p̂i 7→ q−
1
2kij

[∏
j

(x̂j)
−kij

]
p̂i. (3.7)

Note that this is equivalent to conjugating all line operators with

exp

(∑
ij

kij
2~
X̂iX̂j

)
, X̂i = log x̂i.

5. Gauging of a flavor symmetry U(1)i. This implies that shifts in xi are trivial since it is now
dynamical, thus x̂i must be eliminated and p̂i 7→ 1. This operation can be performed formally
in a left-ideal of q-difference operators. However we’re not done: by gauging a flavor symmetry,
we are also enriching the theory with a U(1)J topological flavor symmetry coupled to the newly
gauge U(1)i gauge field by an FI term. The total effect in the level of line operators is the mapping
(interchanging of ’t Hooft and Wilson lines)

x̂i 7→ p̂J , p̂i 7→ x̂−1
J

for fixed i. This is equivalent to S-duality in a four-dimensional Abelian gauge theory for which our
three-dimensional theory is a “boundary condition”.

6. Finally, the theory can be modified by adding a gauge invariant operator Oi to the superpotential
that breaks some U(1)i flavor symmetry. It’s precise form is irrelevant, but it must have R charge
equal to two, to preserve U(1)R symmetry. The effect on line operator identities is that x̂i 7→ 1 and
p̂i vanishes.

These “moves” are sufficient to construct the Lagrangian for any Abelian N = 2 gauge theory along with
its line operator identities, always starting from decoupled copies of the free chiral with CS terms. This
procedure can be extended to theories with non-Abelian gauge symmetries, whose details we omit.

3.2.5 Chern-Simons terms and theta function ambiguities

For the case of the free chiral with Chern-Simons level k = − 1
2 we already saw that the block is given by

the q-Pochhammer function (3.1.1) which we restate

B∆(x; q) := (qx−1; q)∞ =

∞∑
n=0

x−n

(q−n, q)n
=

{∏∞
k=0(1− qr+1x−1) for |q| < 1,∏∞
k=0(1− q−rx−1)−1 for |q| > 1.
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3. A non-perturbative completion

This satisfies the line operator identity p̂ + x̂−1 − 1 ' 0. We now consider adding a CS term at level
+1 for some flavor corresponding to parameter x. In the quantum mechanics approach this would just
multiply the integrand by the factor

exp
1

2~
X2 = exp

1

2~
(log x)2,

coming from the flavor-flavor CS term of the form
∫
AidAi. On the other hand, in the other point of

view (modifying the line operator identities directly) this factor transforms line operator identities in the
correct manner by conjugating

p̂ 7→ e
X2

2~ p̂e−
X2

2~ = q−
1
2x−1p̂

which reminds one of (3.7). However, these functions are not meromorphic in x or q, and one “trick” is
to replace the exponentiated quadratic factor with a Jacobi theta function A.2.1

e
X2

2~  
1

Θq (x)
.

We can do this because of multiple (physical and mathematical) reasons. First, as one can check the
theta functions satisfy

Θq (x) p̂Θq (x)
−1

= q−
1
2x−1p̂,

and in addition they also have the right analytic properties. Furthermore, the asymptotic behavior is
matched

Θq (x)
−1 ~→0−→ Ce

X2

2~

which after integration is absolute matching as the expansion terminates at O(~), up to the factor
C = (qq̃)−1/24. Another motivation for this replacement is that the quadratic exponential actually
lives in the covering space defined by X and we need to add up all the equivalent contributions under
X 7→ X + 2πi that enforce periodicity, which leads to the theta functions.

From this discussion we can extend our results to a general prescription to obtain acceptable Chern-
Simons contributions at some level k to the holomorphic blocks. We start with an N ×N Chern-Simons
level matrix kij that couples gauge or flavor symmetries, along with a “level-vector” σi for mixed Chern-
Simons terms that couple gauge or flavor symmetries and the R-symmetry. The extra term (factor) we
obtain for the integrand in the quantum mechanics approach is

exp

[
1

2~
∑
ij

kijXiXj +
1

~
∑
i

σiXi(iπ +
~
2

)

]
,

and we replace this by the expression ∏
i

Θq

(
(−q 1

2 )(bi+1)xai
)ni

,

where bi and ni are integers and ai are column vectors of N rows (remembering that we write x repre-
senting in fact x = (x1, . . . xN ) parameters), such that∑

i

niai(ai)
T = −k,

∑
i

nibiai = −σ,

where we have suppressed the i, j indices. These conditions follow from enforcing that both the “quadratic”
exponential and the product we replace it with satisfy the same line operator identities and that they have
the correct (same) asymptotic expansion for ~→ 0. Note that there are infinite ways of choosing such a
product such that the conditions are satisfied; the physical importance of this for the blocks on D2×q S1

is unknown. However, we note that, at least in the above example the two choices differ by factors

c(x; q) =
∏
i Θq

(
(−q 1

2 )(b′i+1)xa
′
i

)n′i
, where

∑
i n
′
ia
′
i(a
′
i)
T = 0 and

∑
i n
′
ib
′
ia
′
i = 0. This is equivalent to

the elliptic factor ambiguity discussed in subsection 3.2.1, meaning that c(x; q) “commutes” through the
difference equations dictated by line operators and also is invisible for the fused partition function as
‖c(x; q)‖2S = 1 modulo powers of C and ‖c(x; q)‖2id = 1.
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3. A non-perturbative completion

3.2.6 The integrand

After discussing the Chern-Simons terms, we can now proceed to the rest of the integrand for the block.
We consider any N = 2 gauge theory with U(1)R R-symmetry and we choose a maximal torus (Cartan
subgroup) U(1)N for the flavor symmetry group with mass parameters xi ∈ C∗ with i running in 1, . . . , N .
We also choose a maximal torus U(1)r for the gauge group and denote the complexified gauge scalars
(“mass parameters”) by si ∈ C∗ with i running from N + 1, . . . N + r.

Let us now consider the theory TRφ∆ obtained from the free chiral theory T∆ by shifting the R-charge of
the scalar in the chiral multiplet to Rφ by a move “2.”. We obtain

T
Rφ
∆ :


chiral fields:{φ},

charges :
F R
1 Rφ

, CS matrix:
F R

F − 1
2

1
2 (1−Rφ)

R 1
2 (1−Rφ) − 1

2 (1−Rφ)2

 . (3.8)

The block matrix changes to
B

(Rφ)
∆ (y; q) =

(
(−q 1

2 )2−Rφy−1; q
)
∞,

where y is the mass parameter of the flavor symmetry. We have a collection of rules for our prescription
of obtaining integrand from a gauge theory:

Chiral matter

We group every chiral multiplet φ with (scalar) R-charge Rφ into a copy of TRφ∆ as in (3.8), i.e. we attach
CS couplings to this chiral as dictated in (3.8) for each such chiral. For every such copy, we add a factor

B
(Rφ)
∆ (yφ; q) =

(
(−q 1

2 )2−Rφy−1
φ ; q

)
∞

in the integrand, where yφ is an appropriate product of x’s and s’s corresponding to the shifted U(1) under
which it transforms. This grouping ensures that there are no anomalous gauge or flavor symmetries.

Chern-Simons terms

We remove the copies of T∆ and we are left with an (N + r) × (N + r) integer matrix kij matrix of
the added CS level couplings and an (N + r)-dimensional vector σ of mixed CS couplings between flavor
or gauge symmetries and the R symmetry. At this stage we choose an appropriate product of theta
functions as done in the example(s) of subsection 3.2.5. The general form of the result is as we saw

CS[k, σ;x, s, q] =
∏
i

Θq

(
(−q 1

2 )(bi+1)xai
)ni

,

where as before bi and ni are integers and ai are column vectors of N + r integers the appropriate
conditions

∑
i niai(ai)

T = −k,
∑
i nibiai = −σ. For instance, at a level k = +1 coupling for x the CS

term becomes just Θq (x)
−1. A Fayet-Iliopoulos term mixing a gauge symmetry with (scalar) parameter

s and a flavor symmetry with parameter x yields the following CS term

CSFI =
θ(x; q)θ(s; q)

θ(xs; q)

The recipe

We formally collect all the factors to obtain the general expression for our block

B(x; q) =

∫
∗

ds

2πis

∏
G⊂G

gauge[G; s, q]× CS[k, σ;x, s, q]×
∏
φ

B
(Rφ)
∆ (yφ(x, s); q). (3.9)

There are a few things to note: first, superpotentials play almost no role: they break flavor symmetries and
just restrict the corresponding parameters in the integrand. Secondly, the block defined this way inherits
some of the properties 1.-5. outlined in the beginning of this chapter, in particular it is by construction
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3. A non-perturbative completion

defined for both regimes |q| ≷ 1 with no analytic continuation between them (as the building blocks
B∆(x; q) satisfy these properties) — property 1. It is conjectured that the block satisfies in fact all five
properties. The integrand Υ(s, x, k, ; q) is the non-perturbative completion of the QM superpotential;
this means as we have stated that we can expand Υ = exp

(
Q̃
~ +O(~0)

)
and read off the potential.

The block will satisfy the difference equations dictated by the line operator identities, almost by con-
struction: (3.9) can be obtained by the sequence of elementary moves described in subsection 3.2.4, and
thus satisfies the difference equations at every step. We say “almost” because of an important subtlety:
the integration (gauge) variable si in

∫
dsi
si

in each direction of our cycle needs to have the following
effect on the level of q-difference equations: eliminating the corresponding ŝi operator and setting the
corresponding shift operator p̂i 7→ 1. This holds true if the cycles Γα used to evaluate the block are
“invariant under q-shifts”, i.e. a multiplication of the whole cycle by q can by continuously deformed
(homotoped) to its original form. This implies that contours are either closed or end asymptotically at 0
or ∞ in each copy of C∗ inM, and that the contours must remain at distance at least q away from poles
of the integrand.

Furthermore, we note that the expression (3.9) is again unique only up to elliptic factors. This ambiguity
stems in both the choice of CS term contribution and also the choice of non-Abelian contribution (whose
explanation we skipped; the reader is referred to [BDP14]).

In the case the integral along Γα is calculated by summing contributions from residues, the “ambiguity” of
the integrand pulls out of the integral: since the integrand is built out of q-Pochhammer symbols (z; q)∞
the poles are typically countably infinite points spaced out by q: e.g. (s0, qs0, . . . , q

ns0, . . .). But points
like these are equal under the elliptic factor c(s0, x; q) = c(qns0, x; q) thus the elliptic factor will be the
same (constant) factor for all residues, and thus pulls out of the integral, being still an elliptic ratio of
theta functions of the remaining arguments. In explicit examples, we will multiply the results of our
computations with some elliptic ratio of theta functions to reach a simpler and more elegant result with
as few theta functions as possible.

3.2.7 Defining contours

We now address the problem of finding the integration cycles when the theory has multiple vacua α.

Assuming holomorphicity

As a motivation, let us consider the case where the block is an integral of the form
∫

Γ⊂M dS Υ(X,S; ~)
whereM∼= Cr and the integrand Υ(X,S, ~) is a non vanishing holomorphic function of S ∈ Cr, depending
on parameters X, ~. A natural example is the usual expression Υ = exp(~−1f(X,S)) where f is a
holomorphic function in S. This would correspond to a finite dimensional path integral with a holomorphic
action f . We assume (cpw. “Picard-Lefshetz theory”) that there is a basis {Γα} of middle-dimensional
cycles such that for any contour Γ over which the integral converges, Γ can be written as an integer
linear combination of {Γα}. The only non-trivial integrals will be over non-compact contours due to the
higher-dimensional analogue of Cauchy’s theorem and the basis cycles {Γα} must be basis elements of
the relative homology group

Hr(M,MΛ;Z),

whereMΛ := {S ∈M| log |Υ(S,X; ~)| ≤ Λ}, for Λ sufficiently large and negative (we let Λ→ −∞ later
on). MΛ is the region ofM which the contours reach “asymptotically” and which do not contribute to
the integral [Wit10]. It depends on the parameters X, ~ but the rank of the relative group should not.
For fixed, generic values of X and ~ such that Υ has isolated and non-degenerate critical points and
such that there is a preferred basis of cycles {Γα} associated to the critical points {S(α)}: we define Γα

to be the set of points “reached’ by a downward gradient flow from S(α) with respect to Υ(S,X; ~) and
the Kähler metric on Cr. It is a small exercise to see that the (complex) argument along such flows is
constant due to holomorphicity of the Picard-Lefshetz function Υ(S,X; ~). Hence, a flow starting from
the critical point S(α1) can hit another critical point S(α2) if and only if

arg Υ(X,S(α1); ~) = arg Υ(X,S(α2); ~) and log
∣∣∣Υ(X,S(α1); ~)

∣∣∣ > log
∣∣∣Υ(X,S(α1); ~)

∣∣∣ . (3.10)

These conditions define a real-codimension one Stokes wall in (X, ~) parameter space. For generic points
(X, ~) in parameters space, the contour is far away from such walls and thus the flows continue without
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3. A non-perturbative completion

hitting more critical points and the cycles Γα are well defined. However, varying the parameters “through”
the Stokes walls in parameter space induces a critical-point basis change according to(

Γα1

Γα2

)
7→
(

Γα1′

Γα2′

)
=

(
1 ±1
0 1

)(
Γα1

Γα2

)
,

where the ±1 depends on orientation. In fact, the jump is a multiple of the intersection number between
the “upward” flow from the “bottom” point S(α2) and the “downward” flow from the “top” point S(α1),
a statement which also takes care of the sign. This transformation matrix is a connection matrix (cf.
subsection 6.1.4 and is basically a realization of the so-called Picard-Lefschetz formula. Two Stokes walls
intersect (transversally) on a real-codimension two locus in the (X, ~) parameters space, and critical points
become degenerate at these loci. Motion around a closed loop around the loci induces a monodromy that
permutes the basis cycles Γα, according to the composition of the connection matrices.

Generic integrands

Turning back to our block integrals, we note that our integrals are not of the form stated above. First,
the domain is M = (C/2πiZ)r (or even a Weyl group quotient of this), i.e. in exponentiated variables
s = expS Ms = (C∗)r, so there may exist homology cycles that encircle non-trivial one-cycles in M.
Secondly, the integrand is not holomorphic, but meromorphic and has infinite lines of poles and zeros. A
“good” integration cycle should not cross the lines of poles: the poles “condense” into a branch cut at the
limit ~→ 0, i.e. the separation ~ between the countable poles vanishes. This is the phenomenon known
to mathematicians as confluence.

Approximating the contours from quantum mechanics

One thing we learned from the quantum mechanical construction of blocks is that there is an exact
potential Wexact(x, s; q) whose critical points correspond to the true vacua α of the theory. The potential
also generates (downward) flows that are used as cycles Γα. In our examples, we have only determined
the potential perturbatively in ~ as shown in (2.7), thus the analysis works for small ~ (and also |q| ' 1).
Thus, the first approach is to find approximate cycles by gradient flows of W̃/~ keeping track of the full
non-perturbative potential Υ(s, x; q) at the same time.

Away from critical points, one can (has to) deform the contours “by hand” to make the block integral
consistent. At the ~ → 0 limit along a ray of constant phase, the (half-line of) zeros and poles of the
integrand Υ become distinguished branch cuts for the effective potential W̃ (X,S). The initial cycles
obtained from the gradient flow may “hit” the branch cuts coming from poles, but crossing a line of such
poles is not allowed on the level of line operator identities, thus the deformation is necessary. On the
other hand, contours are allowed to cross or lie on branch cuts coming from zeros, as opposed to poles.
In fact, some (deformed) cycles may have to be taken such that they flow “upwards”, e.g. if there is an
appropriate downward cycle that for some values of the parameters becomes upward-flowing.

We can use these “approximate” and “deformed-by-hand” cycles to study Stokes phenomena for blocks.
The analysis is expected to hold as long as the critical points of W̃ are away from branch cuts, so that
gradient flows do not cross the cuts. The approximate of the Stokes walls for a pair of cycles (Γα1 ,Γα2)
flowing from S(α1), S(α2) respectively is given by

Im
(1

~
W̃ (X;S(α1))

)
= Im

(1

~
W̃ (X;S(α2))

)
.

The cycle with greater value of Re
(

1
~W̃ (X;S(α))

)
will be shifted by a copy (or rather, intersection number

of copies) of the other cycle as the parameters are varied across the wall. The above equation “lives” on
the sheet of W̃ (X, s) with the distinguished branch cuts, defined by ~ → 0 in the integrand Υ(x, s; q)
along a ray of constant phase.

This analysis also yields some results that help us understand conjugate (|q| ≷ 1) Stokes jumps in cycles.
We assume that we have fixed two values ~0, ~̃0 of the ~ parameter with ~0~̃0 real and negative, and
we vary the mass parameter x = expX. Then the same sheet of W̃ is the relevant one for analyzing
gradient flows at both ~0 and ~̃0. Thus the Stokes wall(s) defined above will be at the same X, but
Re
(

1
~0
W̃ (X;S)

)
, Re

(
1
~̃0
W̃ (X;S)

)
will have an opposite sign, thus the jumps across the wall in each case
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will be different:(
Γα1

Γα2

)
7→
(

1 ±1
0 1

)(
Γα1

Γα2

)
at ~ = ~0 =⇒

(
Γα1

Γα2

)
7→
(

1 0
∓1 1

)(
Γα1

Γα2

)
at ~ = ~̃0.

We extend this for more general values of parameters: Stokes matricesM, M̃ that are associated to Stokes
phenomena in X-space but at conjugate values of ~ will be constrained by

MM̃T = 1 (3.11)

Non-perturbative completion of the contours: shift-invariant cycles

We now take the full non-perturbative integrand Υ(x, s; q) to be the potential that generated gradient
flows. This cannot be the exact potential of supersymmetric quantum mechanics, as it has too many
(countable) critical points.

We consider the integrand Υ(x, s; q) at finite q, where is it is a meromorphic function in s. Apart from the
critical points s(α) (that survive the q → 1 limit) corresponding to vacua, there is a countably infinite set
of “quantum” (q 6= 1) critical points s = ŝ(β) occurring between every two consecutive zeros or poles on the
(half-)lines. They do not correspond to vacua because the true vacua are uncharged under the rotation
that yields the Wilson line that generates q-deformations, thus they cannot “appear spontaneously” by
letting q 6= 1.

Now we consider the gradient flows from all the critical points s(α) and ŝ(β) with respect to log |Υ(s, x; q)|.
The flows yield cycles Γαq and Γ̂βq respectively, on which the block integral is convergent, but they typically
end at zeros of the integrand and not at asymptotic infinity. This implies that they are not invariant
under q-shifts as dictated by line operator identities, thus they are not good contours to compute the
blocks. One needs shift-invariant cycles that are closed or end at asymptotic infinity, in order for the
block integrals to have the desired properties.

This is remedied by taking appropriate linear combinations of Γαq and Γ̂βq that are shift-invariant. Γαq and
Γ̂βq form a countable basis of the group Γq defined as a direct limit

Γq := lim
Λ→−∞

Hr(Mq,MqΛ;Z)

whereMq := (C/2πiZ)r \ {poles of Υ} andMqΛ := {S ∈ (C/2πiZ)r| |Υ(x, s; q)| < eΛ}. The notions of
convergence and shift-invariance are implemented as follows: A (integral along a) cycle Γ =

∑
α nαΓαq +∑

β n̂βΓ̂βq is convergent if ∫
γ

dS Υ :=
∑
α

nα

∫
Γαq

dS Υ +
∑
β

n̂β

∫
Γ̂βq

dS Υ

is finite. Furthermore, such a linear combination is shift-invariant roughly if a shift by±~ in the integration
variable Si (corresponding to a shift si 7→ q±1si) does not change the integral

∫
Γ

dS Υ. To be more precise,
a cycle Γ is shift-invariant if for a shift by ±~ in the Si direction there exist other convergent cycles Γ′

and Γ′′, such that Γ′′ is the shifted Γ′ and the integrals agree
∫

Γ
dS Υ =

∫
Γ′

dS Υ =
∫

Γ′′
dS Υ.

We can thus define the subgroup Γ < Γq of convergent, shift-invariant cycles. It is a finite rank group
whose elements integrate Υ to holomorphic blocks. In “lucky” cases, every element in Γ contains at least
one copy of the “true vacuum” cycles Γαq , corresponding to a downward flow from the semi-classical critical
points sα, i.e. there are no convergent shift-invariant cycles that consist only of “quantum” cycles Γ̂βq .

Note that as we move in the parameter space of x, q the cycles in Γq will shift due to Stokes phenomena,
whose walls are dictated by the conditions

arg Υ(x, s(α1); q) = arg Υ(x, s(α2); q) mod 2πi (3.12a)

arg Υ(x, ŝ(β1); q) = arg Υ(x, ŝ(β2); q) mod 2πi (3.12b)

arg Υ(x, s(α); q) = arg Υ(x, ŝ(β); q) mod 2πi. (3.12c)

The shifts will modify the elements of Γ only by “quantum” cycles Γ̂βq so the basis {Γα} of Γ will not
change and thus neither will the vacua associated to them. At some distinguished walls, however, the
basis will jump. These distinguished walls are related to the physical Stokes phenomenon.
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3. A non-perturbative completion

3.3 A non-trivial example: the CP1 sigma-model

We now consider an explicit example detailed in [BDP14] that will show most of the interesting features
related to holomorphic blocks. The theory TI we consider has a UV description as a gauged linear
sigma model (GLSM) which in the IR becomes a non-linear sigma model with target CP1 [DT00]. We
summarize the contents of the theory

TI :



Dynamical G = U(1) gauge theory with chirals φ1, φ2;
scalar in vector multiplet denoted σ3d, complexified to S, s = expS;
X × Y = U(1)V × U(1)J flavor symmetries with mass parameters m3d, t3d

complexified to x, y respectively;

charges:

φ1 φ2

G 1 1
X 1 −1
Y 0 0
R 0 0

, CS matrix:

G X Y R
G 0 0 1 0
X 0 0 0 0
Y 1 0 0 0
R 0 0 0 ∗


.

3.3.1 Moduli space of the theory

We now describe the parameter space of TI spanned (m3d, t3d). For m3d = 0 and t3d > 0 the theory
has a CP1 Higgs branch of vacua, i.e. on upward ray in the (m3d, t3d) plane. On either side of the ray
(still for t3d > 0 the theory becomes massive and has two Higgs-branch vacua localized at the “poles” of
CP1. At negative t3d however there are two Coulomb branches of vacua at m3d = ±t3d, again rays in the
(m3d, t3d) plane, with a massive Coulomb in between the rays. The branches have a Z3 symmetry under
the rotation(s)

(m3d, t3d)
ω/ω2

7−→
(
− m3d ∓ t3d

2
,
∓3m3d − t3d

2

)
, (3.13)

with ω3 = id and the transformations ω, ω2, after promoting them into transformation of the background
vector multiplets (a linear redefinition of the flavor symmetries), result in theories that we denote by TII
and TIII respectively. As we will see, this is an explicit manifestation of mirror symmetry. The rays can
be seen as dashed lines in 3.1, where ReY ∼ t3d and ReX ∼ m3d.

Now we compactify TI on a circle of radius β and the mass parameters m3d, t3d are complexified by
Wilson lines

∮
S1 A on S1 and we define the dimensionless, single-valued parameters on C∗ and the scalar

as

x = eX with X := 2πβm3d + i

∮
S1

AV

y = eY with Y := 2πβt3d + i

∮
S1

AJ

s = eS with S := 2πβσ3d + i

∮
S1

AR.

where we supplement this also with a Wilson line i
∮
AR = iπ for the R-symmetry and the effective

twisted superpotential in the two uncompactified dimensions is

W̃I(S;X,Y ) =
1

2
S2 +

1

2
X2 + S(Y − iπ) + Li2(e−S−X) + Li2(e−S+X),

which can be interpreted in many ways: as an effective superpotential on a N = (2, 2) theory of vacua
on R2, as an effective N = 4 supersymmetric quantum mechanical potential on R+ from the reduction of
TI on D2 ×q S1, or as describing the perturbative behavior of the integrand of a block integral at ~→ 0.

The Z3 transformation (3.13) dubbed “mirror symmetry” should define an equivalence relation among the
theories TI, TII and TIII, and it extends to a holomorphic transformation of the complexified parameters

(X,Y )
ω7−→
(
Y −X

2
,−3X + Y

2

)
, (3.14)
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3. A non-perturbative completion

and similarly for ω2. Supplementing this transformation with Chern-Simons contact terms between U(1)R
and U(1)V that contribute terms ±iπX to the twisted superpotentials, we find that

TII : W̃II(S;X,Y ) =
1

2
S2 − (2X + iπ)S +X2 −X(Y + iπ) + Li2(e−S) + Li2(e−S+X−Y )

TIII : W̃III(S;X,Y ) =
1

2
S2 + (2X − iπ)S +X2 +X(Y − iπ) + Li2(e−S) + Li2(e−S−X−Y ).

After some calculation we find that in fact

W̃II/III(S;X,Y ) = W̃I

(
S +

Y ∓X
2

;
±Y −X

2
,
∓3X − Y

2

)
+
iπ

2
(Y − 3/1X).

Similarly as in (2.10) and right after, we can determine the equations that define the supersymmetric
Lagrangian submanifold in the parameter space from the superpotentials, which in fact turn out to be the
same for all chambers. After some work in solving the equations (2.9) and (2.10) to drop the dependence
on sα we obtain the Lagrangian constraints:

LSUSY := {(x, y, px, py) ∈ (C∗)4|py +

(
1

y
− x− 1

x

)
+

1

py
= 0, pxpy − (px + py)x+ 1 = 0}. (3.15)

Now we turn towards Stokes walls and jumps. The locus in which the theories become massless is the
discriminant locus D, i.e. the locus determined by requiring the discriminant of the equations defined by
(2.9) to be zero. This is the locus that is a source for Stokes walls, i.e. where Stokes walls intersect. One
must avoid this locus when defining contours for block integrals, as we want our theories to be gapped
to avoid IR divergences. For TI we find that the vacuum equations are

exp
∂W̃

∂S
= 1 =⇒ 1

y
= (x−1 − s)(1− xs−1),

which is solved by

s1,2(x, y) = −1

2

[
y − x− x−1 ±

√
(y−1 − x− x−1)2 − 4

]
(3.16)

and the discriminant locus is

D := {(x, y) ∈ (C∗)2|y−1 = x+ x−1 ± 2}.

As expected due to mirror symmetry, while the vacuum equations for TI and TII are different, the
respective discriminant loci coincide with D. This is also evident by the Z3 symmetry that is also present
for the loci: D is invariant under (x, y)

ω7−→ (x−
1
2 y

1
2 , x−

3
2 y−

1
2 ).

3.3.2 Determining the q-difference equations and the blocks

The CP1 model has two massive vacua labeled α = 1, 2 for generic values of the parameters, and hence
there are two holomorphic blocks B1(x, y; q), B2(x, y; q) which we compute using the prescription of
section 3.2.2, i.e. we write down the integral that will solve the line operator identities and find the
contours Γα for each distinct vacuum α. As we have seen in subsections 3.1.2 and 3.2.4 there are two
ways to determine the q-difference identities. Since we have determined the quantum mechanical potential
as well as the Lagrangian submanifold in (3.15) we can read-off the q-difference equations†

[
p̂y +

(
1

ŷ
− x̂− 1

x̂

)
+

1

p̂y

]
f(x, y) = 0, (3.17a)[

q−
1
2 p̂xp̂y − x̂(q

1
2 p̂x + p̂y) + 1

]
f(x, y) = 0. (3.17b)

In the notation of the later chapters p̂∗ = σq,∗. In the second part of this work, we will study the (naive)
massless limit m3d → 0, corresponding to x→ 1. The first equation will reduce to a q-deformation of the
Bessel equation.

†In [BDP14] the authors make a detailed derivation through the process described in subsection 3.2.4 and obtain a more
accurate version of the second equation. Since we are later interested in the massless limit of the first chiral, corresponding
to x→ 1, this is irrelevant.

31



3. A non-perturbative completion

Following the steps from subsection 3.2.6, we can write down the formal integral that solves these differ-
ence equations:

BI(x, y; q) =

∫
∗

ds

2πis

Θq (y)

Θq

(
−q1/2x

)
Θq (sy)

(
qs−1x−1; 1

)
∞

(
qs−1x; q

)
∞

=:

∫
∗

ds

2πis
ΥI(x, y, s; q),

where the q-Pochhammer functions are contributions of the two chirals, and the theta functions come
from the CS levels and the FI term, and are as in subsection 3.2.5 unique up to elliptic factors.

We perform an analysis of the integrand as a function of the cylindrical variable S = log s. Taking ~ to
be real and nonzero, q is real and positive and we can distinguish the two regimes q ≷ 1. For |q| > 1
(respectively, |q| < 1), the integrand has a line of poles (respectively, zeros) along ImS = ImY coming
from the Θq (sy) factor which comes from the FI term, with spacing |~|. There are also two parallel
half-lines of zeros (respectively, poles) from the chiral contributions starting at S = ±X extending to
S = −∞, with spacing |~|. At large |ReS| the integrand is behaves like exp

(
1
2~ sign(ReS)S2

)
.

At the classical limit ~→ 0 (from either side of the real axis) the integrand behaves like

ΥI(x, y.s; q)
~→0∼ exp

[
1

~

(
1

2
(log x)2 − 1

2
(log(−y))2 +

1

2
log(−sy))2 + Li2(x−1s−1) + Li2(xs−1)

)]
,

which is the same as 1
~W̃I(S;X,Y ) with a distinguished (principal) choice of branch cuts, with vacua

sα(x, y) dictated by (3.16).

The evaluation of the integrals is a technical feat, whose details we will not present here. The reader is
referred to [BDP14] and we quote the result

C−1B1
I (x, y; q) :=

∫
Γ1
>

ds

2πis
ΥI =

Θq (y)

Θq

(
−q1/2x

)
Θq (x−1y)

J (xy−1, x2; q),

C−1B2
I (x, y; q) :=

∫
Γ2
>

ds

2πis
ΥI =

Θq (y)

Θq

(
−q1/2x

)
Θq (xy)

J (x−1y−1, x−2; q),

for |q| > 1 (3.18)

where we have introduced a normalization factor C = 2πi
(q−1,q−1)∞

that fixes the “elliptic ambiguity”
and the function J is related to the Hahn-Exton q-Bessel function (cf. subsection 6.3.1) and has a
q-hypergeometric series

J (x, y; q) := (qy; q)∞

∞∑
n=0

xn

(q−1, q−1)n(qy; q)n
, |q| ≷ 1,

which is convergent for both regimes |q| ≷ 1 and defines a meromorphic function of x, y ∈ C∗. These
blocks define the blocks BαI (x, y; q) in the chamber “I”.

For the other regime |q| < 1 the authors work conjecturally: one of the main properties of blocks that
we have stated is that the blocks share a common q-hypergeometric series expansion for both regimes
|q| ≷ 1. Since the right-hand side of both blocks in (3.18) consists of functions that are defined for both
regimes, one conjectures that in fact

C−1B1
I (x, y; q) :=

∫
Γ1
>

ds

2πis
ΥI =

Θq (y)

Θq

(
−q1/2x

)
Θq (x−1y)

J (xy−1, x2; q),

C−1B2
I (x, y; q) :=

∫
Γ2
>

ds

2πis
ΥI =

Θq (y)

Θq

(
−q1/2x

)
Θq (xy)

J (x−1y−1, x−2; q),

for |q| < 1, (3.19)

where the constant C is determined by choosing the physically irrelevant Chern-Simons contact terms.

The “q-Bessel” function

We make a digression to discuss the surprising properties of the function J (x, y; q), some of which are
conjectures. Note that the function is defined through the series,

J (x, y; q) := (qy; q)∞

∞∑
n=0

xn

(q−1, q−1)n(qy; q)n
, |q| ≷ 1. (3.20)
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3. A non-perturbative completion

It is related to the Hahn-Exton q-Bessel function (6.22c) by

J (−z2, 1; q) = (q)∞J
(3)
ν=0(z; q).

More generally, one can check that

J (−a2, b; q) = (q)∞a
−βJ

(3)
β (a; q), (3.21)

where b = qβ .

The authors of [BDP14] have determined an interesting list of properties

1. An easy manipulation shows that

J (x, y; q) = Θq (qy)J (xy−1, y−1; q−1).

2. For |q| < 1 we have that

(qy; q)∞
(qy; q)n

= (qn+1y; q)∞ =

∞∑
r=0

(qny)r

(q−1, q−1)r
.

Substituting this in the definition of the function we obtain

J (x, y; q) =
∞∑

n,r=0

qnr

(q−1, q−1)n(q−1, q−1)r
xnyr =

∞∑
n,r=0

(−1)n+rq
1
2 (n+r+1)(n+r)

(q, q)n(q, q)r
xnyr,

where in the last equality we have used the fact that 1
(q−1,q−1)n

= (−1)nq
1
2
n(n+1)

(q,q)n
. In both expres-

sions we can see that there is a symmetry under interchange of x, y in the right-hand side, hence
J (x, y; q) = J (y, x; q), thus the function is symmetric when |q| < 1. Note that this does not hold
when |q| > 1; in particular the expressions do not converge when |q| > 1. Conjecturally, it is claimed
that

J (x, y; q)− J (y, x; q) =
Θq

(
qx−1

)
; q)Θq (qy)

Θq (qx−1y)
J (x, y; q−1), if |q| > 1.

This has been verified in [BDP14] numerically to high precision. This expression is necessary for
consistent Stoked jumps for I.

3. Combining 1. and 2. we have, for |q| > 1

J (x, y; q)

Θq (qy)
= J (xy−1, y−1; q−1)

|q|>1
= J (y−1, xy−1; q−1) =: J (x̃ỹ−1, ỹ−1; q−1),

where we have made the last definition in order to apply 1. again. We find for consistency that
x̃ = x−1 and ỹ = x−1y have to hold, and applying 1. again we have indeed that

J (x, y; q)

Θq (qy)
=
J (x̃, ỹ; q)

Θq (qỹ)
≡ J (x−1, x−1y; q)

Θq (qx−1y)

which shows that

Θq

(
qx−1y

)
J (x, y; q) = Θq (qy)J (x−1, x−1y; q) if |q| > 1.

3.3.3 A Stokes phenomenon, monodromy and mirror symmetry

We now investigate the most interesting feature of blocks: Stokes phenomena. Physically, in the wave-
function interpretation of blocks these correspond to regions in parameters space where there can be
tunneling between supersymmetric vacuum states |α〉 of H(T 2). We concentrate in particular regions of
the parameters space where the flows are dictated by the “semi-classical” potential Re

(
1
~W̃I(x, y, s; q)

)
or the “quantum” potential log |ΥI(x, y, s; q)| such that they can connect critical points without passing
through branch cuts or lines of poles or zeros. The walls are then located “semi-classically” at

Im
(1

~
W̃I(x, y, s

(1); q)
)

= Im
(1

~
W̃I(x, y, s

(2); q)
)
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3. A non-perturbative completion

for the critical points s(i)(x, y), i = 1, 2, and “quantum mechanically” at

arg ΥI(x, y, s
(2); q) = arg ΥI(x, y, s

(2); q) mod 2π.

There are three codimension-one walls in C2 meeting at the discriminant locus D — we say the emanate
from the locus. The authors analyze the global behavior of the solution at a transverse (to D) ‘slice’ (C
parametrized by ReX and ReY ) defined by ImY = 0 and ImX = 4π/3 in C2, where the discriminant is
represented by 0 ∈ C. The discriminant locus D intersects our plane at the origin and the three Stokes
walls separate it into chambers in an anti-parallel fashion compared to the “massless rays” (I Higgs, II+III
Coulomb) as discussed in subsection 3.3.1, and thus we label the chambers by I-III. Each of the three
chambers represents a theory TI, TII, TIII which in the IR is a semi-classical sigma model with target CP1.
The mirror action (3.13) maps these theories to each other (up to some modification of R charges and
background θ angles), hence we have three mirror partners: TI ∼= TII ∼= TIII.

-3 -2 -1 1 2 3
ReX

-3

-2

-1

1

2

3

ReY

Figure 3.1: The slice P = {ImY = 0, ImX = 4π/3} ⊂ C2. The colored lines represent the three
transverse Stokes walls of emanating from the discriminant locus, which intersects our plane at the
origin. The dashed lines enclose the regions I, II and III as described in

|q| > 1

We follow the analysis of the authors for |q| > 1. In the Chamber I, TI is (approximately) a sigma model
with target CP1 with two vacua α = 1, 2 (one at each pole) and thus two blocks B1,2

I (x, y; q) and two
critical points sα(x, y). As we move to other chambers by I → II → III → I the points “circle” around
each other in the S plane, while the half-lines of poles (for |q| > 1) slide relatively to each other in the
ReS direction. Their ImS direction is fixed and equal to ImX. In each chamber we have two cycles
Γ1
I,II,III> and Γ2

I,II,III>.

Moving from I to II the cycle Γ1
I> “passes through” the critical point α = 2 and is shifted by (an intersection

number of ) a copy of +Γ2
I>, the sign fixed by the intersection number, i.e.(

Γ1
II>

Γ2
II>

)
= M I→II

>

(
Γ1
I>

Γ2
I>

)
, with M I→II

> =

(
1 1
0 1

)
.

and similarly for the blocks B1,2
II with respect to B1,2

I .

Similarly, moving through II, the first cycle Γ1
II> becomes closed (it wraps around the cylinder) but this

is homotopic to the cycle that ends at ReS = −∞ thus there is no modification in the level of blocks.
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3. A non-perturbative completion

Moving from II to III, the second cycle intersects the first critical point α = 1 and by skew-symmetry of
the intersection number we now have(

Γ1
III>

Γ2
III>

)
= M II→III

>

(
Γ1
II>

Γ2
II>

)
, with M II→III

> =

(
1 0
−1 1

)
.

Finally, passing from III to I, the first cycle intersects the point α = 2 again thus,(
Γ̃1
I>

Γ̃2
I>

)
= M III→I

>

(
Γ1
III>

Γ2
III>

)
, with M III→I

> =

(
1 1
0 1

)
.

We have suggestively introduced the notation (Γ̃1
I>, Γ̃

2
I>) because the product of the matrices is not

identity

M III→I
> M II→III

> M I→II
> =

(
0 1
−1 0

)
,

and there is a non-trivial monodromy action when circling around the discriminant locus D in parameter
space, i.e. on a circle in the ReY,ReX plane that crosses the three Stokes walls as depicted in 3.1.
Physically, one expects the supersymmetric ground states |α〉, α = 1, 2 on H(T 2) to undergo such a
monodromy transformation around the discriminant locus.

Explicitly, the blocks are written with respect to the first chamber as(
B1
II

B2
II

)
=

(
B1
I +B2

I
B2
I

)
and

(
B1
III

B2
III

)
=

(
B1
I +B2

I
−B1

I

)
for |q| > 1. (3.22)

|q| < 1

Now we consider blocks at |q| < 1: we know what the Stokes matrices should be even without the explicit
result for the integrals because of (3.11) since we are in conjugate parameter regime (outside-inside the
q circle)

M< = (M>)−1 T .

In fact using formal integration cycles one is lead to the same result [BDP14]. We thus have for |q| < 1(
B1
II

B2
II

)
= (M I→II

> )−1 T

(
B1
I

B2
I

)
=

(
B1
I

B2
I −B1

I ,

)
(3.23a)(

B1
III

B2
III

)
= (M II→III

> )−1 T

(
B1
I

B2
I

)
=

(
B2
I

B2
I −B1

I ,

)
(3.23b)

Comparing these expressions to the corresponding ones in |q| > 1 from (3.22), we face the following
question: how can the different expressions account for the conjecture that the blocks have the same
q-hypergeometric series expansion for both |q| ≷ 1? There is nothing special about the chamber I we
picked, so this conjecture should hold in all chambers.

The resolution is that, as we have stressed previously, having the same q-hypergeometric series expansion
for |q| ≷ 1 does not imply that the functions are the same analytic functions. In particular they can
be different functions with different properties as we have seen in the case of the “q-Bessel” function
J (x, y; q). In fact, precisely the properties of the of the “q-Bessel” function 1.-3. plus the fact that
Θq

(
q1/2z

)
= Θq

(
q1/2z−1

)
and the q-difference equation Θq (qz) = −z−1Θq (z) one can verify that for

|q| > 1

B1
II(x, y; q) ≡ B1

I (x, y; q) +B2
I (x, y; q) = . . . =

Θq (y)

Θq

(
−q1/2x

)
Θq (x−1y)

J (x2, xy−1; q),

which is the same expression as for B1
I in the |q| < 1 regime (due to symmetry in x, y when |q| < 1).

In a similar fashion one can compute that all chambers have expressions sharing q-hypergeometric series
expansions for both regimes |q| ≷ 1 and the consistent results with a single q-hypergeometric series
expression are

B1
II(x, y; q) =

Θq (y)

Θq

(
−q1/2x

)
Θq (x−1y)

J (x2, xy−1; q),

B2
II(x, y; q) =

Θq (y) Θq

(
qx2
)

Θq

(
−q1/2x

)
Θq (x−1y) Θq (xy)

J (xy, x−1y; q)

for |q| ≷ 1, (3.24)
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and
B1
III(x, y; q) =

Θq (y)

Θq

(
−q1/2x

)
Θq (xy)

J (x−2, x−1y−1; q),

B2
III(x, y; q) =

Θq (y) Θq

(
qx2
)

Θq

(
−q1/2x

)
Θq (xy) Θq (xy−1)

J (x−1y, xy; q)

for |q| ≷ 1. (3.25)

Stokes phenomenon as mirror symmetry

We have mentioned that the mirror symmetry transformation (3.13) is an equivalence of the theories
TI, TII, TIII. The transformation leaves the “slice” C ⊂ C2 defined by ImX = 4π/3 and ImY = 0
invariant, and permutes the chambers by I→II→III→I. On the level of exponentiated masses x, y it maps
(x, y) 7→

(√
y/x, 1/

√
x3y
)
. The rotation induces a mapping on blocks(

B1
I

B2
I

)
ω7→
(
B1
II

B2
II

)
ω7→
(
B1
III

B2
III.

)
It is a small exercise to check from (3.24) and (3.25) that this is indeed the case. Needless to say, this
is a remarkable agreement; seemingly independent calculations of formal Stokes matrices, non-trivial
identities between q-functions and mirror symmetry of the CP1 sigma model play along perfectly.

In our later discussion in the second part of this work, we will discuss the monodromy in the case the
mass deformation associated to the U(1) flavor symmetry is zero, i.e. when x→ 1.
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4. A lightning-fast review of a GLSM

As the title suggests, we will very briefly go through the study of gauged linear sigma models. We will
follow the notation and exposition from [KRS16], using results from [Wit93; HHP08; Joc+; HR13]. The
main focus is the calculation of the partition function of the so called gauged linear sigma model on
a hemisphere D2 ⊂ S2. This is interesting for us because of its similarity with the three-dimensional
construction from [BDP14] we reviewed in the previous chapters: the D2 can be thought of as the
two-dimensional analogue of the elongated cigar D2 ×q S1 and its partition function an analogue of the
three-dimensional holomorphic blocks. This similarity is further affirmed by the universal and integral
formula for the partition function on the hemisphere that the authors in [HR13] derive.

4.1 Generalities

The gauged linear sigma models (GLSM) are two-dimensional gauge theories with N = (2, 2) supersym-
metry. They are especially interesting because in the infrared they flow to a supersymmetric conformal
field theory which describes a Calabi-Yau (CY) compactification of string theory. The Fayet-Iliopoylos
and theta parameters of the SCFT define parameters on the Kähler moduli space MK of the Calabi-
Yau. In the SCFT picture they correspond to marginal deformations that are not renormalized under the
renormalization group flow. The moduli space is divided into phases (e.g. as we already saw in subsection
3.3.1), each with different low energy descriptions. A phase is called geometric if the corresponding low
energy theory coming from the GLSM is a non-linear sigma model with a Calabi-Yau target space.

The partition function of the GLSM can be used (by its low energy limit) to compute exact Kähler
potentials onMK , which are furthermore used to extract Gromov-Witten invariants. The points ofMK

parameterizing different SCFTs, and there is a vector bundle H → MK with the fiber being the chiral
ring of the SCFT. This vector bundle is equipped with a natural flat connection, the tt∗ connection. The
(generalized) central charges of D-branes inserted into the SCFTs are (inner products of) flat sections
(covariantly constant with respect to tt∗) of this vector bundle. The partition functions of the SCFT are
alse expected to be such sections, in particular multivalued, flat, holomorphic sections. One can therefore
ask how these sections change when transported between phases, or correspondingly, how are these (local)
sections analytically continued beyond their original domain of definition. This question is thus related
to the transportation of (central charges of) D-branes between phases of the moduli space.

The authors present a general, contour integral formula for the calculation of partition functions irrespec-
tive of the phase. They also derive a (defining) differential equation for the partition function which is in
fact the Picard-Fuchs equation of the periods of the mirror CY. The focus is, as in the 3d P1 case, Abelian
U(1) GLSMs, which admit a geometric phase [Wit93; HHP08] with the target CY being a hypersurface
in PN . The moduli spaceMK can be presented as P1 \ {0, 1,∞}. The three singular points correspond
to the regular singularities of the Picard-Fuchs equation and represent the so-called large volume (z = 0),
Landau-Ginsburg (z =∞) and conifold points (z = 1).

A gauged linear sigma model in general is mathematically defined∗ by providing the following data:
A (compact) gauge group G, a superpotential W ∈ S := Sym(V ∗), where V is the m-vector space
of chiral fields, a representation ρV : G → GL(V ), and a representation of the R-symmetry group
R : U(1) → GL(V ). One can decompose the Lie algebra g of G into g = s + a, where s is semi-simple
and a with dim a = s is Abelian (in particular a ⊂ t, where t is the Cartan subalgebra). Then we define
the parameters t ∈ g∗C such that they factor through the Abelian component a∗C ↪→ g∗C. Then we have
t = (t1, . . . , ts and ti = ζi − iθi, where ζ are the FI parameters and θ the theta terms. With this data,

∗ We do not present the full details and instead refer to the literature in [HHP08; HR13; Joc+].
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4. A lightning-fast review of a GLSM

one can then write the D- and F-term equations and compute the classical space of vacua Xζ , where ζ
are the Fayet-Iliopoulos (FI) parameters of the theory.

A particular case that is discussed in [Wit93; HHP08; KRS16] is the GLSM with

(G,W, ρV , R) = (U(1),W = pGN (x1, . . . , xN ), ρCN+1 : U(1)→ SL(N + 1), R) (4.1)

where p has weight −N and GN is a homogeneous polynomial of degree N , with each xi having weight
1 under U(1).

The functions et ∈ (C∗)s on the algebraic torus then provide coordinates for the moduli spaceMK . In
fact,MK is realized as a compactification of (C∗)s by removing a closed codimension 1 subset ∆, which
is the discriminant locus (cpw. 3.3). The discriminant locus is determined by the superpotential and the
U(1) charges of the chirals (weights of the ρV representation).

In addition to the field content, for a GLSM on a hemisphere, which is a manifold with boundary, one has
to consider the boundary conditions (i.e. the theory on the boundary). Specifying boundary conditions is
equivalent to specifying the D-brane data B for the GLSM (whence the branes are called B-branes. This
consists of: a Z2-graded free S-module M = M0 ⊕M1, a “factorization” Q ∈ EndS(M) of W such that
Q2 = W idM

† as well as representations ρ : G→ GL(M) and r∗ : u(1)→ gl(M) with some compatibility
conditions on Q and M .

4.2 The partition function and grade restriction

The integral formula for the partition function in [HHP08; HR13] depends on the data (G,W, ρV , R) of the
GLSM as well as the data B = (M,Q, ρ, r∗) of the D-brane corresponding to the boundary. Furthermore,
it also depends on a non-trivial choice of contour γ ⊂ tC (recall t is the Cartan subalgebra of g, with
coordinates σ ∈ tC), similarly to the integral formula for 3d blocks. The formula reads

ZD2(B) = const.
∫
γ

drankGσ
∏

g roots α

α(σ) sinh(πα(σ))

m∏
i

Γ
(
iQi(σ) +

Ri
2

)
eit(σ)fB(σ),

where σ are the coordinates on tC, Ri and Qi are the R- and U(1)-charges, α are the positive roots of
G and fB(σ) is the “brane factor”. The brane factor is the only dependence of Z on B. The integrand,
denoted as FB(σ), has poles coming from the gamma functions, whose loci P must be avoided by the
contour, hence γ ⊂ tC \P.

In fact the choice of integration contour is more subtle with physical implications. It is a Lagrangian
submanifold of tC, and not every choice of contour is “admissible”. Admissible contours are chosen such
that the integral exists and converges; Such an admissible contour exists when the FI parameters are
generic. For non-generic values, there is a condition on the charges q coming from convergence of the
integral:

−N
2
<

θ

2π
+ q <

N

2
.

This is called “charge window” and the procedure for D-branes is called grade restriction [HHP08; HR13].
It implies that not all D-branes can be transported across phase boundaries, but only the grade restricted
ones.

4.3 Differential equation and main focus

The explicit ZD2(B) integral is found to satisfy the following differential equation [Joc+]

[
ϑN−1
z − z

N−1∏
j=1

(ϑz +
j

N
)
]
f(z) = 0,

where z = et are the coordinates on the (unexcised)MK , N is the number of chiral fields with weight 1
from (4.1), and j are the U(1) weights q = 1, . . . , N − 1. This equation is of generalized hypergeometric
form, and it is the source of our interest in q-deformations of the hypergeometric equation.

† This condition implies that Q =
(

0 a
b 0

)
, with W = ab.
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4. A lightning-fast review of a GLSM

In the geometric phase, the IR limit of this GLSM is a degree N hypersurface in PN−1 defined by

GN (x1, . . . , xN ) = 0.

Our main focus is thus the cubic in P2. One can check that the defining equation for the partition
function is the Gaussian hypergeometric equation with parameters (α, β, γ) = (1/3, 2/3, 1) (cpw. (5.2)).
We are thus interested in studying the q-analogue of the hypergeometric function at the q-analogues
of these parameters. As we will see, the most obvious deformation corresponds to the so-called basic
hypergeometric equation with parameters (a, b, c) = (q1/3, q2/3, q).
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Part II

Classical and “quantum” monodromy
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A preliminary discussion: the goal of this work

Results so far

We have spent most of Part I presenting the 3D construction of Beem, Dimofte and Pasquetti [BDP14],
and briefly reviewing the 2D GLSM studied in [HHP08; HR13; Joc+; KRS16]. In particular, we saw
how q-difference equations appear as constraints for holomorphic blocks, which can be thought of as
partition functions on “pieces” of three-manifolds. These constraints are in fact defining equations for the
blocks, as the space of solutions of the q-difference equations is spanned by the set of blocks. Determining
the holomorphic blocks is equivalent‡ to determining the partition function on the total manifold: the
geometric gluing of the pieces that retrieves the three-manifold extends on the level of gauge theories
(modulo deformations) and we can fuse the blocks into a factorized equation of the form (2.1). This
situation is analogous to two-dimensional gauged linear sigma models [HHP08; HR13; Joc+; Cer+93]:
the partition function is again written as a contour integral with a universal contour. Restrictions on the
choice of contour play a physical role. Furthermore, the partition function satisfies a defining differential
equation, the Picard-Fuchs equation (corresponding to the periods of the mirror CY). In fact we will take
advantage of this feature, and promote the differential constraints into a q-difference constraint, which
we conjecture to be (one of many) three-dimensional lifts.

More importantly for our work, the q-difference equation defining the blocks in the non-trivial example
of the P1 sigma model in 3.3 exhibit physically interesting global properties: Stokes phenomena and
monodromy. The global data plays an important role in realizing explicit mirror symmetry on the
moduli space of this example. More generally, monodromies and analytic continuations of solutions
to differential equations (e.g. hypergeometric, Bessel, Painlevé equations) encode physically interesting
information: dyon charges [SW94; Ler97], target space duality groups [Cer+93], behavior of D-brane
(generalized) central charges between phases [HR13], among others. A ubiquitous feature is that the
differential equations that correspond to these monodromies are defining equations for some physically
interesting quantity, e.g. partition functions, central charges etc.

Our goal

The main idea behind this work is to

Study the global behavior of q-difference equations appearing
in the context of supersymmetric gauge theories.

In particular, we want to study the q-difference equations that are the “lift” of the Picard-Fuchs equations
for the cubic in P2, appearing in [KRS16], as well as the “massless” limit (x → 1) of the q-difference
equation of the P1-sigma model appearing in [BDP14] ((3.17a)). The first set of equations is of basic
hypergeometric type, while the second is a deformation of the q-Bessel equation.

Outline

The study of global data in q-difference equations is somewhat lagging behind its counterpart of differential
equations. The connection problem for q-difference equations —the precursor to monodromy and Stokes
phenomena— was first studied by Birkhoff [Bir13] more than a century ago, and is still a “hot topic” in
mathematical research. Some notable references are [Hah49; Aom95; Eti95; PS97; Sau02; Sau03; Sau06;
HSS16; Dre17] and of course the detailed work of Ramis, Sauloy and Zhang [RSZ09].

We therefore first devote a chapter on the global properties of differential equations, with an aim to
develop some methods necessary for the computation of global data (connection matrices, monodromy
matrices). This study is done through a classic, yet very instructive and general example: the case of the
Gaussian hypergeometric equation. Monodromy and analytic continuation results for these functions are
known in the generic cases [Sla09; Bat53], and yet the non-generic, so-called logarithmic cases are the
ones which are usually interesting in applications. A systematic treatment of those cases is still active
research [Nør55; Nør63; Sch16]. We present general methods of analytic continuation and computing
monodromies for the generic cases as presented mainly in [Iwa+12]; the methods provide a picture of

‡ The equivalence holds conjecturally for general three manifolds, while three-manifolds that are some fibration over an
S1 base are the subject of study of [BDP14].
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what we expect to find in the q-difference case as opposed to the differential case. In particular, how we
can extract the monodromy matrices from connection matrices and exponents of solutions.

The second chapter is then devoted to the bulk of our work: computing local solutions to q-difference
equations finding the analytic continuation formulae that furnish the connection matrix. The difference
equations we consider are two main cases: the basic q-hypergeometric equation and the q-Bessel equa-
tion and its deformations. We have provided a brief motivation for the study of the q-hypergeometric
equation from a lightning fast review of the corresponding two-dimensional gauged linear sigma model
corresponding to a degree 3 Calabi-Yau hypersurface in P2 in section 4.3. The Bessel (difference) equa-
tion appeared as one of the two partial q-difference equations in the main non-trivial example in our
background: the CP1 sigma model from [BDP14]. We briefly investigate the different deformations of
the q-Bessel equations and their physical equivalence, and proceed with the study of a more convenient
deformation than the one presented in (3.17a).
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5. Monodromy of differential equations: classi-

cal methods

5.1 Case study: the hypergeometric equation

We study the hypergeometric differential equation defined in one complex variable z as

z(1− z)d2u

dz2
+
[
γ − (α+ β + 1)z

]du
dz
− αβu = 0, (5.1)

where α, β, γ ∈ C are parameters. Equivalently, we can write this as

z(ϑz + α)(ϑz + β)u− ϑz(ϑz + γ − 1)u = 0, (5.2)

where ϑz = z d
dz . In particular we are interested in solutions around the singular points of this equation

defined on the Riemann sphere (in the generic case these are 0, 1 and ∞) as dictated by the Frobenius
method for solving differential equations, as well as relating the solutions around different points wherever
they are both defined. The latter problem is referred to as the “connection problem”. In solving the
connection problem, one also inherently solves the more interesting for our applications “monodromy
problem” — that is the transformation that a set of solutions undergo when analytically continuing the
set (through connection matrices) along a non-trivial loop in the (thrice) punctured Riemann sphere.

Following [Iwa+12], we will present different methods to compute the monodromy groups of the hyper-
geometric equation, among other things.

5.2 Integral representations

It is in many cases useful if differential equations admit solutions that are of integral form i.e. have the
form

u(z) =

∫
γ(z)

K(z, t)dt,

for some simpler kernel function K(x, t). In particular, it is helpful when dealing with the connection
problem, a prime example of the global study of solutions:

Connection problem: Let Lf = 0 be a linear differential equation of order n and let F (1) = {f (1)
j }

and F (1) = {f (2)
j } with j = 1, . . . , n be solution vectors in the solution space S ∼= Cn of said differential

equation around two points x1 and x2 respectively. Furthermore, let C be a path connecting the two
points and denote by C∗F (1) the analytic continuation of F (1) along C. The connection problem amounts
to finding a linear relation between C∗F (1)} and F (2), i.e.

C∗f
(1)
j = Mjkf

(2)
k .

For the hypergeometric differential equation we will focus on two types of representations for solutions:
the Euler integral representation and the Barnes integral representation.
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5.2.1 Euler integral representation

We denote the hypergeometric series

2F1(α, β; γ; z) ≡ F (α, β; γ; z) :=

∞∑
n=0

(α)n(β)n
(γ)n(1)n

zn,

where (a)n := a(a+ 1) · . . . · (a+ n− 1) is the Pochhammer symbol. We then have
Theorem 5.2.1. If Re γ > Reβ > 0 then

F (α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− zt)−α dt,

for |z| < 1 where we choose the branch of the (factors in the integrand) according to

arg t = 0, arg(1− t) = 0, |arg(1− zt)| < π

2
, for 0 < t < 1.

Equivalently, writing t = 1
s yields

F (α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ ∞
1

sα−γ(s− 1)γ−β−1(s− z)−α ds.

Proof. The proof relies in the integral representation of the beta function and some manipulations. For
details cf. [Iwa+12] page 53. �

Note that both integrals are defined for z ∈ C \ [1,∞) and thus define an analytic continuation of 2F1 to
said domain.

5.2.2 The Euler transform

Given a complex function f of the form f(t) = (t− a)µg(t) for a, µ ∈ C (µ is called the exponent of f at
a), where g(a) 6= 0 and holomorphic, we consider the integral transformation, called the Euler transform
of f (

D−αa f
)
(z) :=

1

Γ(α)

∫ z

a

(z − t)α−1f(t) dt, (5.3)

where the path of integration C has endpoints a and z as noted above, and we have fixed the branches
of the multivalued functions arg(t−x) and arg(t− a) along C. For Reα > 0 and Reµ > −1, the integral
converges, and we want to extend the definition for more values of α and µ. To this end, we consider the
shifted Mellin transform

H(ν) =

∫ b

a

(t− a)ν−1g(t) dt,

over a path γ with endpoints as above, g a holomorphic function in the neighborhood of the path γ and
a fixed branch for arg(t− a).
Lemma 5.2.2. The functionH(ν) can be analytically continued to a meromorphic function in ν ∈ C\Z≤0

and the poles on Z≤0 are given by

Res
ν=−m

=
1

m!
g(m)(a).

Proof. We pick a point c in the image of γ within the radius of convergence of the Taylor series of g at
a. Then, denoting the integrand by I we have for Re ν > 0

H(ν) =

∫ c

a

I +

∫ b

c

I =

∞∑
m=0

g(m)(a)

m!

∫ c

a

(t− a)ν−1+m dt+

∫ b

c

I

=

∞∑
m=0

g(m)(a)

m!

(c− a)ν+m

ν +m
+ holomorphic in ν

�
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This lemma defines in some sense how to extract a finite part of a divergent integral : formally the integral
defined by H is divergent for Re ν < 0, but the division of the path into two parts shows that there is
a well-defined notion of a finite part. The same procedure can be applied to D−αa (5.3): The integral is
well defined, in terms of its finite part, for any value α ∈ C, and defines a holomorphic function provided
that the exponent µ /∈ Z≤0. Some properties of the transform, which show that it can be considered as
a generalization of derivatives include

1. If µ 6= −1,−2, . . . is the exponent of f at a then the exponent of D−αa f at a is µ+ α unless µ+ α
is e negative integer, in which case the exponent is 0 or a positive integer.

2. There is a composition rule Dα
a · Dβ

a = Dα+β
a , as long as the exponent µ of f is not a negative

integer.

3. Dm
a =

(
d
dz

)m, if m is a positive integer.

4. It satisfies a “Leibnitz” rule: for a polynomial p(z) of degree n we have that

Dα
a

(
p(z)f(z)

)
=

n∑
j=0

(
α

j

)
p(j)(z)

(
Dα
a f
)
(z).

The initial point a can also be moved to ∞ with some modification of the above results which we omit.

5.2.3 The hypergeometric Euler transform

We use the results about the Euler transform (5.3) to sind solutions of the hypergeometric equation in
integral form.

Consider the set

Hn := {L =

n∑
j=0

pj(z)
dj

dzj
|deg pj ≤ j,∀j, and deg pn = n}

of n-th order differential operators with polynomial coefficients as above, called of hypergeometric type.
We choose λ ∈ C, f(z) a holomorphic function around a ∈ C with exponent µ such that n − µ /∈ N.
Then, a calculation following from the properties of Dλ

a yields (cf. [Iwa+12])

Dλ
a (Lf) =

( n∑
k=0

n∑
j=k

(
λ

j − k

)
p

(j−k)
j (z)

dk

dzk

)
Dλ
af =: (DλL)Dλ

af,

where we have defined the map of operators Dλ as

DλL :=

n∑
k=0

n∑
j=k

(
λ

j − k

)
p

(j−k)
j (z)

dk

dzk
.

We thus have statements

• If the exponent µ of f at a satisfies n− µ /∈ N then Dλ
a (Lf) = (DλL)(Dλ

af) for λ ∈ C.

• If the exponent µ of f at z =∞ satisfies µ /∈ Z<0 and λ+ µ /∈ Z<0 then Dλ
∞(Lf) = (DλL)(Dλ

∞f)
for λ ∈ C.

We can thus obtain solutions to (DλL)f = 0 given solutions to Lf = 0.

Since the operator DλL is also of hypergeometric type, we have established that Dλ : Hn → Hn, i.e.
that the map is a transformation of operators of hypergeometric type, called the hypergeometric Euler
transform. It follows a composition rule DλDν = Dλ+ν .

Through the differential equation known as the Jordan-Pochhammer equation, and its solutions integral
expression, we may obtain the integral expression of a hypergeometric solution as a special case (we omit
the details). We obtain
Theorem 5.2.3. Let α, β, γ be constants such that 2−(α−γ), 2−(γ−β−1), α−β−1, −β−1, α /∈ N.
Then the hypergeometric equation admits solutions Fpq(z) given by

Fpq(z) =

∫ q

p

tα−γ(1− t)γ−β−1(t− z)−α dt,

where p, q = 0, 1,∞ or z, and the we consider the finite part of the integral if it is divergent.
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This theorem gives us six solutions given by the choice of p and q, which in turn are related by Kummer’s
24 relations. We can also use double loops, cf. Prop 3.3.7 in [Iwa+12].

5.2.4 Barnes integral representation

In addition to the Euler integral representation of solutions to the hypergeometric equation, there is also
the Barnes integral representation. There are three ways to derive it, and we discuss two of them here.

Barnes integral from the power series

We consider a function defined by a power series f(z) =
∑∞
m=0 amz

m, as well as a function g(t) that is
(i) meromorphic for |t| < ∞, (ii) holomorphic at t = 0, 1, 2, . . . and (iii) interpolates the sequence {am}
of coefficients, i.e. g(m) = am for m ∈ N. Then it is easy to check that the function

h(t) := −g(t)
π

sin(πt)
(−z)t

has simple poles at t(= m) = 0, 1, 2, . . . with corresponding residue −amzm. We can thus define a contour
integral in t whose path CN encircles the poles t = 0, 1 . . . , N (with negative orientation) and we obtain

1

2πi

∫
CN

h(t)dt =

N∑
m=0

amz
n (5.4)

It becomes obvious what we would like to do: check that h has some suitable asymptotic behavior and
let N →∞ so that we have an integral representation

f(z) =
1

2πi

∫
C

h(t)dt,

for some path C.

We apply this to the hypergeometric series F (α, β; γ; z):

am =
(α)m(β)m
(γ)m(1)m

=
Γ(γ)

Γ(α)Γ(β)

Γ(α+m)Γ(β +m)

Γ(γ +m)Γ(1 +m)
,

assuming that α, βγ 6= 0,−1,−2, . . .. We identify

g(t) =
Γ(γ)

Γ(α)Γ(β)

Γ(α+ t)Γ(β + t)

Γ(γ + t)Γ(1 + t)
,

which satisfies the conditions we need. Using the identity Γ(−t)Γ(1 + t) = − π
sin(πt) we obtain

h(t) =
Γ(γ)

Γ(α)Γ(β)

Γ(α+ t)Γ(β + t)Γ(−t)
Γ(γ + t)

(−z)t,

and the main statement of this subsection is then:
Theorem 5.2.4. Suppose α, β, γ 6= 0,−1,−2 . . ., |x| < 1 and |arg(−x)| < π. Then

F (α, β; γ; z) =
1

2πi

Γ(γ)

Γ(α)Γ(β)

∫
C

Γ(α+ t)Γ(β + t)Γ(−t)
Γ(γ + t)

(−z)t dt,

where the path C is as in the figure 5.1a, i.e. it lies on the imaginary axis for |t| � 1, the poles of
Γ(α+ t)Γ(β + t) lie to the left of C and the poles of Γ(−t) to the right of C. This is the Barnes integral
representation of the hypergeometric function.

Proof. To prove the theorem, we close up the contour C to a loop CN = C + C
(2)
N . By our result (5.4)

above we readily have that the integral along CN yields
∑N
m=0 amz

m. We thus only need to prove the
“asymptotic property” of h: ∫

C
(2)
N

h(t)dt converges to 0 as N →∞.

Using the Stirling formula (details in [Iwa+12]), we obtain that when δ < |arg t| ≤ π
2 or Re t ∈ N + 1

2
then

h(t) = O(tα+β−γ−1e−(π|Im t|+arg(−z) Im t)),

for any positive number δ < π
2 . This formula can be applied to the “three parts” of C(2)

N for all N , and
shows that the contribution vanishes for N →∞. �
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5. Monodromy of differential equations: classical methods

(a) The path of integration C for the theorem.

(b) The closed path of integration. The proof of
the theorem is to show that the C

(2)
N part vanishes.

Figure 5.1

Barnes integral from a difference equation

For the second approach to the Barnes integral, we use the inverse Mellin transform of a function G(t):

F (z) =
1

2πi

∫
G(t)(−z)tdt,

which is (for now) a formal expression, i.e. no contour is specified. One of the properties of this transform
is that it transforms differential equations to difference equations, and when the differential equation is
of special form, the difference equation can be solved. We apply this method to the hypergeometric
equation. The equation takes also the familiar form

[ϑz(ϑz + γ − 1)− z(ϑz + α)(ϑz + β)]f = 0, ϑz := z
d

dz
.

We then take the Ansatz that the solution can be written as an inverse Mellin transform

f(z) =
1

2πi

∫
C

g(t)(−z)tdt,

and we look for the conditions on g under which this integral converges. We take C to be a vertical
path possibly with some deformation to avoid singularities (no coincidence, cf. figure 5.1). Our Ansatz
reduces the differential equation to∫

C

t(t+ γ − 1)g(t)(−z)tdt+

∫
C

(t+ α)(t+ β)g(t)(−z)t+1dt = 0.

Now note that, if the path C can be shifted to the left by 1 without change, then we obtain the condition∫
C

[
(t+ 1)(t+ γ)g(t+ 1) + (t+ α)(t+ β)g(t)

]
(−z)t+1dt = 0

which is the difference equation

g(t+ 1) = − (t+ α)(t+ β)

(t+ γ)(t+ 1)
g(t).

This is solved by

g(t) =
Γ(t+ α)Γ(t+ β)Γ(−t)

Γ(t+ γ)
,
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5. Monodromy of differential equations: classical methods

and in fact since limτ→∞ t2g(t)(−z)t = 0 when t = σ + iτ holds for this solution, (i.e. the integrand is
finite along an infinite vertical strip), the “formal” integral is exact. We thus obtain the solution

f(z) =
1

2πi

∫
C

Γ(α+ t)Γ(β + t)Γ(−t)
Γ(γ + t)

(−z)t dt,

where C is as in figure 5.1.

The Gauss-Kummer identity

Lastly, we state a result relevant for the calculation of connection matrices.
Theorem 5.2.5. If Re(γ − α− β) > 0 then the Gauss-Kummer identity holds

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
.

5.3 Monodromy of the hypergeometric equation

5.3.1 The problems

We formalize some of the notions that we need to actually define the monodromy problem. Given a
differential equation [

dn

dzn
+ a1(z)

dn−1

dzn−1
+ . . .+ a2(z)

d

dz
+ an(z)

]
f(z) = 0

defined on some possibly non simply connected domain D ⊂ C but without loss of generality, connected
(usually just C \ {singular locus}), the solutions might be multivalued functions on D, that come from
well-defined single valued functions on the universal covering D̃. To describe the “multi-valuedness” of the
space of solutions S ∼= Cn we associate to the equation above a certain subgroup of GL(S) ∼= GL(n,C)
called the monodromy group associated to the equation, which is in fact the image of a representation
ρ : π1(D)→ GL(S) where π1 is the fundamental group (due to connectedness we disregard base points).

Given a local solution vector F = (f1, . . . , fn) ∈ S(U) in some 1-connected neighborhood U of b ∈ D and
an element [α] ∈ π1(D), we denote by α∗F the analytic continuation of F along the representative loop
α. Then, since α∗F is also a solution vector we have

α∗F = F ·M(α;F)

for a matrix M ∈ GL(S(U)), called the monodromy matrix.

Now, denoting by G a local solution vector in S(V ) in some 1-connected neighborhood V of a ∈ D, we
consider a path γ connecting a and b, as well as the analytic continuation γ∗G of G along γ. Then there
exists a matrix C ∈ GL(n,C) such that

G = FC.

This matrix is called the connection matrix. We can thus compute that for the two different local solution
vectors F ,G we have

GM(α;G) = GC−1M(α;F)C,

i.e. every two monodromy representations are conjugate, as we expect since we are disregarding base
points for the fundamental groups. We thus have... problems:

Monodromy problem Given a linear differential equation, find an explicit expression for its mon-
odromy and/or find the presentation of the monodromy group on a fundamental system of solutions.

More generally, we might analytically continue a solution vector along a path that is not closed. This
defines the connection problem, discussed earlier.

Connection problem Given a path γ from a ∈ D to b ∈ D and local solution vectors around a, b find
an explicit expression for the connection matrix C.

50



5. Monodromy of differential equations: classical methods

5.3.2 Finding the monodromy of the hypergeometric equation

We turn our attention to the case of the hypergeometric equation: the domain of definition is D =
CP1 \ {0, 1,∞}, i.e. the thrice punctured Riemann sphere. An elementary consideration in algebraic
topology (e.g. D ' S1 ∨ S1 by a deformation retraction) shows that π1(D) = 〈γ0, γ1〉 ∼= F2 i.e. the
fundamental group is a free group in two generators, generated by the simple loops around 0 and 1,
without loss of generality. The loop around ∞ is given by γ∞ = γ−1

0 γ−1
1 . Since the solution space in the

hypergeometric equation is two-dimensional, the monodromy of the hypergeometric equation is a group
homomorphism (representation) ρ : F2 → GL(2,C).

In this subsection we will describe three ways to compute the monodromy of the hypergeometric equation.

By Euler integrals over paths

We want to solve the connection problem using the Euler integrals introduced earlier, and therefore also
the monodromy problem. We introduce some notation: Let

Fpq(z) =

∫ q

p

ϕ(t, z;λ, µ, ν) dt, where

ϕ(t, z;λ, µ, ν) = tλ(1− t)µ(z − t)ν and
λ = α− γ, µ = γ − β − 1, ν = −α.

and p, q ∈ {0, 1, z,∞}. We also assume that Im z > 0. The integral makes sense (at worst through its
finite part) if the following condition holds

none of α, 1− β, γ − α and β − γ + 1 is a positive integer (5.5)

and defines a solution of the hypergeometric equation. We obtain 6 integrals

F01, F1∞, F∞0, F0z, F1z, and Fz∞

We need to specify branches for all three factors of the integrand. These are given in the table below

arg t arg(1− t) arg(z − t) z0

01 0 0 [ξ, η]∗ ∞
1∞ 0 −π [η, π] 0
∞0 π 0 [0, ξ] 1
0z ξ [η − π, 0] ξ 0
1z [0, ξ] η − π η 1
z∞ ξ [ξ − π, η − π]∗ ξ + π ∞

where pq denotes a path from p to q, and [m,n]∗ := [min(a, b),max(a, b)], while z0 denotes the point
around which the expression is a fundamental solution (the correspondence is provided later). Then, we
have the following result
Theorem 5.3.1. The six solutions given by Fpq(z) with p, q ∈ {0, 1, z,∞} satisfy

F01 +F1∞ +F∞0 = 0
F01 −F0z +F1z = 0

e−2πiµF1∞ −F1z −e2πiνFz∞ = 0
e2πiλF∞0 +F0z +Fz∞ = 0

The proof of the theorem relies in dividing up C into three contractible domains Dj , j = 1, 2, 3 whose
boundaries are the six contours above, and we apply Cauchy’s theorem∫

∂Dj

ϕ(t, z;λ, µ, ν) dt = 0

with appropriate choices of branches.
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5. Monodromy of differential equations: classical methods

The general solutions around the singularities are of the form

wz0 = Aw(1)
z0,e1(z) +Bw(2)

z0,e2(z) (5.6)

with A,B ∈ C and ei the exponent introduced earlier i.e. wz0,e(z) = (z − z0)eg(z − z0) where g is
holomorphic around z0.
We thus have around z = 0, 1 and ∞ respectively

w0(z) = A F (α, β; γ; z) +Bz1−γF (α− γ + 1, β − γ + 1; 2− γ; z), (5.7a)

w1(z) = AF (α, β; 1 + α+ β − γ; 1− z) +B(1− z)γ−α−βF (γ − β, γ − α; γ − α− β + 1; 1− z), (5.7b)

w∞(z) = Az−αF (α, α− γ + 1;α− β + 1, z−1) +Bz−βF (β, β − γ + 1;β − α+ 1; z−1). (5.7c)

which are defined when α, β, γ and their differences are not integers∗. This is what we mean by “generic
parameters”, in the sense that the set (α, β, γ) ∈ C3 which is “problematic” is of measure 0 in C3.
Theorem 5.3.2. The six integrals are in correspondence with the three pairs of fundamental solutions
around the three singular points 0, 1,∞ as

0 : F1∞ = c1∞w
(1)
0,0, F0z = c0zw

(2)
0,1−γ

1 : F∞0 = c∞0w
(1)
1,0, F1z = c1zw

(2)
1,γ−α−β

∞ : F01 = c01w
(1)
∞,α, Fz∞ = cz∞w

(2)
∞,β ,

for some constants c∗.

For details for both theorems cf. [Iwa+12] page 99. Theorem 5.3.1 now provides enough relations to
solve the monodromy problem: We can calculate the connection matrix of, say solutions around 0 and 1:

(F1∞, F0z) = (F∞0, F1z)
P

e2πiν − e−2πiµ
, where P =

(
e2πi(ν+λ) − e2πiν e−2πiµ − e2πi(λ+ν)

e2πiν − 1 1− e−2πiµ

)
and we can calculate the monodromy with respect to the fundamental system around 0. We have
Theorem 5.3.3. Let γ0, γ1 be loops based at z = 1

2 circling the singular points 0,1 respectively in the
positive direction once and suppose α, β, γ satisfy (5.5). Then the analytic continuation of F = (F1∞, F0z)
along the paths, i.e. the monodromy, is given by

γ0∗F = FA0, γ1∗F = FA1

where

A0 =

(
1 0
0 e−2πiγ

)
, A1 = P−1

(
1 0
0 e2πi(γ−α−β)

)
P.

with P as above. The monodromy group with respect to the solution vector F is generated by A0 and
A1.

We skip the derivation using double loops.

5.3.3 By Barnes integrals

We saw earlier that we have the Barnes integral representation for solutions to the hypergeometric
equation

F (α, β; γ; z) =
1

2πi

∫
C

h(t, z) dt,

where the integrand is

h(t, z) =
Γ(γ)

Γ(β)Γ(α)

Γ(α+ t)Γ(β + t)Γ(−t)
Γ(γ + t)

(−z)t.

The poles form the sets

P+ = {0, 1, 2, . . .}
P− = {−α,−α− 1, . . .} ∪ {−β,−β − 1, . . .},

while the contour C is a vertical line, mostly on the imaginary axis, possibly deformed so the P+ lies to
the right of it and P− lies to the left of C, cpw. figure 5.1a. We now change the path from C to CN as
shown in figure 5.2.

∗ Specific solutions can exist even when some of the parameters or their differences are integers
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5. Monodromy of differential equations: classical methods

Figure 5.2: The paths C and CN .

Theorem 5.3.4. Suppose that none of α, β, γ, γ − α and γ − β is an integer. Then, in the notation of
(5.6), we have that

(w
(1)
0,0(z), w

(2)
0,1−γ(z)) = (w(1)

∞,α(z), w
(2)
∞,β(z)) · P,

with connection matrix

P =

(
c(α, β, γ) c(α− γ + 1, β − γ + 1, 2− γ)
c(β, α, γ) c(β − γ + 1, α− γ + 1, 2− γ)

)
, c(λ, µ, ν) := e−πiλ

Γ(ν)Γ(µ− λ)

Γ(µ)Γ(ν − λ)
.

Proof. The proof relies on calculating the residues on the poles P− that are included in the closed contour
C − CN . We obtain formally due to Cauchy’s theorem

IC − ICN ≡ w
(1)
0,0(z)− ICN =

∑(
poles in C − CN

)
,

which explicitly reads

w
(1)
0,0(z) = c(α, β, γ)w∞,α(z,N) + c(β, α, γ)w∞,β(z,N) + ICN ,

where w∞,ν(z,N) is a truncated series, coming from the pole contributions, converging to w∞,α(z) for
N → ∞. It remains to show that the ICN contribution vanishes in the N → ∞ limit. For the second
fundamental solution w(2)

0,1−γ(z) we replace the parameters α, β, γ by α−γ+1, β−γ+1, 2−γ and multiply
by z1−γ to obtain in total

w
(1)
0,0(z) = c(α, β, γ)w(1)

∞,α(z) + c(β, α, γ)w
(2)
∞,β(z)

w
(1)
0,1−γ(z) = c(α− γ + 1, β − γ + 1, 2− γ)w(1)

∞,α(z) + c(β − γ + 1, α− γ + 1, 2− γ)w
(2)
∞,β(z).

For details cf. [Iwa+12, page 111] . �

The monodromy is then easy to calculate:
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5. Monodromy of differential equations: classical methods

Theorem 5.3.5. Let γ0, γ1 be loops based at z = 1
2 only circling the singular points 0,∞ respectively in

the positive direction once, and suppose none of α, β, γ, γ−α, γ−β is an integer. Then the monodromies
around these loops, i.e. the analytic continuations of F = (w

(1)
0,0(z), w

(2)
0,1−γ(z)) along γ0, γ∞ are given by

γi∗F = FAi, i = 0,∞,

where
A0 =

(
1 0
0 e−2πiγ ,

)
A∞ = P−1

(
e−2πiα 0

0 e−2πiβ

)
P,

and the monodromy group is generated by these matrices.
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6. q-monodromy

In this chapter we dwell into the core of our work: we want to study the global behavior of the solutions
to q-difference equations.

The cases that interest us as we stated in the discussion II the ‘lift’ of the “differential” case stemming
from the gauged linear sigma model in [KRS16], as well as a variation of (the massless limit of) the
three-dimensional P1-sigma model from [BDP14] (cf. 3.3, e.g. (3.17a)). We lay out case studies of
these difference equations, which have been investigated to some extent in the mathematics literature
[Sau02; Zha03; Mor11]. In particular, we are interested in the analytic continuation of their solutions,
i.e. the connection matrices, with an eye towards applications in physics. In addition we investigate the
possibility of computing monodromy matrices.

6.1 Some generalities on q-difference equations

Difference equations and in particular q-difference equations are functional equations involving “shifts”
in the argument of the function f(z)→ f(qz), where the function is the unknown , and q is a parameter.
The parameter can be taken to be in C, but we restrict ourselves to q ∈ C \ U(1) as the unit q-circle
presents with complications∗. The q-difference equation can be thought of as some operator Lq, built out
of the ‘position’ operator acting by ẑf = zf and the q-shift operator σq,z ≡ σq := qz

d
dz which induces

q-shifts in the arguments: σqf(z) = f(qz). They act on some space of functions, but we are not interested
in the formal aspect of these spaces or the structures therein (Galois theory, Picard-Vessiot extensions of
difference rings etc).

q-difference equations can also be thought of as a generalization of differential equations: A q-difference
equation can be written as so-called q-differential equation involving the q-derivative operator Dq by

σq = (q − 1)zDq + id .

and one can now take the limit q → 1 where Dq
q→1→ d

dz (or conveniently zDq → ϑz = z d
dz ), and in

generic cases the q-difference equation becomes a differential one (up to some rescaling of the dependent
or independent variable). It is an interesting question to ask whether solutions of q-difference equations
have well defined q → 1 limits and if they do, whether they correspond to solutions of differential
equations. In other words we have the “diagram”

L(σq, ẑ)f = 0 is solved by f(z; q)

L(ϑz, z)f = 0 is solved by f(z)

q→1 q→1

If the diagram ‘commutes’ in the sense that limq→1 f(z; q) = f(z) then we have what is called confluence of
solutions [HSS16]. Confluence is a phenomenon that is not well-understood yet and is a subject of current
research in mathematics [Dre15; Dre17; DZ09]. In many of our examples (e.g. the basic hypergeometric
equation (6.12)) the non-trivial aspect appears as a ‘condensation of discrete poles into a branch cut’
of the limiting function, but we do not discuss it further in this work. It should be noted that along
with solutions to q-difference equations, also connection matrices and other global data (Stokes matrices)
undergo a confluence phenomenon.

∗ As we saw in Part I, we write the parameter q as q = e~ = e2πiβε [BDP14], with the q → 1 limit corresponding to
ε→ 0. This corresponds to vanishing of the twisting in the fibration D2 ×q S1.
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6. q-monodromy

We want to introduce q-difference equations in a more structured manner, albeit not by a detailed
mathematical treatment. For the more formal aspect of q-difference equations one can turn to [HSS16;
Ern12; KC01; PS97]. We will mostly follow the work of Sauloy in [HSS16; Sau02; Sau03].

6.1.1 Some simple examples

The free chiral block

Let us consider a simple and ubiquitous example of a difference equation

σqf(z) = (1− z)f(z) (6.1)

with ‘initial condition’ f(0) = 1. Similarly to differential equations, we can look for solutions that are
holomorphic around some point. Let us consider a holomorphic solution around 0: f(z) =

∑
n≥0 cnz

n.
Substituting in the equation we obtain

∞∑
n=0

cn(qn − 1)zn +
∑
n=1

cn−1z
n = 0

, and the first term of the first sum vanishes, so we may rearrange the sums and obtain the recursion
formula

cn−1 = (1− qn)cn, c0 = 1

which is solved by cn = 1
(q;q)n

and we recover the well-documented [Sau02; HSS16] solution (modulo
elliptic factors)

f(z) =

∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
.

This is precisely the equation and solution of the line operator identity of the free chiral block (3.4) up
to the transformations (z, q)→ (z−1, q−1).

In a completely similar fashion we can consider

σqf(z) =
1

1− z
f(z),

with initial condition f(0) = 1 and find the solution

f(z) = (z; q)∞ .

Monodromy of the q-Pochhammer symbol

We can use the asymptotic expansion of the q-Pochhammer symbol (A.1.10) to obtain a first glimpse of
monodromies of q-functions. We essentially rely on the known monodromy properties of the polyloga-
rithms Lin which are given in [Bro09]. Small loops M0 around 0 ∈ C and small loops M1 around 1 ∈ C
induce the following monodromy transformations

M∗0 Lin(z) = Lin(z), M∗1 Lin(z) = Lin(z) +
2πi

(n− 1)!
log(n−1)(z).

The monodromy around 0 looks trivial, but in fact is not (more precisely, the Riemann surface is still
branched): if one transforms by a loop around 1, the induced logarithms will make subsequent loops
around 0 non-trivial. Using these, we find that the loop around 1 induces the transformation on the
asymptotic expansion (A.1.10)

M∗1
1

(z; q)∞
=

1

(z; q)∞
exp[−2πi

log z

log q
].

This implies that we have

(M∗1 )k
1

(z; q)∞
= e−2πik log z

log q
1

(z; q)∞

M∗0
1

(z; q)∞
=

1

(z; q)∞

(M∗0 )n(M∗1 )k
1

(z; q)∞
= enk

4π
log q e−2πik log z

log q
1

(z; q)∞
.
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It is clear that the transformed functions are still solutions to the simple q-difference equation [σq − (1−
z)]f = 0: the exponential factors that are z-dependent are an archetypal example (cf. [Jac10; Hah49]) of
elliptic functions, i.e. q-shift invariant functions. We discuss this in the next subsection 6.1.2. Of course
a big caveat is actually the use of the expansion formula: it is not guaranteed to reflect the actual global
properties of 1

(z;q)∞
.

A generalization

We can consider the generalization of the free chiral q-difference equation

[(1− σq)n − z]f(z) = 0,

where the free chiral corresponds to the case a = 1. We can solve these equations with a “trick”:

Claim: The above equation is solved up to order εn by the following Ansatz

fn(z, ε; q) =

∞∑
k=0

xk−ε

(q1−ε; q)
n
k

, (6.2)

and thus the n linearly independent solutions are given by the first n coefficients fn,k (k = 0, 1, . . . , n−1)
of the expansion

fn(z, ε; q) =

∞∑
m=0

fn,k(z; q)εk.

Using the fact that on monomials F (σq)x
m = F (qm)xm we can easily find after some calculation that

(1− σq)nfn(z, ε; q) = (1− q−ε)nz−ε + zfn(z, ε; q),

where the first term comes from the k = 0 term in the infinite sum. It is easy to see that this term is of
order O(εn), verifying our claim.

We will study the case n = 2 in detail later.

6.1.2 The field of constants

One immediate question one might ask is, to what extent are the solutions to difference equations unique?
It is clear that the solution space of a finite order n q-difference equation forms an n-dimensional vector
space, but... over which field? Clearly C is part of it: αf(z) + βg(z) solves a linear q-difference equation
of which f, g are solutions. But this can be extended, as we have seen in subsection 3.2.1 one can multiply
a solution by any σq-invariant function c(z) = c(qz) and the result is still a solution. Thus the field of
constants is precisely the field of such functions. Through the identification (isomorphism)

C C∗

C/Γτ C∗/qZ

exp

π1
can. π2

can.

∼=

where q = e2πiτ , we find that functions that are q-periodic and X + 2πi periodic where x = eX are
precisely the elliptic functions M(Eq) on the complex torus with complex modulus τ . Thus, any solution
of a q-difference equation is determined modulo an elliptic factor.

6.1.3 General difference equations and systems

Let us consider a linear q-difference equation of order n with meromorphic coefficients. It is written in
most general form as

[an(z)σnq + . . .+ a1(z)σq + a0(z)]f(z) = h(z). (6.3)

Since an cannot be identically zero, we can divide by it and without loss of generality consider instead

[σnq + an−1(z)σn−1
q . . .+ a1(z)σq + a0(z)]f(z) = h(z)
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6. q-monodromy

As in the case of differential equations, the equation is called homogeneous when h = 0. We are only
concerned with homogeneous equations in this work. Similarly to ordinary linear differential, the solution
space of linear degree n q-difference equations forms a vector space of dimension n [Car12] (at least locally
around 0 and ∞).

We can write the linear q-difference equation of order n can be written in terms of a linear system of
first-order q-difference equations of dimension n. We introduce the solution vector

φ̄ =


f
σqf
...

σn−1
q f


with the help of which it is an easy exercise to verify that (6.1.3) is equivalent to the vector equation

σqφ̄ = Aφ̄,

where

A = A(z) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−an−1 −an−2 −an−3 . . . −a0

 . (6.4)

This is called the coefficient matrix and it plays a significant role in solving and classifying q-difference
equations. It becomes clear that linear differential equations of order n are special cases of n-dimensional
linear systems. However, in practice we will only work with the form (6.4). We can furthermore assem-
ble the n linearly independent (over M (Eq)) solutions φ1(z), . . . , φn(z) into the so-called fundamental
solution matrix

Φ(z) =


φ1 . . . φn
σqφ1 . . . σqφn
...

. . .
...

σn−1
q φ1 . . . σn−1

q φn

 (z) (6.5)

which satisfies the matrix equation equivalent to (6.1.3)

σqΦ(z) = A(z)Φ(z). (6.6)

This is the form we will be using to investigate the connection problem. Note that the presentation of the
system is not unique: there are gauge transformations G[A] of the coefficient matrix A(z). The systems
defined by A(z) and B(z) are gauge-equivalent if there exists a matrix G ∈ GLn(C({z})) such that

B = G[A] := (σqG)AG−1.

It is easy to see that a gauge transformation is a redefinition of the proposed solutions φ̄ = (φ1, . . . , φn),
i.e. a new Ansatz Gφ̄ in the original equation, transforming the coefficients appropriately.

There are some general definitions that characterize our difference system based on the coefficient matrix.
We present these here. Given a system (σqF )(z) = A(z)F (z) with A ∈ GLn(C({z}))† we have that the
system is called

Fuchsian at 0 if A(z) is holomorphic near 0 and A(0) ∈ GLn(C). A Fuchsian system is furthermore
called non-resonant at 0 if σ(A(0)) ∩ qZ∗σ(A(0)) = ∅, where σ(A) denotes the spectrum of the
operator A.

regular singular at 0 if there is a matrix R(0)(z) ∈ GLn(C({z})) such that the system with coeffi-
cient matrix (R0(qz))−1A(z)R0(z) is Fuchsian. Clearly, every Fuchsian system is trivially regular
singular.

irregular singular when such a matrix R(0) does not exist.

non-logarithmic if A(0) is semi-simple (over C this is equivalent to diagonalizability).

One can extend these definitions to the point infinity by investigating the matrix A(z−1). The equations
that we will consider are Fuchsian for the section 6.2, while we will have both Fuchsian and irregular
equations in 6.3.

†C({z}) denotes the meromorphic functions in C.
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6. q-monodromy

6.1.4 Local solutions and connection matrix

In this subsection we use the methods developed by Sauloy [Sau02] to solve Fuchsian qdifference equations,
also used by [Roq08]. They are the q-difference analogue of the classical Frobenius method to solve
Fuchsian differential equations. We do not give a full exposition and instead present only the methods
that are relevant. The methods give a systematic way to find local solutions of Fuchsian q-difference
equations around the points 0,∞. Note that these points are always mathematically interesting, since
they are fixed points of the shift operator σq. The solutions of q-difference equations around finite points
is, as far as we know, an open problem both of technical and conceptual difficulty. For a short discussion,
refer to subsection 6.2.4.

We will utilize some basic linear algebra facts to simplify the search for solutions to difference systems.
Supposing that our coefficient matrix A(z) in is non-resonant (which will always be the case) and Fuchsian
(to which we will reduce the equations – even for irregular singular equations) we denote by Jz∗ the Jordan
normal form of A(z∗) where z∗ = 0,∞, i.e. Jz∗ = M(z∗)A(z∗)M(z∗)−1 for some similarity matrixM(z∗).
Sauloy shows in [Sau03] that there is a solution Fz∗ ∈ GLn(C({z})) to the modified system

(σqFz∗)(z)Jz∗ = A(z)Fz∗(z). (6.7)

This result is useful since we can now solve the simpler, constant-coefficient system

(σqXJz∗ )(z) = Jz∗XJz∗ (z) (6.8)

where the matrix XJz∗ is called the character matrix and then the fundamental solution matrices to (6.6)
around z = z∗ are given by

Φz∗(z) = Fz∗(z)XJz∗ (z) (6.9)

as can be easily checked. The “decomposition” of the solution to Fuchsian equations in to two parts is in
complete analogy with the Frobenius method for solving Fuchsian differential equations: the local solu-
tions to such differential equations are of the form zλ

∑
n≥0 cn(λ)zn. The sum-factor is the holomorphic

part of the solutions while the factor zλ, which is called “exponent” or “character”, is determined by the
indicial equation. As we saw in chapter 5 it is relevant for the global behavior of the solution, namely
because for non-integer exponents γ it is a multivalued-function. Analogously, the matrix Fz∗(z) from
above encodes the “holomorphic part” of the solution, while the character matrix Xz∗(z) encodes all the
information about the q-analogues of exponents (characters).

The system (6.8) can in fact be solved for general constant matrices Jz∗ . This relies on the fact that
every invertible matrix J admits a Jordan-Chevalley(-Dunford) decomposition J = JDJU = JUJD where
JD is a semi-simple (over C, diagonalizable) matrix, while JU is a unipotent matrix which implies that
(1 − JU ) = 0 for some positive n. Let us first assume that the matrix Fz∗ is purely diagonalizable. We
want to define a q-analogue of simple monomials (‘q-exponents’ or ‘q-characters’) i.e. a function that
satisfies σqfλ(z) = λfλ(z) for λ ∈ C∗. There are many (infinite, infact) choices one can make and z` with
q` =: λ is one them. However it is recommended to pick different functions as characters‡.:

eλ (z) :=
Θq (z)

Θq (λz)
, λ ∈ C∗ (6.10)

where Θq (z) = (q; q)∞(z; q)∞(qz−1; q)∞ =
∑
n∈Z(−1)nq

1
2n(n−1)zn is the Jacobi theta function. In view

of the difference equation (σqθq)(z) = −z−1Θq (z) satisfied by the theta function, our q-character has the
desired property. Note that this choice is not (mathematically) canonical in any way, but it could have
physical significance. Why do we choose these functions over the monomials z`? For a discussion of this
we refer to the Appendix A.2.2 as well as discussions in [Sau03; Sau02].

Now, for a diagonalizable n× n matrix D = P diag{λ1, . . . , λn}P−1 where P ∈ GLn(C) we can define

eD (z) := P diag{eλ1 (z) , . . . , eλn (z)}P−1.

For the unipotent part we define so called q-logarithms

`q (z) := −z
d
dzΘq (z)

Θq (z)
.

‡Our choice coincides with the one from Roques [Roq08], while Sauloy [HSS16; Sau02] chooses ea(z) =
Θq(c/z)

Θq(1/z)
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6. q-monodromy

Differentiating the q-difference equation of the theta function we find that the q-logarithms satisfy the
q-difference equation (

σq`q
)
(z) = `q (z) + 1.

Then, given a unipotent matrix U we define

eU (z) :=
∑
k=0

(
`U (z)

k

)
(U − 1)k,

where
(
`U (z)
k

)
= 1

k!

k−1∏
i=0

(`q (z)− i). Note that the sum truncates since by definition (U −1)n = 0 for some

n. We can now claim to have solved (6.8) by setting the character matrix

XJ0(z) = eJD (z) eJU (z) . (6.11)

Note that, in practice, the Jordan normal form of our coefficient matrices will be either purely diagonal(-
izable) for generic values of parameters or purely unipotent for non-generic values. We will denote the
similarity matrix that brings A(z∗, parameters) to its Jordan normal form by

M(z∗, parameters) =

{
S(z∗, generic parameters)
U(z∗,non-generic parameters)

depending on the parameters, where S stands for “semi-simple” and U stands for “unipotent”.

To summarize, for Fuchsian, non-resonant systems we have that

1. the coefficient matrix A at z = 0,∞ has Jordan normal form Jz∗ = M(z∗)A(z∗)M(z∗)−1 (where
z∗ = 0,∞), which in turn has a decomposition into a semi-simple (diagonalizable) and unipotent
factor Jz∗ = JDJU . When the unipotent part is non-trivial, the system is logarithmic.

2. These factors determine the contribution XJz∗ of the q-characters to the solution matrix by (6.11).

3. The ‘holomorphic part’ Fz∗ of the solution is then determined by (6.7) and thus finally,

4. the solution matrix of (6.6) is given by (6.9).

Once we have local fundamental solution matrices Φ0 and Φ∞ respectively, then the connection matrix
(also called the Birkhoff matrix) from ∞ to 0 is given by P = Φ−1

∞ Φ0. It takes values in the field of
constants with respect to the shift operator σq — the field of elliptic functions and it is the goal of our
calculations. As we will see, the main technical difficulty in its calculation for the cases of interest is
the following: most of the data (solutions to (6.7) and (6.8) etc) exists in the literature but for generic
values of the parameters appearing in the equations. In particular, for parameters for which the system
is non-logarithmic. However, the situations that interest us are in fact the ones with the non-generic
parameters and one has to rely on tricks to compute the solutions and thus the connection matrices.

6.1.5 Differential vs. difference monodromy

We recall the toy case of the differential hypergeometric equation of chapter 5 in particular the theorems
5.3.3 and 5.3.5. We observe the following: the monodromy group associated to a differential equation
Df = 0, is the image of a representation ρD : π1(X, p) → GL(S), where X is the space where the
differential equation is defined (e.g. X = P1 \ {0, 1,∞} for us) and S is the vector space of (local)
solutions. In the case of a regular singular differential equation like the hypergeometric equation, the
fundamental group of X is generated by the two loops around two of the singular points, with the third
given by the relation γ0γ1γ∞ = 1. If we are given solutions around a point, say 0, then the monodromy of
the equation on a small loop around 0 is dictated by the exponents (characters) of the given solutions. In
particular for two solutions of the form (z− z0)εi ×

(
analytic in (z− z0)

)
, the corresponding monodromy

about the small loop around z0 is dictated by the exponents by(
e2πiε1 0

0 e2πiε2 ,

)
and similarly for the other singular points. It is straightforward to see that the monodromy is a conse-
quence of the multi-valuedness of the characters: for εi 6= Z we have zεi = exp(εi log z). The monodromy
around another point, say ∞, but with respect to the same basis is found as shown in the above theo-
rems: one conjugates the connection matrix P with the small loop around infinity, in the basis of solutions
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6. q-monodromy

around infinity. We therefore see that two generators of the monodromy group (in the case of the hyper-
geometric equation, the two generators span the group) can be computed if one knows the exponents of
the solutions around two points, as well as the connection matrix connecting the two solutions

In the q-difference case, things are a bit more complicated: as we saw, it is recommended to choose
different functions as q-characters than zα, the q-characters ea (z) we introduced in (6.10). As mentioned
in the appendix A.2.2, these functions are single-valued, meromorphic functions on the complex plane.
One might then ask, what does monodromy mean for q-difference equations?

The answer to this question is mathematically obvious, from the simple examples considered in this thesis.
However, arguments from Galois and Picard-Vessiot theory have been made by many authors (cf. [Eti95;
Sau02; Sau03; RSZ09; HSS16]) that

the q-analogue of monodromies for ordinary differential equations is the Birkhoff matrix.

As a last note, one can still choose the functions zα as exponents, in which case one can “read-off” the
monodromy as in the differential case.

6.2 The lift of the cubic: the basic hypergeometric equation

In this section we want to investigate the three-dimensional lift of the Picard-Fuchs equation of the cubic in
P2 as described in subsection 4.3. The differential equation satisfied by the partition function of the GLSM
is the classical hypergeometric equation group for the parameters α = 1

3 , β = 2
3 , γ = 1. It is therefore

interesting to q-generalize this equation into a q-difference equation and ask what the corresponding q-
monodromy is. The value of γ = 1 brings additional complications, as we have mentioned: the generic
solutions around z = 0 in (5.7a) are not both valid, because they coincide. Instead, the second solution
involves logarithms. This is all detailed in the references [KRS16; Sch16].

We extrapolate the three-dimensional lift from these calculations by replacing the differential (operator
d
dz Picard-Fuchs equations that the hemisphere partition function satisfies by the corresponding (operator
Dq) q-difference equation. In other words, we want to ultimately study the so-called basic hypergeometric
equation with parameters a = qα, b = qβ and c = qγ . As in the case of the classical hypergeometric
equation, the value of the parameter c = q will lead to problems relating to the logarithmic nature of the
solutions.

6.2.1 The basic hypergeometric q-difference equation

The basic hypergeometric q-difference equation and series was first studied by Heine [Hei47], and sub-
sequently by a large number of authors (notably Rev. F.H. Jackson [Jac10], Smith§, Hahn [Hah49] to
name a few) as a (q-)generalization of Gauss’ hypergeometric series rFs and equation.

The basic hypergeometric difference equation is[
σ2
q −

(a+ b)z − (1 + c/q)

abz − c/q
σq +

z − 1

abz − c/q

]
φ(z) = 0, (6.12)

where σq ≡ qz
d
dz is the q-shift operator and a, b, c are parameters which are generic if they are in C \ qZ.

We are to think of them as a = qα, b = qβ , c = qγ , and in the q → 1 limit these reduce to the classical
hypergeometric parameters. One solution around z = 0 is of course the basic hypergeometric series (a.k.a.
Heine’s series)

2φ1

(
a, b
c

∣∣∣∣ q; z) :=

∞∑
n=0

(a, b; q)n
(q, c; q)n

zn, |z| < 1.

The second solution is obtained by

z1−γ
2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; z) ,
§ Smith, Edwin Raymond. Zur Theorie der Heineschen Reihe und ihrer Verallgemeinerung. München: Straub, 1911.

<http://eudml.org/doc/203472>.
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6. q-monodromy

where the first factor is the non-trivial exponent. As discussed in 6.1.4, we will replace this branched
factor with the globally defined meromorphic q-character eq/c (z) and the second solution is

eq/c (z) 2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; z) .
Similarly, a transformation z 7→ z−1 leaved the form of the difference equation (6.12) intact, and we can
find the solutions around infinity

ea (z)
−1

2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; cqabz
)

eb (z)
−1

2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; cqabz
)
.

The solutions around 0 and infinity can easily be seen to reduce the the solutions around 0 and infinity for
the classical hypergeometric equation (5.1) given in (5.7a), (5.7c). What about solutions which converge
to the solutions around 1 (5.7b)? As it turns out this is a difficult open problem. We discuss this in short
in subsection 6.2.4.

We want to apply the procedure outlined in the previous section to the case of the basic hypergeometric
equation and in particular, to the case of interest: a = q

1
3 , b = q

2
3 and c = q. As we will see, because

c = q our system is logarithmic, which is a source of complication in the basic (q-generalized) case, as
much as it is in the classical case [Sch16; Nør63].

As discussed in the in the subsection 6.1.3, we can rewrite this equation as a matrix equation using the
fundamental solution matrix (6.5)

(σqΦ)(z) = A(a, b; c; z)Φ(z), with A(a, b; c; z) =

(
0 1

−µ(z) λ(z)

)
, (6.13)

where µ(z) ≡ µ(a, b; c; z) = z−1
abz−c/q and λ(z) ≡ λ(a, b; c; z) = (a+b)z−(1+c/q)

abz−c/q are the coefficients in our
equation. The matrix A takes in fact values in the rational functions, i.e. A ∈ GLn(C(z)). According to
our characterization of q-difference systems, since clearly A(0), A(∞) ∈ GLn(C), we find that the system
(6.13) is Fuchsian, thus also regular singular at both points 0,∞. The eigenvalues of A(0) for this system
are easily computed to be σ(A(0)) = { 1

2 (1 + q
c ±

√
(1− q

c )2)}. The case that interests us is c = q and the
two eigenvalues coincide. According to our characterization the system is non-resonant for all values of
c. Concerning diagonalizability, we have a differentiation at c = q: the system becomes logarithmic. We
thus treat the two cases c 6= q, c = q separately. Following [Roq08], we obtain the logarithmic case from
the non-logarithmic case as a limit c→ q and we extract meaningful result.

6.2.2 Analytic continuation around infinity (Case c 6= q)

We therefore start by providing fundamental solution matrices around 0 and ∞. We study the matrix

A(z) =

(
0 1

−µ(z) λ(z)

)
with λ(a, b; c; z) =

(a+ b)z − (1 + c/q)

abz − c/q
and µ(a, b; c; z) =

z − 1

abz − c/q
.

We start with the solutions around z = 0. For c 6= q the matrix A(0) =
(

0 1
− qc

c+q
c

)
is in fact diagonalizable

with similarity matrix M0(c) ≡ S0(c) :=
(

1 1
1 q
c

)
, i.e.

A(0) =

(
1 1
1 q

c

)(
1 0
0 q

c

)(
1 1
1 q

c

)−1

=
1

c− q

(
1 1
1 q

c

)(
1 0
0 q

c

)(
−q c
c −c

)
. (6.14)

Hence the system is non-resonant and non-logarithmic in the case c 6= q, while for c = q the obstruction
to diagonalizability is clear from the above factor 1

c−q . We recognize the trivial Jordan normal form
J0(c) = diag{1, q/c}. Applying the procedure, we write the solution around z = 0 as

Φ0(z; c) = F0(z; c)XJ0(c)(z),

where the character matrix is
XJ0(c)(z) =

(
1 0
0 eq/c (z)

)
,
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while the solution to the modified system (6.7) is can be ‘read-off’ as the analytic part of the known
solutions

F0(z; c) =

 2φ1

(
a, b
c

∣∣∣∣ q; z) 2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; z)
2φ1

(
a, b
c

∣∣∣∣ q; qz) q/c 2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; qz)


In this case the “exponent” in the q-case is the q/c eigenvalue of A(0) which corresponds to the exponent
1− γ in the classical case.

We repeat the procedure at z =∞. The matrix A(∞) =
(

0 1
−(ab)−1 a−1+b−1

)
is also diagonalizable

A(∞) =

(
1 1
a−1 b−1

)(
a−1 0
0 b−1

)(
1 1
a−1 b−1

)−1

=
1

a− b

(
1 1
a−1 b−1

)(
a−1 0
0 b−1

)(
a −ab
−b ab

)
.

The solution around z =∞ is then
Φ∞(z) = F∞(z)XJ∞(z),

where for J∞(a, b) ≡ J∞ = diag{a−1, b−1} we have the character matrix

XJ∞(z) =

(
ea−1 (z) 0

0 eb−1 (z)

)
and the solutions to the modified system (6.7) are

F∞(z) =

 2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; cq
abz

)
2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; cq
abz

)
1
a 2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; c
abz

)
1
b 2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; c
abz

)
 .

The connection matrix

We can now use the analytic continuation of 2φ1

(
a, b
c

∣∣∣∣ q; z) by the celebrated (Mellin-Barnes-)Watson

formula [GR04] which states that, if |arg(−z)| < π and c, a/b /∈ qZ, we have

2φ1

(
a, b
c

∣∣∣∣ q; z) =
(b, c/a; q)∞Θq (az)

(c, b/a; q)∞Θq (z)
2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; cqabz
)

+
(a, c/b; q)∞Θq (bz)

(c, a/b; q)∞Θq (z)
2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; cqabz
)

=
Γq(γ, β − α)

Γq(β, γ − α)
ea (z)

−1
2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; qc/abz)
+

Γq(γ, α− β)

Γq(α, γ − β)
eb (z)

−1
2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; qc/abz) ,
(6.15)

where Γq(z) are the q-gamma functions (cf. appendix A.2.3) and we are using the compact notation
f(a)f(b) =: f(a, b) for the Γq factors. We have also ’picked logarithms’ of q writing a = qα as usual. Note
that the z-dependent factors in each summand are solutions to the q-difference equation (6.12), albeit
with different choice of q-characters (recall ea−1 (z) 6= eq (z)

−1 but (A.2.13a) gives ea−1 (z) = ea (z/a)
−1).

Replacing a 7→ aq/c, b 7→ bq/c, c 7→ q2/c, we obtain the analytic continuation of the second set of
solutions:

2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; z) =
(bq/c, q/a; q)∞
(q2/c, b/a; q)∞

Θq (aqz/c)

Θq (z)
2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; cqabz
)

+
(aq/c, q/b; q)∞
(q2/c, a/b; q)∞

Θq (bqz/c)

Θq (z)
2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; cqabz
)

=
Γq(2− γ, β − α)

Γq(β − γ + 1, 1− α)
eaq/c (z)

−1
2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; cqabz
)

+
Γq(2− γ, β − α)

Γq(α− γ + 1, 1− β)
ebq/c (z)

−1
2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; cqabz
)
.
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These two relations essentially are the evaluation of F−1
∞ F0, given by the (elliptic) coefficients of the

(Mellin-Barnes-)Watson formula. We collect these results together with the characters in the connection
matrix P = Φ−1

∞ Φ0 = X−1
J∞
F−1
∞ F0XJ0

P (z) = X−1
J∞

(z)

(
Γq(γ,β−α)
Γq(β,γ−α)ea (z)

−1 Γq(2−γ,β−α)
Γq(β−γ+1,1−α)eaq/c (z)

−1

Γq(γ,α−β)
Γq(α,γ−β)eb (z)

−1 Γq(2−γ,β−α)
Γq(α−γ+1,1−β)ebq/c (z)

−1

)
XJ0(z)

=

(
Γq(γ,β−α)
Γq(β,γ−α)ea−1 (z)

−1
ea (z)

−1 Γq(2−γ,β−α)
Γq(β−γ+1,1−α)eq/c (z) ea−1 (z)

−1
eaq/c (z)

−1

Γq(γ,α−β)
Γq(α,γ−β)eb−1 (z)

−1
eb (z)

−1 Γq(2−γ,β−α)
Γq(α−γ+1,1−β)eq/c (z) eb−1 (z)

−1
ebq/c (z)

−1

)

The elliptic functions and constants (with respect to z, but not the parameters) are non-zero under
genericity assumptions on the parameters a, b, c and their ratios (cf. [Roq08]). One obtains many cases
according to the (non-)genericity of the parameters, but here we focus solely on the case of interest,
namely c = q, a = q1/3, b = q2/3.

A last note, one can replace the q-character matrix by the classical monomials, yielding the so-called
twisted connection matrix

P̌ (z) =

(
z−α 0

0 z−β

)−1
(

Γq(γ,β−α)
Γq(β,γ−α)ea (z)

−1 Γq(2−γ,β−α)
Γq(β−γ+1,1−α)eaq/c (z)

−1

Γq(γ,α−β)
Γq(α,γ−β)eb (z)

−1 Γq(2−γ,β−α)
Γq(α−γ+1,1−β)ebq/c (z)

−1

)(
1 0
0 z1−γ

)

=

(
Γq(γ,β−α)
Γq(β,γ−α)z

αea (z)
−1 Γq(2−γ,β−α)

Γq(β−γ+1,1−α)z
α−γ+1eaq/c (z)

−1

Γq(γ,α−β)
Γq(α,γ−β)z

βeb (z)
−1 Γq(2−γ,β−α)

Γq(α−γ+1,1−β)z
β−γ+1ebq/c (z)

−1

)
.

6.2.3 Analytic continuation around infinity (Case c = q, and a/b /∈ qZ)

We start again around z = 0. It is already obvious from the calculations in the previous case that A(0) =(
0 1
−1 2

)
corresponding to c = q is not diagonalizable (i.e. the matrix is not semi-simple and the system is

logarithmic). Its Jordan normal form J0(c = q) is found by the similarity matrixM0(c = q) ≡ U0 := ( 1 0
1 1 )

A(0) =

(
1 0
1 1

)(
1 1
0 1

)(
1 0
1 1

)−1

=

(
1 0
1 1

)(
1 1
0 1

)(
1 0
−1 1

)
.

We can now find solutions to the modified system (6.7) with J0 = ( 1 1
0 1 ) i.e.(

σqF̃
)
(z)J0 = A(z)F̃ (z)

from the case c 6= q by taking the limit. We introduce some notation to distinguish the two cases:
We add the dependence on c in the coefficient matrix A(z; c) and the solution Fz∗(z; c) to the modified
system (6.7). Note that the normal form of the matrix at z = 0 when c 6= q (i.e. diagonal form) is
A(0, c) = M0(c)J0(c)M0(c)−1 ≡ S0(c)J0(c)S0(c)−1 as given in (6.14), where J0(c) for c 6= 0 is diagonal
(recall, J0(·) is a discontinuous map of c). The right-hand side does not have a (factor-by-factor) limit
c→ q and needs to be replaced by the above A(0, q) = U0J0(q)U−1

0 . From the case c 6= q we know that
F0(z; c) for c 6= q satisfies (6.7) with the normal matrix J0(c). We calculate(

σqF0

)
(z; c) J0(c) = A(z, c) F0(z; c)

=⇒
(
σqF0

)
(z; c) S0(c)−1A(0, c) = A(z, c) F0(z; c)S0(c)−1

=⇒
(
σqF0

)
(z; c) S0(c)−1A(0, c) U0 = A(z, c) F0(z; c)S0(c)−1U0.

(6.16)

Since A(0, c), S0(c) and U0 are constants with respect to σq the last line is equivalent to(
σqF0S

−1
0 U0

)
(z; c)U−1

0 A(0, c) U0︸ ︷︷ ︸
=J0(0)

= A(z, c)
(
F0S

−1
0 U0

)
(z; c).

We readily see that if
(
F0S

−1
0 U0

)
(z, c) has a well-defined limit at c→ q, then it is a solution to (6.7) for

J0(c = q), thus yielding a solution to the system. This is indeed the case:
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(
F0S

−1
0 U0

)
(z; c) =

 2φ1

(
a, b
c

∣∣∣∣ q; z) 2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; z)
2φ1

(
a, b
c

∣∣∣∣ q; qz) q/c 2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; qz)
(1 1

1 q/c

)−1(
1 0
1 1

)

=

 2φ1

(
a, b
c

∣∣∣∣ q; z) c
c−q
(

2φ1

(
a, b
c

∣∣∣∣ q; z)− 2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; z))
2φ1

(
a, b
c

∣∣∣∣ q; qz) c
c−q
(

2φ1

(
a, b
c

∣∣∣∣ q; qz)− q/c 2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; qz))
 ,

and the limit yields derivatives d
dc

∣∣
c=q

of the functions in the second column. Denoting

d

dc

∣∣∣∣
c=q

2φ1

(
a, b
c

∣∣∣∣ q; z) =: ζ(a, b; z) and
d

dc

∣∣∣∣
c=q

2φ1

(
aq/c, bq/c
q2/c

∣∣∣∣ q; z) =: ξ(a, b; z) (6.17)

we find the solution to (6.7) for J0(c = q):

F̃0(z) := F0(z; c = q) =

 2φ1

(
a, b
c

∣∣∣∣ q; z) q
(
ζ(a, b; z)− ξ(a, b; z)

)
2φ1

(
a, b
c

∣∣∣∣ q; qz) 2φ1

(
a, b
c

∣∣∣∣ q; qz)+ q
(
ζ(a, b; qz)− ξ(a, b; qz)

)
.


It remains to find the characters XJ0(z). The Jordan(-Chevalley-Dunford) decomposition of our J0(q) is
trivial, i.e. J0(q) = ( 1 1

0 1 ) is just a unipotent matrix. Our formula for the unipotent part then yields

XJ0(z) =
∑
k=0

(
`q (z)

k

)
(J0 − 1)k =

(
1 `q (z)
0 1

)
.

We can now finally write the fundamental solution matrix around z = 0 for the resonant case c = q:

Φ0(z) = F̃0(z)XJ0(z),

where

F̃0(z) =

 2φ1

(
a, b
c

∣∣∣∣ q; z) q
(
ζ(a, b; z)− ξ(a, b; z)

)
2φ1

(
a, b
c

∣∣∣∣ q; qz) 2φ1

(
a, b
c

∣∣∣∣ q; qz)+ q
(
ζ(a, b; qz)− ξ(a, b; qz)

)
.

 ,

and

XJ0(z) =

(
1 `q (z)
0 1

)
.

We proceed to the solutions around z =∞: in this case the c = q condition does not change our results.
We recall:

A(∞) =

(
0 1

−(ab)−1 a−1 + b−1

)
=

1

a− b

(
1 1
a−1 b−1

)(
a−1 0
0 b−1

)(
a −ab
−b ab

)
.

and thus solution around z =∞ is
Φ∞(z) = F∞(z)XJ∞(z),

where for J∞ = diag{a−1, b−1} we have

XJ∞(z) =

(
ea−1 (z) 0

0 eb−1 (z)

)
and the solutions to the modified system (6.7) are

F∞(z) =

 2φ1

(
a, a
aq/b

∣∣∣∣ q; q2

abz

)
2φ1

(
b, b
bq/a

∣∣∣∣ q; q2

abz

)
1
a 2φ1

(
a, a
aq/b

∣∣∣∣ q; q
abz

)
1
b 2φ1

(
b, b
bq/a

∣∣∣∣ q; q
abz

)
 .
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The connection matrix

For the calculation of the connection matrix when c = q, we extract an analytic continuation formula
essentially fromWatson’s formula (6.15) by taking the limit c→ q. The procedure is completely analogous
to that of finding the solutions to the modified system (6.7) for the c = q case. In the c 6= q case, we had
P (c) = X−1

J∞
F−1
∞ F0XJ0(c), where here J0(c) is a diagonal matrix. Similarly, in the c = q case we expect

that P̃ = P (c = q) = X−1
J∞
F−1
∞ F̃0XJ0(q), where now J0(q) = ( 1 1

0 1 ) as above. But we can write this as

P̃ = X−1
J∞
F−1
∞ F̃0XJ0(q)

= X−1
J∞
F−1
∞ lim

c→q

(
F0S

−1
0 U0

)
XJ0(q)

= X−1
J∞

lim
c→q

(
F−1
∞ F0S

−1
0 U0

)
XJ0(q).

(6.18)

Thus if the limit L of the term in the brackets exists, we have computed the connection matrix for the
logarithmic case. Explicitly, we check

L = lim
c→q

[(
Γq(γ,β−α)
Γq(β,γ−α)ea (z)

−1 Γq(2−γ,β−α)
Γq(β−γ+1,1−α)eaq/c (z)

−1

Γq(γ,α−β)
Γq(α,γ−β)eb (z)

−1 Γq(2−γ,β−α)
Γq(α−γ+1,1−β)ebq/c (z)

−1

)(
1 1
1 q/c

)−1(
1 0
1 1

)]

= lim
c→q

[
1

c− q

(
Γq(γ,β−α)
Γq(β,γ−α)ea (z)

−1 Γq(2−γ,β−α)
Γq(β−γ+1,1−α)eaq/c (z)

−1

Γq(γ,α−β)
Γq(α,γ−β)eb (z)

−1 Γq(2−γ,β−α)
Γq(α−γ+1,1−β)ebq/c (z)

−1

)(
c− q c

0 −c

)]

=

(
Γq(β−α)

Γq(β,1−α)ea (z)
−1

q d
dc

∣∣
c=q

[Γq(γ,β−α)
Γq(β,γ−α)ea (z)

−1 − Γq(2−γ,β−α)
Γq(β−γ+1,1−α)eaq/c (z)

−1 ]
Γq(α−β)

Γq(α,1−β)eb (z)
−1

q d
dc

∣∣
c=q

[Γq(γ,α−β)
Γq(α,γ−β)eb (z)

−1 − Γq(2−γ,β−α)
Γq(α−γ+1,1−β)ebq/c (z)

−1 ]
.

)

We use the easily verifiable property

d

dc
[ef(c) (z)

−1
] = −f

′(c)

f(c)
`q (f(c)z) ef(c) (z)

−1

which implies that d
dc

∣∣
c=q

eaq/c (z)
−1

= 1
q `q (az) ea (z)

−1, then also d
dc = 1

log qc
d

dγ which yields (recall
Γq(1) ≡ 1)

d

dγ

∣∣∣∣
γ=1

Γq(γ)

Γq(γ − α)
=

Ψq(1)−Ψq(1− α)

Γq(1− α)

d

dγ

∣∣∣∣
γ=1

Γq(2− γ)

Γq(β − γ + 1)
=
−Ψq(1) + Ψq(β)

Γq(β)
,

where

Ψq(z) :=
1

Γq(z)

dΓq(z)

dz

is the q-digamma function. we obtain after some calculation

L =

(
Γq(β−α)

Γq(β,1−α)ea (z)
−1

(log q)−1ea (z)
−1 Γq(β−α)

Γq(β,1−α) [2Ψq(1)−Ψq(1− α)−Ψq(β) + log q`q (az)]
Γq(α−β)

Γq(α,1−β)eb (z)
−1

(log q)−1eb (z)
−1 Γq(α−β)

Γq(α,1−β) [2Ψq(1)−Ψq(1− β)−Ψq(α) + log q`q (bz)]

)
.

We can further simplify this by expressing the q-logarithm in terms of q-gamma and q-digamma functions.
We have

`q (z) = −z
d
dzΘq (z)

Θq (z)
≡ −z

d
dx

∣∣
x=z

Θq (x)

Θq (z)
,

but picking logarithms z = qζ , x = qχ we can easily express (for |q| < 1, but the final result is valid also
for |q| > 1)

Θq (z) = (q; q)
3
∞

1− q
Γq(ζ, 1− ζ)

,

and thus

`q (z) = − 1

log q

1

Θq (z)

d

dχ

∣∣∣∣
χ=ζ

1

Γq(χ, 1− χ)
=

1

log q
[Ψq(ζ)−Ψq(1− ζ)].
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We thus find that the connection matrix for the logarithmic case c = q is given by the beautiful formula

P̃ =

(
ea−1 (z)

−1
0

0 eb−1 (z)
−1

)

×

(
Γq(β−α)

Γq(β,1−α)ea (z)
−1

(log q)−1ea (z)
−1 Γq(β−α)

Γq(β,1−α)Υq(ζ;α, β)
Γq(α−β)

Γq(α,1−β)eb (z)
−1

(log q)−1eb (z)
−1 Γq(α−β)

Γq(α,1−β)Υq(ζ;β, α)

)

×
(

1 `q (z)
0 1

)
,

where we have defined for brevity

Υq(ζ;α, β) := 2Ψq(1)−Ψq(1− α)−Ψq(β) + Ψq(ζ + α)−Ψq(1− ζ − α).

The twisted connection matrix is again obtained by replacing the q-characters by the “classical” exponent
functions, i.e.

P̌ =

(
zα 0
0 zβ

)
×

(
Γq(β−α)

Γq(β,1−α)ea (z)
−1

(log q)−1ea (z)
−1 Γq(β−α)

Γq(β,1−α)Υq(ζ;α, β)
Γq(α−β)

Γq(α,1−β)eb (z)
−1

(log q)−1eb (z)
−1 Γq(α−β)

Γq(α,1−β)Υq(ζ;β, α)

)

×
(

1 `q (z)
0 1

)
.

Note that our choice of q-characters and q-logarithms, whether it is ea (z), zα or any other elliptic
multiple of these, spuriously enters into the entries of the connection matrix. The importance of choices
of characters and logarithms will be discussed in the end of our work.

6.2.4 Solutions around the “third” singular point – a discussion

We saw in the beginning of this section that the basic hypergeometric q-difference equation[
σ2
q −

(a+ b)z − (1 + c/q)

abz − c/q
σq +

z − 1

abz − c/q

]
φ(z) = 0 (6.12)

has solutions around 0 given by

2φ1

(
a, b
c

∣∣∣∣ q; z) , eq/c (z) 2φ1

(
aq/c, bq, c
q2/c

∣∣∣∣ q; z)
as well as solutions around infinity given by

ea (z)
−1

2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; cqabz
)
, eb (z)

−1
2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; cqabz
)
.

The equation can be rewritten in terms of the q-derivative operator Dq as[
z(c− abz)D2

q +

(
1− c
1− q

+
(1− a)(1− b)− (1− abq)

1− q
z

)
Dq −

(1− a)(1− b)
1− q

]
f(z) = 0,

which clearly reduces to the hypergeometric differential equation (5.1) when q → 1 and qα = a etc. The
solutions to the q-difference equation in turn, also converge to [HSS16] the corresponding solutions of the
differential equation, i.e.

2φ1

(
a, b
c

∣∣∣∣ q; z)→ 2F1(α, β; γ; z)

eq/c (z) 2φ1

(
aq/c, bq, c
q2/c

∣∣∣∣ q; z)→ z1−γ
2F1(α− γ + 1, β − γ + 1; 2− γ; z)

ea (z)
−1

2φ1

(
a, aq/c
aq/b

∣∣∣∣ q; cqabz
)
→ z−α2F1(α, α− γ + 1;α− β + 1, z−1)

eb (z)
−1

2φ1

(
b, bq/c
bq/a

∣∣∣∣ q; cqabz
)
→ z−β2F1(β, β − γ + 1;β − α+ 1; z−1).
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What about the third type of solutions of the classical hypergeometric differential equation? The aim
of this subsection is to discuss the existence (or not) of q-analogues of the classical solutions around the
point z = 1 (for generic parameters). The classical solutions for the equation (5.1) are:

2F1(α, β, α+ β + 1− γ; 1− z) and (1− z)γ−α−β2F1(γ − β, γ − α, γ − α− β + 1; 1− z).

This means we have to find solutions of (6.12) whose q → 1 limit reduces to the above classical solutions.
We will not present a thorough discussion of the subject, instead present some (somewhat independent)
remarks on the topic, and the uninterested reader may skip them.

1. There is no unique “third” singular point. The third singular point is not simply z = 1. The
form of the basic hypergeometric equation seems to suggest that a singularity appears at z = c

abq

instead of z = 1, which is also evident by the coefficient matrix A in (6.13). This is in agreement
with the q → 1 limit: recall that a = qα, b = qβ and qγ , thus abq

c does degenerate into 1 in case the
parameters α, β, γ we choose are real. So is z = c

abq the “third” singular point? The answer seems
to be yes; however, the problem looks to be slightly more complicated. This leads to the second
remark.

2. The transformation z 7→ 1 − z is “ill-behaved”. In the classical case (differential equations)
when a regular singular point z0 appears in the equation, the Frobenius method dictates that (i)
we look for solutions of the form F =

∑
n cn(λ)(z − z0)λ+n or (ii) in case the solutions around

z = 0 are known, that we transform z 7→ z − z0 (z 7→ 1/z for the point ∞) and approaches
(i) and (ii) are in fact equivalent. In the case of the hypergeometric differential equation, the
transformations z 7→ z − z0 for z0 = 0, 1,∞ transform the initial equation into an equation that is
again of hypergeometric type.

However, the same will not hold for difference equations and certainly not for the basic hypergeo-
metric equation. The reason is that the difference operator σq = qz

d
dz does not “behave well” under

translations z 7→ z − z0, unlike the differential operator d
dz 7→

d
d(z−z0) = d

dz . In fact, translation

operators appear: σq,z = qz
d
dz 7→ q

(z−z0) d
d(z−z0) = Tz0(q−1) ◦ σq,z, making the new, (now functional)

equation more difficult to solve. What about looking for power series solutions around z = z0 as in
(i)? In difference equations, it is unwise to look directly for such solutions, even though a solution
might admit such an expansion. The reason is tied to the previous point about translations: the
(translated) power series Ansatz F =

∑
n cn(λ)(z − z0)λ+n is not a smart Ansatz for difference

equations.

3. A different Ansatz – q-shifted powers One can however, use any of the q-generalizations of
translated powers: one can replace (z − z0)α by any of the “q-shifted powers” (z; q)α , (z; q)

−1
−α or

related objects with limits (1− z)α. These functions are “better-behaved” compared to the simple
translated powers. This leads to Ansätze of the form

(z; q)λ

∞∑
n=0

cn(λ) (z; q)n ,

or similar ones. This idea has been introduced and investigated by Ryde [Ryd21], and subsequently
by Hahn [Hah49; Hah52] and Exton [Ext83].

4. Identities with q-analogues hinting that “third” solutions exist. There are a number of
identities of q-hypergeometric functions that seem yield evidence for the existence of solutions that
are q-expansions around 1. To name two, first consider the Gauss-Kummer identity from theorem
5.2.5:

2F1(α, β; γ; 1) =
Γ(γ, γ − α− β)

Γ(γ − α, γ − β)
.

This is precisely the finite value of the (holomorphic) solution around z0 = 1 for z = 0. This
identity does have a q-analogue, the q-Gauss sum [GR04]

2φ1

(
a, b
c

∣∣∣∣ q; cab
)

=
(c/a, c/b; q)∞
(c, c/ab; q)∞

=
Γq(γ, γ − α− β)

Γq(γ − α, γ − β)
.

This yields evidence that there should be a solution-expansion around z0 = 1 (or more generally,
z0 = f(q) with f(1) = 1) with the above value for z = 0. Secondly, there is one of the so-called
Kummer’s formulas

2F1(α, β; γ; z) = (1− z)−α2F1

(
α, γ − β; γ;

z

z − 1

)
.

68



6. q-monodromy

This identity also admits a q-generalization, proved by Heine [Hei47]

2φ1

(
a, b
c

∣∣∣∣ q; z) =
(az; q)∞
(z; q)∞

(b; q)∞
(c; q)∞

2φ1

(
c
b , z
az

∣∣∣∣ q; b) .
The last line resembles the Ansätze by Ryde, which again gives some evidence for the existence of
such solutions.

5. A claim by Hahn. Both Exton [Ext83] and Hahn in fact wrote down a solution of the above form
[Hah49]: Hahn proposes that

ϕ(z) =: 3φ2

(
a, b, z
abq
c , 0

∣∣∣∣ q; q) =

∞∑
n=0

cn
qn

(q; q)n
(z; q)n

where cn =
(a,b;q)n
( abqc ;q)

n

, is a solution to the basic hypergeometric equation “around z = 1”. However,

we argue that this is not a solution. We set y = 1− z and obtain

ϕ(z) =

∞∑
n=0

qncn
(q; q)n

(z; q)n = 1 + y

∞∑
n=1

qncn
(q; q)n

n−1∏
k=1

(1− qk + qky)

= 1 + y

∞∑
n=1

qn (q; q)n−1 cn

(q; q)n

n−1∏
k=1

(1 +
qk

qk − 1
y)

We note that for n ≥ 2 and ak =: qk

qk−1
we have that

n−1∏
k=1

(1 + aky) =

n−1∑
k=0

σk(a{n−1})y
k ≡ 1 + (a1 + · · ·+ an−1)y + . . .+ a1 · · · an−1y

n−1,

where σk(a{n}) denotes the k-th elementary symmetric polynomial in {a1, . . . , an}. We obtain

ϕ(z) = 1 +
qc1

1− q
y +

∞∑
n=2

qncn
1− qn

n−1∑
k=0

σk(a{n−1})y
k+1

= 1 +

( ∞∑
n=1

qncn
1− qn

)
y +

∞∑
n=2

qncn
1− qn

n−1∑
k=1

σk(a{n−1})y
k+1

Now using elementary manipulations it is easy to check that for y = 1 − kz with k ∈ C∗ we have
that σq,z ≡ σq,y ◦ T1−q ≡ Tq−1−1 ◦ σq,y, where Ta denotes the translation operator (in y). We can
then transform the basic hypergeometric difference equation (6.12) to a (slightly more complicated)
functional difference equation, using that σ2

q ≡ σq2 :[
(kaby+ c/q−kab)σq2,y ◦T1−q2 +

(
−k(a+ b)y+(a+ b)k− c/q−1

)
σq,y ◦T1−q +ky+1−k

]
f(z) = 0.

Choosing k = 1 as Hahn suggests in his claim in page 360 of [Hah49] (but not according to (5.6) in
the same paper; (5.6) suggests to take k = ab/c but we disregard this for now) we obtain[

(aby + c/q − ab)σq,zq2y ◦ T1−q2 +
(
− (a+ b)y + (a+ b)− c/q − 1

)
σq,y ◦ T1−q + y

]
f(z) = 0

We can substitute ϕ(z) in this expression; if it is a solution, it should vanish at all orders of y, as
well as all orders of q. Plugging in the Ansatz we obtain

0
!
=(aby + c/q − ab)

[
1 +

( ∞∑
n=1

qncn
1− qn

)
(q2y + 1− q2)

+

∞∑
n=2

qncn
1− qn

n−1∑
k=1

σk(a{n−1})(q
2y + 1− q2)k+1

]

+
(
− (a+ b)y + (a+ b)− c/q − 1

)[
1 +

( ∞∑
n=1

qncn
1− qn

)
(qy + 1− q)

+

∞∑
n=2

qncn
1− qn

n−1∑
k=1

σk(a{n−1})(qy + 1− q)k+1

]

+ y

[
1 +

( ∞∑
n=1

qncn
1− qn

)
y +

∞∑
n=2

qncn
1− qn

n−1∑
k=1

σk(a{n−1})y
k+1

]
.
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Now, collect the 0-th order terms of the above ‘plugged-in’ expression in y. If ϕ(z) is a solution,
they should vanish identically, for generic values of the remaining parameters. The shifted powers
(ay + b)k only contribute bk in the 0-th order, and we have that the following expression needs to
vanish identically

0
!
=(c/q − ab)

[
1 +

( ∞∑
n=1

qncn
1− qn

)
(1− q2) +

∞∑
n=2

qncn
1− qn

n−1∑
k=1

σk(a{n−1})(1− q2)k+1

]

+ (a+ b− c/q − 1)

[
1 +

( ∞∑
n=1

qncn
1− qn

)
(1− q) +

∞∑
n=2

qncn
1− qn

n−1∑
k=1

σk(a{n−1})(1− q)k+1

]

It is clear that when |q| < 1 we can expand ak = qk

qk−1
in positive powers of q. When |q| > 1 one has

to expand ak = qk

qk−1
in terms of negative powers of q, and an obvious obstruction to cancellation

is harder to see. We expand the terms in the brackets up to order q2:

0
!
= (c/q − ab)

[
1 + qc1 + (c1 + c2)q2 +O(q3)

]
+ (a+ b− c/q − 1)

[
1 + qc1 + (2c1 + c2)q2 +O(q3)

]
,

which yields order by order

0
!
= 0 · q−1 + (a+ b− ab− 1)q0 − c1cq1 +O(q2),

which cannot vanish for generic a, b, c. Hence the proposed solution, cannot solve the basic hyper-
geometric q-difference equation.

6.3 The case of P1: a q-Bessel equation

In this section we move on to the next problem: studying the difference equations from [BDP14] in the
zero mass limit, corresponding to x → 1 in (3.17a). The difference equation in question after changing
to z = y−1 becomes, in our notation, [σq + (z − 2) + σ−1

q ]f(z) = 0 which is equivalent to

[σ2
q − (2− qz)σq + 1]f(z) = 0. (6.19)

One can argue that solving this function is physically equivalent to solving the modified equation

[σ2
q − 2σq + (1− z)]f(z) = 0, (6.20)

up to a choice of Chern-Simons terms. We make a small digression to show this equivalence later.
We would like to study the global properties of this equation, in particular find its local solutions and
connection matrix if possible, as in the previous section. A careful reader will notice that (6.20) is of
the same form as the basic hypergeometric equation (6.12) of the previous section for the parameters
(a, b, c) = (0, 0, q). However, we cannot carry over the discussion to this case: the Mellin-Barnes-Watson
formula (and therefore the whole derivation of the connection matrix) does not apply at a = b = 0 .
This failure boils down to the fact that for a = b = 0 the basic hypergeometric equation has an irregular
singularity at infinity, as we will see. Is this enough to give up? No: the literature comes to our rescue.

The above equation is the limit one of three different q-generalizations of the Bessel equation which are
studied in [Hah49; Ext78; Zha03; Mor11] among others. We will explore the first two generalizations
and their relation, and compute the connection matrix using the results of these papers as well as the
methods used in the previous section.

6.3.1 The classical Bessel equation and its q-generalizations

One of the most important classical ordinary differential equations of second order is the Bessel equation,
defined as

(ϑz − ν) (ϑz + ν)u+ z2u = 0⇔ d2u

dz2
+

1

z

du

dz
+ (1− ν2z−2)u = 0
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For generic values of ν (ν /∈ Z) there are two linearly independent solutions Jν(z), J−ν(z) around z = 0
given by the Bessel functions

Jν(z) =
1

Γ(ν + 1)

(
z

2

)ν
0F1

(
−; ν + 1;−z2/4

)
,

where 0F1 (−; a; z) =
∑∞
n=0

zn

(a)nn! . As in the case of the hypergeometric equation, if ν ∈ Z \ {0} the
solutions involve logarithms and require going through the Frobenius method machinery.

One can now ask ‘what are the q-generalizations of this equation and their corresponding solutions?’
Reverend Jackson already introduced two generalizations of these functions [GR04]

J (1)
ν (x; q) =

(
qν+1; q

)
∞

(q; q)∞
(x/2)ν 2φ1

(
0, 0
qν+1

∣∣∣∣ q;−x2/4

)
, |x| < 2

J (2)
ν (x; q) =

(
qν+1; q

)
∞

(q; q)∞
(x/2)ν 0φ1

(
—
qν+1

∣∣∣∣ q;−x2qν+1

4

)
, x ∈ C,

with limits [Mor11]
lim
q→1−

J (1)
ν

(
(1− q)x; q

)
= Jν(x) = lim

q→1−
J (2)
ν

(
(1− q)x; q

)
.

Hahn [Hah49] showed that they are in fact related by¶

J (2)
ν (x; q) =

(
−x2/4; q

)
∞ J (1)

ν (x; q).

Harald Exton‖ [Ext78] along with Hahn independently introduced a third q-generalization of the Bessel
function

J (3)
ν (x; q) =

(
qν+1; q

)
∞

(q; q)∞
xν 1φ1

(
0

qν+1

∣∣∣∣ q; qx2

)
, x ∈ C,

with limit
lim
q→1−

J (3)
ν

(
(1− q)x; q

)
= Jν(2x).

These three generalizations satisfy three different q-difference equations [Mor11]

J (1)
ν (x; q) :

[
σq −

(
qν/2 + q−ν/2

)
σq1/2 +

(
1 +

x2

4

)]
f(x) = 0 (6.22a)

J (2)
ν (x; q) :

[(
1 +

x2

4

)
σq −

(
qν/2 + q−ν/2

)
σq1/2 + 1

]
f(x) = 0 (6.22b)

J (3)
ν (x; q) :

[
σq −

[(
qν/2 + q−ν/2

)
− q−ν/2+1x2

]
σq1/2 + 1

]
f(x) = 0, (6.22c)

all of which are q-generalizations of the Bessel equation. When ν /∈ Z, the {J (k)
ν , J

(k)
−ν } are linearly

independent solutions to the above equations for k = 1, 2, 3. When ν ∈ Z one has to go again through
the machinery of Sauloy [Sau02], the analogue of the Frobenius method.

6.3.2 Relation between the deformations and the line operator identities

Note that the third deformation J (3)
ν (x; q) fully describes the q-difference equation (3.17a): Setting

q−ν/2x2 =: y−1 and also fν(x) = fν

(√
qν/2y−1

)
=: gν(y) in (6.22c) we have that σq1/2,x = σ−1

q,y and

that the x from (3.17a) is related to (6.22c) by x = qν/2a. We obtain from (6.22c)[
σ−1
q,y − [(x+ x−1)− y−1] + σq,y

]
gν(y) = 0,

¶ This is a special case of the more general relation [GR04, page 241]

(z; q)∞
(az; q)∞

2φ1

(
a, 0
c

∣∣∣∣ q; z) = 1φ2

(
a

c, az

∣∣∣∣ q; cz) =
1

(c; q)∞
1φ1

(
z
az

∣∣∣∣ q; c) . (6.21)

‖Interesting note: Exton was a musician by profession, practicing mathematics on the side. F.H. Jackson was him-
self a reverend and a military man, also practicing mathematics on the side. (see [Ext83], and the note by Chaundy
doi:10.1112/jlms/s1-37.1.126).
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6. q-monodromy

which is exactly (3.17a), with x = qν/2. Thus, the solutions J (3)
ν (z; q) of (6.22c) are related to the

solutions (blocks) B(x, y; q) of (3.17a) and (3.17b) by

B(x, y; q) = F (x)E(x, y; q)J (3)
ν

(√
−x/y; q

)
, with x = qν/2,

where E is a possible elliptic factor, and F (x) is there to “fix” the second equation (3.17b). In
particular, we can rewrite the relation (3.21)

J (−a2, b; q) = (q)∞eb (a)
−1
J

(3)
β (a; q),

where we have replaced the factor a−β with a corresponding q-character (recall b = qβ). Replacing
the q-characters by any function satisfying the same q-difference equation allows us to match the
proposed solutions (3.18) and (3.19).

B1
I (x, y; q) = E(x, y; q)

1

Θq

(
−q1/2x

)J (3)
ν

(√
−x/y; q

)
,

B2
I (x, y; q) = E(x−1, y; q)

1

Θq

(
−q1/2x

)J (3)
−ν

(√
−(xy)−1; q

)
,

where x = qν/2 and the factors E are elliptic factors that contain (at least) the products

E(x, y; q) ∼ ex−1 (y) ex2

(√
−x
y

)−1

.

The first factor comes from the formulas (3.18) and (3.19) from [BDP14], while the second is the
modified q-character eb (a)

−1 we chose above.

The monodromy matrix described in [BDP14] (cf. subsection 3.3.3) is defined about a loop in the
ReX,ReY plane. We now want to compute the monodromy in the massless (x → 1) case, in the
variable z = y−1.

a The notation is degenerate: we replaced the x in (6.22c) with ∼ y−1, which is the now the y in (3.17a).

6.3.3 Physical equivalence of J (1)
ν and J

(3)
ν in the massless limit

As we saw above, the massless limit corresponds to x → 1 (equivalently, ν → 0). In that limit
the two solutions from [BDP14] collapse to a single solution, hinting at the existence of logarithmic
solutions. The solution they collapse to is of form

B1
I (y; q) ∼

∞∑
n=0

(−1)nq
1
2n(n+1)

(q; q)
2
n

y−n.

Now recall our Ansatz (6.2) for solving the equations of the form [(1− σq)n − z]f(z) = 0 and let us
modify it by inserting a qP (n) factor as follows

fn(z, ε; q) =

∞∑
k=0

qP (n)xk−ε

(q1−ε; q)
n
k

,

where P (n) is a polynomial in n. The solution to the modified q-Bessel equation (6.20) corresponding
to J

(1)
ν which we want to study corresponds to P (n) = const. (or rather the ε-expansion of the

Ansatz). The equations and solutions (6.19) corresponds to the choice P (n) = n(n−1)
2 . These

differing contributions can be tracked down to dynamical Chern-Simons terms ∼
∫
AdA in the block

integrals 3.2.2, which contribute such factors due to their poles. It would be an interesting extension
to see if different choices of Chern-Simons terms would give other meaningful q-deformations of the
Bessel equation.

Not to our surprise, the physically interesting case lies in the non-generic value ν = 0: the equation for
J

(3)
ν after setting z := q−ν/2Nox2 reduces to (6.19) when ν → 0, while the equation for J (1)

ν reduces
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to the modified but physically equivalent equation (6.20) when we set z := −x
2

4 . This is quite similar
the three-dimensional lift of the previous section: the basic hypergeometric equation with parameters
(a, b, c) =

(
q

1
3 , q

2
3 , q
)
is logarithmic.

Much like in the previous section, we will lay out the derivation of solutions and connection matrices for
these equations in the generic case (ν /∈ Z) and then compute solutions and connection matrices of the
ν = 0 case following the techniques of Roques [Roq08].

6.3.4 The two deformations J (1)
ν , J

(2)
ν (Case ν 6∈ Z)

Note, throughout this subsection we will assume that |q| < 1 as is done in [Zha03]. We will remark on
the |q| > 1 chamber later. Furthermore, we will not discuss J (2)

ν as all the results for J (1)
ν carry over to

J
(2)
ν by Hahn’s formula (6.21).

Solutions around x = 0 We first focus on the deformations J (1)
ν , J

(2)
ν of the Bessel function, and in

particular on J (1)
ν since J (2)

ν is easily related to it. As we already stated when ν is not an integer we have
two solutions {J (1)

ν , J
(1)
−ν} around x = 0 given by

J (1)
ν (x; q) =

(
qν+1; q

)
∞

(q; q)∞
(x/2)ν 2φ1

(
0, 0
qν+1

∣∣∣∣ q;−x2/4

)
, |x| < 2,

where we can clearly recognize the holomorphic part and the character
(
x
2

)ν . As in the previous section,
it is recommended we replace the monomial by a q-character (see A.2.2) of the form eqν (x/κ) =

Θq(x/κ)
Θq(qνx/κ)

with κ ∈ C∗. As we have discussed (cf. discussion in 6.1.4), this choice is not canonical; in fact in the
literature [Zha03] it turns out to be more convenient to choose∗∗

J
(1)
ν,λ(x; q) =

(
qν+1; q

)
∞

(q; q)∞

Θq1/2
(
λqν/2/x

)
Θq1/2 (λ/x)

2φ1

(
0, 0
qν+1

∣∣∣∣ q;−x2/4

)
, |x| < 2, (6.23)

where λ ∈ C∗ is arbitrary (for now) and similarly for J (1)
−ν,λ(x; q). Note that the q-difference properties

of J (1)
ν,λ(x; q) do not depend on λ. However, λ is essentially a choice of exponent up to elliptic factors. In

our notation, the character we have chosen is

Θq1/2
(
λqν/2/x

)
Θq1/2 (λ/x; )

≡ eqν/2
(

(x/λ)−1; q1/2
)−1

= qν/2eq−ν/2
(
x/λ; q1/2

)−1

= qν/2eqν/2
(
qν/2x/λ; q1/2

)
where we have used (A.2.13a)-(A.2.13c). So up to scaling (or picking λ = qν/2) this is the ‘standard’
choice (the only ‘legal’ choice, according to Sauloy [Sau03] — this is not a mathematical statement!). We
might hope that λ will encode physical information. The set {Jν,λ, J−ν,λ} forms our basis of solutions at
x = 0 for ν /∈ Z.

Solutions around x =∞ For the solutions around infinity, the situation is slightly more complicated:
much like the classical Bessel function, the q-generalizations (6.22a) to (6.22c) have an irregular singularity
at infinity. Irregular q-difference equations (with analytic coefficients) are of course harder to handle: their
classification results are more complicated and involve the so-called Newton polygons. We will not present
the fully developed theory here (which one can find in [RSZ09; HSS16] among others). Instead we will
focus on a case-specific plan for the equations in which we are interested in.

One can still look for formal solutions around irregular singularities (in the form of divergent power
series), and then hope to find a way to make them into convergent solutions. This is achieved through
the so-called q-Borel-Laplace transformations that are used to handle q-difference equations with irregular
singular points. We take a moment to explain these transformations.

∗∗Note that there is a difference in our convention of theta functions with respect to the cited ones. This leads to a
redefinition λ 7→ −λ compared to [Zha03].
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Digression: q-Borel and q-Laplace transformations

Given a (formal) power series f(t) =
∑
n≥0 fnt

n with f0 = 1 we define the q-Borel transformation
of order one [Zha00]a by (

Bq;1
)
f(τ) :=

∑
n≥0

fnq
−(n2)τn ≡ g(τ).

Note that definitions of this transformation vary across the literature, even amongst the same authors.
Also, g(τ) could be divergent, when |q| < 1. The operator Bq;1 ≡ Bq satisfies the following useful
operator identity

Bq(tmσnq ) = q−(m2 )τmσn−mq Bq, ∀m,n ∈ N (6.24)

which implies that we can ‘lower’ the degree of some shift-operators σq in a q-difference equation.

One can now justifiably ask whether this operation has an inverse and the answer is yes. Recall
that given two power series α(z) =

∑
n≥0 anz

n and β(z) =
∑
n≥0 bnz

n we can form their Hadamard
product (

α� β
)
(z) =

∑
n≥0

anbnz
n.

It is a small exercise in series manipulation to verify by Cauchy’s formula that(
α� β

)
(z) ≡ 1

2πi

∮
|s|=r

ds

s
α(s)β(zs−1)

Coming back to the q-Borel transformation, we immediately see that f(t) is the Hadamard product
of its Borel transformation (Bqf)(τ) = g(τ) with the power series θ(τ) =

∑
n≥0 q

(n2)τn. Of course we
have not chosen to call this function θ by mistake: the integral expression of the Hadamard product
does not “see” the negative-power terms of a bilateral Laurent series β(τ) and thus we may extend
θ(τ) to our beloved Θq (τ). We thus have the formal inverse Lq to (Bq) given by

(
Lqg

)
(t) =

1

2πi

∮
|τ |=R

dτ

τ
g(τ)Θq

(
tτ−1

)
.

where R is a large enough radius. Lq satisfies(
Lq ◦Bqf

)
(t) = f(t)

for convergent power series f(t) and thus it also satisfies the inverted operator equation

Lq(τmσnq ) = q(
m
2 )tmσn+m

q Lq.

Lq is called a q-Laplace transform. The name is motivated by viewing the theta function as a q-
analogue of the exponential function, making the defining expression of Lq remind us of the (differ-
ential) Laplace transform. Note again, that there are different definitions of the q-Laplace transform
across the literature.

aWe will not consider higher orders in this work.

We are now ready to find solutions of (6.22a) at infinty. First we transform (6.22a) via t = x−1 (whence
σq,x = σq−1,t = σ−1

t ) and f(t−1) = h(t) to get[(
1 +

1

4q2t2

)
σq − (qν/2 + q−ν/2)σq1/2 + 1

]
h(t) = 0. (6.25)

This can be rewritten in matrix form σq1/2Φ = A(t)Φ as in the previous section 6.1.3 where

A(t) =

(
0 1

qν/2+q−ν/2

1+ 1
4q2t2

− 1
1+ 1

4q2t2

)
=

(
0 1

4q2t2(qν/2+q−ν/2)
4q2t2+1 − 4q2t2

4q2t2+1 .

)
Clearly, A(0) is holomorphic around t = 0 but it is not in GLn(C), thus the singular point t = 0 is
irregular. It is therefore recommended†† [Zha03] to look for solutions of the form h(t) = E(t)p(t), where

††This ‘recommendation’ comes from the study of differential equations with irregular singularities.
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E(t) is a q-exponential function and p(t) denotes a holomorphic function. Zhang chooses

E(t) = Eα(t) :=
1

Θq1/2 (αt)
, t /∈ q

Z
2

α

satisfying σq1/2Eα(t) = −αtEα(t), σqEα(t) = α2q1/2t2Eα(t) and α ∈ C∗. With some a posteriori
wisdom he also chooses α such that α2 = −4q3/2. The two solutions of this equation will yield the two
linearly independent solutions at infinity. We can substitute this Ansatz h(t) = hα(t) in the equation
(6.25), use the difference properties of Eα(t) and α and obtain the following equation for p(t) = pα(t)
which is analytic by assumption[

− (1 + 4q2t2)σq + α(qν/2 + q−ν/2)tσq1/2 + 1
]
pα(t) = 0 (6.26)

We will now use the q-Borel-Laplace transform: Instead of trying to solve the above equation, we can
solve the one for rα(τ) := (Bq1/2pα)(τ). We apply Bq1/2 on the left of the equation and use (6.24) to
obtain [

σq −
(
1 + α(qν/2 + q−ν/2)− 4q3/2τ2

)]
rα(τ) = 0.

We now see the a posteriori wisdom in the choice of α: we can write this equation as[
σq − (1 + αtqν/2)(1 + αq−ν/2τ)

]
rα(τ) = 0.

which we can solve immediately, up to elliptic functions

rα(τ) =
1(

−αqν/2τ ; q
)
∞

(
−αq−ν/2τ ; q

)
∞
.

We note here that this result is derived in [Zha03] on the premise that q ∈ (0, 1) for convergence. On the
one hand his is unnecessary, up to this point: the function on the right-hand side is defined for all q such
that |q| 6= 1 and satisfies the same q-difference equation regardless of the “chamber” of q. On the other
hand, the pole structure of of rα(τ) is vastly different when passing from the unit q-circle: the function
has simple poles on the set

{
−α−1q±ν/2+Z≥0

}
when |q| < 1, but no poles when |q| > 1. This will lead to

a big caveat (see later).

We can now compute pα(t) =
(
Lqrα

)
(t) and obtain the full solution to (6.22a) around infinity by hα(t) =

pα(t)
Θ
q1/2

(αt) . The calculation is a technical one and it is done in [Zha03] for |q| < 1. We will simply quote

the results here. We first introduce the notation‡‡

j(1)
ν,α(t; q) =

(
q1/2, q1/2; q1/2

)
∞
hα(t; q) =

(
q1/2; q1/2

)
∞

pα(t)

Θq1/2 (αt)
,

and note that due to the symmetry of (6.26) we have that

j(1)
ν,α(t; q) = j

(1)
−ν,α(t; q) = j

(1)
ν,−α(−t; q).

Thus the solutions around infinity will be spanned by {j(1)
ν,α, j

(1)
ν,−α(t; q)}. Finally we state the result of

the contour integral calculation of pα(t):
Theorem ([Zha03]). When |q| < 1, α = ±2iq3/4, xt = 1, |x| < 2 and ν /∈ Z we have that

j(1)
ν,α(t; q) =

(
q1/2, q1/2; q

)
∞

(q1+ν , q−ν ; q)∞

Θq1/2
(
αqν/2t

)
Θq1/2 (αt)

Θq1/2 (λt)

Θq1/2
(
λqν/2t

)J (1)
ν,λ(x; q)

+

(
q1/2, q1/2; q

)
∞

(q1−ν , q+ν ; q)∞

Θq1/2
(
αq−ν/2t

)
Θq1/2 (αt)

Θq1/2 (λt)

Θq1/2
(
λq−ν/2t

)J (1)
−ν,λ(x; q).

We have to state the caveat here: this calculation depends on the “chamber” |q| ≷ 1 that we choose,
since the calculation depends on the pole structure of the integrand of

(
Lqrα

)
(t). When |q| < 1 the poles

come from rα(τ) and they are all contained in a disc of radius R < R0 =:= max{q±ν/2/ |α|}, while for

‡‡ The reason for this rescaling is that j(1) has a ‘nice’ limit at q → 1, namely

lim
q→1−

j
(1)
ν,α

( t

1− q
; q
)
= ie−νπi/2

(
J−ν(x)− eνπiJν(x)

−i sin νπ

)
(something similar for j(2), where the term in the bracket is related to the Hankel functions.
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|q| > 1 the poles come from the theta function 1

Θ
q1/2(αtτ )

. But the poles of the theta function are of the

form {tqZ/2} and hence are not all contained in a disc, and hence the integration depends on the contour.
Thus the results cannot be obviously carried over to |q| > 1.

To conclude this paragraph, we state two more results from [Zha03] that allow us to express the solutions
{j(1)
ν,α, j

(1)
ν,−α(t; q)} in terms of known functions.

Lemma 6.3.1 ([Zha03]). We have for pα,ν(t) as in (6.26) that:

(a) pα,ν(t) =
(
αq−1/4t; q1/2

)
∞ 2φ1

(
(q1/2)ν+1/2, (q1/2)−ν+1/2

−q1/2

∣∣∣∣ q1/2;αq−1/4t

)
,

as well as the identity

(b)
(
x; q1/2

)
∞ 2φ1

(
0, 0
qν+1

∣∣∣∣ q;−x2

)
= 2φ1

(
(q1/2)ν+1/2,−(q1/2)ν+1/2

(q1/2)2ν+1

∣∣∣∣ q1/2;−x
)
.

Part b) will be useful for the case ν → 0.

With (part a) of) this lemma we can express j(1)
ν,α as

j(1)
ν,α(t) =

(
q1/2, q1/2; q

)
∞(

q3/4α−1t−1; q1/2
)
∞

Θq1/2
(
αq−1/4t

)
Θq1/2 (αt)

2φ1

(
(q1/2)ν+1/2, (q1/2)−ν+1/2

−q1/2

∣∣∣∣ q1/2;αq−1/4t

)
(6.27)

The connection matrix for J (1) Introducing the notation for the (q1/2-)elliptic coefficients

Cν,α(λ, t; q) :=

(
q1/2, q1/2; q

)
∞

(q1+ν , q−ν ; q)∞

Θq1/2
(
αqν/2t

)
Θq1/2 (αt)

Θq1/2 (λt)

Θq1/2
(
λqν/2t

) ,
we can rewrite the contents of the theorem into the connection matrix(

j
(1)
ν,α(t; q)

j
(1)
ν,−α(t; q)

)
=

(
Cν,α(λ, t; q) C−ν,α(λ, t; q)
Cν,−α(λ, t; q) C−ν,−α(λ, t; q)

)(
J

(1)
ν,λ(x; q)

J
(1)
−ν,λ(x; q)

)
, λ ∈ C∗, xt = 1, |x| < 2. (6.28)

One can see that the connection matrix puts a constraint on the choice of λ: one cannot choose λ =

α = ±2iq3/4 otherwise the connection matrix will not be invertible and the two solutions j(1)
ν,±α(t; q) will

coincide.

6.3.5 The two deformations J (1)
ν , J

(2)
ν (Case ν = 0)

We now turn to our case of interest: we want to solve the connection problem for the equation (6.20),
which is the same equation as (6.22a) in the limit ν → 1 sunder the transformation z = −x

2

4 . However,
the limit ν → 0 yields complications as was the case in the previous section, namely the solutions around
0 become logarithmic. For this reason we must rewrite the results from the case ν /∈ Z in terms of first
order difference systems and take the limit appropriately as prescribed by Roques [Roq08]. We recall the
outline of the procedure: we write the equation for generic parameters as a first-order system. Using the
Jordan(-Chevalley-Dunford) decomposition of the coefficient matrix (which in the generic case is just the
diagonal form of the matrix), write down solutions around 0 and infinity . For the non-generic parameters
we need to use the full Jordan decomposition into semi-simple and unipotent factors and if we’re lucky
enough, we can compute the results for the non-generic parameters as a limit of the generic parameters.

After transforming via z = −x
2

4 we obtain the equation for generic ν

[σ2
q − (qν/2 + q−ν/2)σq + (1− z)]g(z) = 0 (6.29)

which we can rewrite as the system σqΦ = AΦ where the coefficient matrix is

A(z; ν) =

(
0 1

z − 1 qν/2 + q−ν/2

)
.

First off the bat: we do not study this coefficient matrix around ∞ as it is clearly not holomorphic
around z−1 = 0. Instead we will later “read-off” the relevant information (solution matrix Φ∞) from the
discussion in the subsection 6.3.4. We thus focus now on the study around z = 0: A(z; ν) is clearly a
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holomorphic matrix around z = 0 and this the system is Fuchsian at 0 6.1.3, hence also regular singular.
As to resonance, we find its eigenvalues:

σ(A) = {1

2
(qν/2 + q−ν/2)±

√
(1− qν)2 − 4qνz} =: {λ1(z), λ2(z)}.

In particular, σ(A(0; ν) = {qν/2, q−ν/2} and thus the system is non-resonant at 0 for all values of ν /∈ Z∗:
σ(A(0; ν))∩ qZ∗σ(A(0; ν)) = ∅ when ν /∈ Z∗, even in the degenerate case ν = 0 where σ(A(0; 0)) = {1, 1}
(recall, degenerate eigenvalues are still Fuchsian). Whether the system is logarithmic or not is determined
by the semi-simplicity (equivalent to diagonalizability when working over C) of A(0; ν). For generic ν
(equivalent to λ1 6= λ2), the Jordan decomposition is given by

A(z; ν) =

(
λ1(z)
1−z

λ2(z)
1−z

1 1

)(
λ1(z) 0

0 λ2(z)

)(
λ1(z)
1−z

λ2(z)
1−z

1 1

)−1

=: Mz(ν)Jz(ν)Mz(ν)−1. (6.30)

Note that here the similarity matrix Mz(ν) is not a continuous mapping of ν: for ν 6= 0, J0(ν) only has a
semi-simple (in fact, diagonal) component (to which the similarity matrix Mz(ν) = Sz(ν) brings A(0; ν),
where S stands for semi-simple). In particular, at z = 0 and generic ν we have

A(0; ν) =

(
qν/2 q−ν/2

1 1

)(
qν/2 0

0 q−ν/2

)(
qν/2 q−ν/2

1 1

)−1

≡ S0(ν)J0(ν)S0(ν)−1, ν 6= 0

whence the system is non-logarithmic. However, when ν = 0 we have the decomposition

A(0; 0) =

(
1 −1
1 0

)(
1 1
0 1

)(
0 1
−1 1

)
=: M0(0)J0(0)M0(0)−1 ≡ U0(0)J0(0)U0(0)−1.

and now J0(0) is unipotent and hence the system is logarithmic for ν = 0. We can use the results of the
previous section on the analytic continuation of the hypergeometric function: For generic ν we solve the
auxiliary system (

σqF0

)
(z; ν)J0(ν) = A(z; ν)F0(z; ν) (6.7)

which gives the holomorphic contribution and the constant-coefficient system of the character matrix(
σqXJ0(ν)

)
(z) = J0(ν)XJ0(ν). (6.8)

and the fundamental solution matrix is then given by

Φ0(z; ν) = F0(z; ν)XJ0(ν)

and similarly around infinity (with some complication in the case of the Bessel functions). The connection
matrix is then computed

P (z; ν) =
(
Φ−1
∞ Φ0

)
(z; ν).

When ν = 0 we can use the same reasoning as in (6.16): the solution F0(z; ν = 0) ≡ F̃0(z) to (6.7) for
J0(ν = 0) is given by the limit of(

σqF0S
−1
0 U0

)
(z; ν)U−1

0 A(0; ν)U0︸ ︷︷ ︸
=J0(ν=0)

= A(z; ν)
(
F0S

−1
0 U0

)
(z; ν)

as ν → 0. Similarly, for the connection matrix in the case ν → 0 we can use the reasoning from (6.18):
The connection matrix at ν = 0 is given by

P (ν = 0) = P̃ = Φ−1
∞ F̃0XJ0(ν=0)

= Φ−1
∞ lim

ν→0

[
(F0S

−1
0 U0)(ν)

]
XJ0(ν=0)

= lim
ν→0

[
(Φ−1
∞ F0S

−1
0 U0)(ν)

]
XJ0(ν=0)

(6.31)

We collect all the data for ν 6= Z: The equation is

[σ2
q − (qν/2 + q−ν/2)σq + (1− z)]g(z) = 0 (6.29)

or as a system σqΦ = AΦ with A as in (6.30). Around 0, the holomorphic part F0(z; ν) of the solution
matrix for generic ν can be read-off from (6.23)

F0(z; ν) =


(qν+1;q)∞

(q;q)∞
2φ1

(
0, 0
qν+1

∣∣∣∣ q; z) (q−ν+1;q)∞
(q;q)∞

2φ1

(
0, 0
q−ν+1

∣∣∣∣ q; z)
qν/2

(qν+1;q)∞
(q;q)∞

2φ1

(
0, 0
qν+1

∣∣∣∣ q; qz) q−ν/2
(q−ν+1;q)∞

(q;q)∞
2φ1

(
0, 0
q−ν+1

∣∣∣∣ q; qz)
 ,
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while the character matrix is dictated by J0(ν) =

(
qν/2 0

0 q−ν/2

)
. Instead of choosing the characters

eq±ν/2 (z; q), we choose as in (6.23):

XJ0(ν),λ =


Θ
q1/2

(
λ
2i

√
qν

z

)
Θ
q1/2

(
λ
2i

1√
z

) 0

0
Θ
q1/2

(
λ
2i

√
q−ν
z

)
Θ
q1/2

(
λ
2i

1√
z

)

 .

With this choice, the fundamental solution matrix at z = 0 is written (x = 2i
√
z)

Φ0(z; ν, λ) = F0(z; ν)XJ0(ν),λ =

(
J

(1)
ν,λ(2i

√
z; q) J

(1)
−ν,λ(2i

√
z; q)

σqJ
(1)
ν,λ(2i

√
z; q) σqJ

(1)
−ν,λ(2i

√
z; q)

)
.

The situation around z = ∞ cannot be obviously decomposed into a holomorphic and character con-
tribution as the equation has an irregular singularity at infinity. We can still read-off the fundamental
solution matrix from (6.27) (t = 1

x = − i
2
√
z
)

Φ∞(z; ν, α) =

 j
(1)
ν,α

(
− i

2
√
z

)
j

(1)
ν,−α

(
− i

2
√
z

)
σqj

(1)
ν,α

(
− i

2
√
z

)
σqj

(1)
ν,−α

(
− i

2
√
z

) ,

and we can certainly re-write the contents of the connection matrix from (6.28). Denoting the matrix in
that equation by P−1 T (z; ν, λ, α), one can check that(

Φ−1
∞ Φ0

)
(z; ν, λ, α) ≡ P (z; ν, λ, α), (6.32)

with

P (z; ν, λ, α) =

(
Cν,α(λ,− i

2
√
z
; q) Cν,−α(λ,− i

2
√
z
; q)

C−ν,α(λ,− i
2
√
z
; q) C−ν,−α(λ,− i

2
√
z
; q)

)−1

where

Cν,α(λ, t; q) =

(
q1/2; q1/2

)
∞

(q1+ν , q−ν ; q)∞

Θq1/2
(
αqν/2t

)
Θq1/2 (αt)

Θq1/2 (λt)

Θq1/2
(
λqν/2t

) .
Let us now collect the data for ν = 0. Around 0, the ‘holomorphic part’ of the solution F0(z; ν = 0) ≡
F̃0(z) is given by

F̃0(z) = lim
ν→0

F0S
−1
0 U0 = lim

ν→0

[(
ω(z; ν) ω(z;−ν)

qν/2ω(qz; ν) q−ν/2ω(qz;−ν)

)(
qν/2 q−ν/2

1 1

)−1(
1 −1
1 0

)]

=

 ω(z, 0) lim
ν→0

qν/2 ω(z;−ν)−ω(z;ν)
qν−1

ω(qz, 0) lim
ν→0

ω(qz;−ν)−qνω(qz;ν)
qν−1


where we have set

ω(z; ν) :=

(
qν+1; q

)
∞

(q; q)∞
2φ1

(
0, 0
qν+1

∣∣∣∣ q; z)
=

(1− q)−ν

Γq(ν + 1)
2φ1

(
0, 0
qν+1

∣∣∣∣ q; z)

≡
Θq1/2

(
λ
2i

1√
z

)
Θq1/2

(
λ
2i

√
qν

z

)J (1)
ν,λ(z; q).
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6. q-monodromy

The limits become derivatives and we have

lim
ν→0

qν/2
ω(z;−ν)− ω(z; ν)

qν − 1
=

1

log q

d

dν

∣∣∣∣
ν=0

[
ω(z;−ν)− ω(z; ν)

]
= − 1

log q

[
d

d(−ν)

∣∣∣∣
−ν=0

ω(z;−ν) +
d

dν

∣∣∣∣
ν=0

ω(z; ν)

]
= − 2

log q

d

dν

∣∣∣∣
ν=0

ω(z; ν)

= − 2

log q

d

dν

∣∣∣∣
ν=0

[
(1− q)−ν

Γq(ν + 1)
2φ1

(
0, 0
qν+1

∣∣∣∣ q; z)]
= 2

Ψq(1) + log(1− q)
log q

2φ1

(
0, 0
q

∣∣∣∣ q; z)− 2q ζ(0, 0; z)

where Ψq(z) is the q-digamma function and ζ denotes the derivative of the basic hypergeometric function
with respect to parameters as defined in (6.17). The second limit is

lim
ν→0

ω(qz;−ν)− qνω(qz; ν)

qν − 1
=

1

log q

d

dν

∣∣∣∣
ν=0

[
ω(qz;−ν)− qνω(qz; ν)

]
= − 1

log q

d

dν

∣∣∣∣
ν=0

[
(1 + qν)ω(qz; ν)

]
=

[
2

Ψq(1) + log(1− q)
log q

− 1

]
2φ1

(
0, 0
q

∣∣∣∣ q; qz)− 2q ζ(0, 0; qz).

Collecting the results we have that the logarithmic solutions around 0 are given by

F̃0(z) =

 2φ1

(
0, 0
q

∣∣∣∣ q; z) 2
Ψq(1)+log(1−q)

log q 2φ1

(
0, 0
q

∣∣∣∣ q; z)− 2q ζ(0, 0; z)

2φ1

(
0, 0
q

∣∣∣∣ q; qz) [
2

Ψq(1)+log(1−q)
log q − 1

]
2φ1

(
0, 0
q

∣∣∣∣ q; qz)− 2q ζ(0, 0; qz),


where Ψq(z) = 1

Γq(z)
dΓq(z)

dz is the q-digamma function and ζ(α, β; z) ≡ d
dc

∣∣
c=q 2φ1

(
a, b
c

∣∣∣∣ q; z). Note that

F̃0 does not depend on λ, as λ only appears in our choice of q-character and F̃0 is just the holomorphic
part of the solutions.

Similarly, we want to compute the connection matrix at ν = 0 by (6.31), i.e. we want to evaluate
(Φ−1
∞ F0S

−1
0 U0)(ν) ×XJ0(ν=0) and take the limit ν → 0. We find that

(
Φ−1
∞ F0

)
(z; ν, α, λ) can be “read-

off” from the connection matrix in (6.28) or equivalently (6.32). We have(
Φ−1
∞ F0

)
(z; ν, λ, α) =

(
Φ−1
∞ Φ0

)
(z; ν, λ, α)X−1

J0(ν),λ

≡ P (z; ν, λ, α)X−1
J0(ν),λ

=




Θ
q1/2

(
λ
2i

√
qν

z

)
Θ
q1/2

(
λ
2i

1√
z

) 0

0
Θ
q1/2

(
λ
2i

√
q−ν
z

)
Θ
q1/2

(
λ
2i

1√
z

)


(
Cν,α(λ,− i

2
√
z
; q) Cν,−α(λ,− i

2
√
z
; q)

C−ν,α(λ,− i
2
√
z
; q) C−ν,−α(λ,− i

2
√
z
; q)

)
−1

=

(
C̃ν,α(− i

2
√
z
; q) C̃ν,−α(− i

2
√
z
; q)

C̃−ν,α(− i
2
√
z
; q) C̃−ν,−α(− i

2
√
z
; q)

)−1

where

C̃ν,α(t; q) =

(
q1/2, q1/2; q

)
∞

(q1+ν , q−ν ; q)∞

Θq1/2
(
αtqν/2

)
Θq1/2 (αt)

=

(
q1/2, q1/2; q

)
∞

(q1+ν , q−ν ; q)∞
eqν/2

(
αt; q1/2

)−1

.

Again, the dependence on λ drops out, since none of the matrices Φ∞ or F0 depend on it. We set
eqν/2

(
αt; q1/2

)−1
=: χν,α(t), noting that these functions tend to 1 as ν → 0. We compute the inverse of
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the matrix explicitly, suppressing the argument t = − i
2
√
z(

Φ−1
∞ F0

)
(z; ν, λ, α) =

1(
q1/2, q1/2; q

)
∞

1

χν,αχ−ν,−α − χ−ν,αχν,−α
×

×
((

q1+ν , q−ν ; q
)
∞ χ−ν,−α −

(
q1−ν , qν ; q

)
∞ χν,−α

−
(
q1+ν , q−ν ; q

)
∞ χ−ν,α

(
q1−ν , qν ; q

)
∞ χν,α

)
.

The denominator coming from the determinant is zero at ν = 0, but We also have that

S−1
0 (ν)U0 =

(
qν/2 q−ν/2

1 1

)−1(
1 −1
1 0

)
=

(
1

1+qν/2
qν/2

1−qν
1

1+q−ν/2
−qν/2
1−qν

)
,

hence we obtain

(Φ−1
∞ F0S

−1
0 U0)(ν) =

1(
q1/2, q1/2; q

)
∞

1

χν,αχ−ν,−α − χ−ν,αχν,−α
×

×

 (q1+ν ,q−ν ;q)∞χ−ν,−α
1+qν/2

− idem(ν,−ν) qν/2

1−qν
[(
q1+ν , q−ν ; q

)
∞ χ−ν,−α + idem(ν,−ν)

]
−(q1+ν ,q−ν ;q)∞χ−ν,α

1+qν/2
− idem(ν,−ν) − qν/2

1−qν
[(
q1+ν , q−ν ; q

)
∞ χ−ν,α + idem(ν,−ν)

]
 .

Taking the limit ν → 0. Care is needed to take the limit; as ν → 0, the global determinant factor
is singular and each (q±ν ; q)∞ factor has a (simple) zero. Furthermore, non-trivial singularity/zero
cancellations may occur due to the addition/subtraction of identical terms with the sign of ν switched.
It is a small exercise to see that

d

dν
χν,α(t) = −q

−ν/2 log q

2
`q1/2

(
αtqν/2

)
χν,α(t).

where as before

`q (z) = −z
d
dzΘq (z)

Θq (z)

From this we find

d

dν

[
χν,αχ−ν,−α − χ−ν,αχν,−α

]
= − log q

2

([
q−ν/2`q1/2

(
αtqν/2

)
− qν/2`q1/2

(
−αtq−ν/2

)]
χν,αχ−ν,−α

+

[
qν/2`q1/2

(
αtq−ν/2

)
− q−ν/2`q1/2

(
−αtqν/2

)]
χ−ν,αχν,−α

)
,

in particular,

d

dν

∣∣∣∣
ν=0

detXν,α :=
d

dν

∣∣∣∣
ν=0

[
χν,αχ−ν,−α − χ−ν,αχν,−α

]
= log q

[
`q1/2 (−αt)− `q1/2 (αt)

]
Using this result we may take the limit of the first column. We need to consider both terms in the first
matrix element and we find

1(
q1/2, q1/2; q

)
∞

lim
ν→0

[ (q1+ν ,q1−ν ;q)∞χ−ν,−α
1+qν/2

(1− q−ν)− (q1+ν ,q1−ν ;q)∞χν,−α
1+q−ν/2

(1− qν)

χν,αχ−ν,−α − χ−ν,αχν,−α

]

=
1(

q1/2, q1/2; q
)
∞

lim
ν→0

[(
q1+ν , q1−ν ; q

)
∞ χ−ν,−α

1 + qν/2
1− q−ν

ν

(
dXν,α

dν

)−1

−
(
q1+ν , q1−ν ; q

)
∞ χν,−α

1 + q−ν/2
1− qν

ν

(
dXν,α

dν

)−1
]
.

Using the fact that lim
ν→0

1−q±ν
ν = ∓ log q we deduce that the limit of the first matrix element exists and

is equal to
(q, q; q)∞(

q1/2, q1/2; q
)
∞

1

`q1/2 (−αt)− `q1/2 (αt)
.

Similarly, the lower-left matrix element is obtained by a global sign and an interchange α 7→ −α, which
changes nothing, and the lower-left matrix element is also given by the above expression.
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The right column of the matrix may also be obtained; at first glance it looks like it diverges, but a careful
analysis shows otherwise. We write the limit of the top-right matrix element

1(
q1/2, q1/2; q

)
∞

lim
ν→0

[
qν/2

1−qν
[(
q1+ν , q−ν ; q

)
∞ χ−ν,−α +

(
q1−ν , qν ; q

)
∞ χν,−α

]
χν,αχ−ν,−α − χ−ν,αχν,−α

]
1(

q1/2, q1/2; q
)
∞

lim
ν→0

(
qν/2

(
q1−ν , q1+ν ; q

)
∞

)[ 1−q−ν
1−qν χ−ν,−α + χν,−α

ν

ν

Xν,α

]

We can now take the limit as all the factors have well-defined limits. In particular, we find after some
calculation

lim
ν→0

qν/2
(
q1−ν , q1+ν ; q

)
∞ = (q, q; q)∞

lim
ν→0

[ 1−q−ν
1−qν χ−ν,−α + χν,−α

ν

]
=

d

dν

[
1− q−ν

1− qν
χ−ν,−α + χν,−α

]
ν=0

= log q
[
1− `q1/2 (−αt)

]
and of course

lim
ν→0

ν

Xν,α
=

[
dXν,α

dν

]−1

ν=0

=
1

log q
[
`q1/2 (−αt)− `q1/2 (αt)

] .
We collect the factors to obtain the top-right matrix element

(q, q; q)∞(
q1/2, q1/2; q

)
∞

1− `q1/2 (−αt)
`q1/2 (−αt)− `q1/2 (αt)

,

and the lower-right matrix element is obtained again by a global sign and a transformation α 7→ −α
(which now is not the identity). Assembling the elements we find that

lim
ν→0

(Φ−1
∞ F0S

−1
0 U0)(ν) =

(q, q; q)∞(
q1/2, q1/2; q

)
∞

1

`q1/2 (−αt)− `q1/2 (αt)

(
1 1− `q1/2 (−αt)
1 −[1− `q1/2 (αt)]

)
.

The (logarithmic) character matrix XJ0(ν=0)(z) is dictated (up to q-difference equivalence) by ( 1 1
0 1 ) and

can be chosen to be
XJ0(ν=0)(z) =

(
1 −`q1/2 (λt)
0 1

)
(6.33)

since by σq,z ≡ q
d

d(log z) = q
d

d(log t−2) = σ−1
q1/2,t

we deduce that

σq,z(−`q1/2 (λt)) = σ−1
q1/2,t

(−`q1/2 (λt)) = −`q1/2 (λt) + 1

hence −`q1/2 (λt) satisfies the same q-difference equation as `q (z), with z ∼ t−2. We finally have the
connection matrix in the logarithmic case ν = 0

P̃ (z) =
(q, q; q)∞(

q1/2, q1/2; q
)
∞

1

`q1/2 (−αt)− `q1/2 (αt)

(
1 1− `q1/2 (−αt)− `q1/2 (λt)
1 −[1− `q1/2 (αt) + `q1/2 (λt)],

)
where z = 1

4t2 and α = 2iq3/4. It is of crucial importance to note that the dependence of P̃ on λ is an
artifact of our choice in (6.33).

6.4 A recap and outlook

6.4.1 Results

We recap our results: We have computed the connection matrices

• The connection matrix of the basic hypergeometric equation (6.12) for generic (/∈ qZ) values of the
parameters (a, b, c) is given by

P (z) = X−1
J∞

(z)

(
Γq(γ,β−α)
Γq(β,γ−α)ea (z)

−1 Γq(2−γ,β−α)
Γq(β−γ+1,1−α)eaq/c (z)

−1

Γq(γ,α−β)
Γq(α,γ−β)eb (z)

−1 Γq(2−γ,β−α)
Γq(α−γ+1,1−β)ebq/c (z)

−1

)
XJ0(z),
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6. q-monodromy

where the character matrices are dictated by the Jordan matrices

J0 =

(
1 0
0 q/c

)
, and J∞ =

(
a−1 0
0 b−1

)
.

Choosing the q-characters to be the “standard” ones (ea (z), etc.) we obtain

P (z) =

(
Γq(γ,β−α)
Γq(β,γ−α)ea−1 (z)

−1
ea (z)

−1 Γq(2−γ,β−α)
Γq(β−γ+1,1−α)eq/c (z) ea−1 (z)

−1
eaq/c (z)

−1

Γq(γ,α−β)
Γq(α,γ−β)eb−1 (z)

−1
eb (z)

−1 Γq(2−γ,β−α)
Γq(α−γ+1,1−β)eq/c (z) eb−1 (z)

−1
ebq/c (z)

−1

)
.

• The connection matrix of the basic hypergeometric equation for the specific values a = q1/3, b = q2/3

and c = q coming from the GLSM which corresponds to the cubic in P2 [Joc+; KRS16] is

P̃ (z) = X−1
J∞

(z)

(
Γq(1/3)

Γq(2/3,2/3)eq1/3 (z)
−1

(log q)−1eq1/3 (z)
−1 Γq(1/3)

Γq(2/3,2/3)Υq(ζ; 1/3, 2/3)
Γq(−1/3)

Γq(1/3,1/3)eq2/3 (z)
−1

(log q)−1eq2/3 (z)
−1 Γq(−1/3)

Γq(1/3,1/3)Υq(ζ; 2/3, 1/3)

)
XJ0(z),

where Υq(ζ;α, β) = 2Ψq(1)−Ψq(1− α)−Ψq(β) + Ψq(ζ + α)−Ψq(1− ζ − α) and the q-character
matrices are dictated by

J0 =

(
1 1
0 1

)
, and J∞ =

(
q−1/3 0

0 q−2/3

)
.

The “standard” choices are

XJ0(z) =

(
1 `q (z)
0 1

)
, XJ∞(z)

(
eq−1/3 (z) 0

0 eq−2/3 (z)

)
.

• The connection matrix for the first q-deformation (6.29) of the Bessel equation for generic ν /∈ Z
(corresponding to one equation from the CP1 sigma model from [BDP14]) is

P−1(z; ν, λ, α) =

(
Cν,α(− i

2
√
z
; q) Cν,−α(− i

2
√
z
; q)

C−ν,α(− i
2
√
z
; q) C−ν,−α(− i

2
√
z
; q)

)−1

XJ0(ν),λ

where

Cν,α(t; q) =

(
q1/2; q1/2

)
∞

(q1+ν , q−ν ; q)∞

Θq1/2
(
αqν/2t

)
Θq1/2 (αt)

,

α = 2iq3/4, and the character matrix is dictated by

J0(ν) =

(
qν 0
0 q−ν

)
.

• The connection matrix for the non-generic case ν = 0 (corresponding to the massless limit in
(3.17a)) is given by

P̃ (z) =
(q, q; q)∞(

q1/2, q1/2; q
)
∞

1

`q1/2 (−αt)− `q1/2 (αt)

(
1 1− `q1/2 (−αt)
1 −[1− `q1/2 (αt)]

)
XJ0(ν=0)(z)

where z = 1
4t2 , α = 2iq3/4 and the the character matrix is dictated by

J0 =

(
1 1
0 1

)
.

6.4.2 Discussion

What is clear from all 4 cases (2 + 2 “degenerate” ones) is that there is a piece of datum for each case
that is independent of choices, coming from an analytic continuation formula (e.g. Watson’s formula
(6.15) for the hypergeometric equation, and Zhang’s theorem (6.28) for the Bessel equation), as well as
the character matrices for each specific case, which one has to choose. The specific choices one makes
then enter into the connection matrix, which is supposed to hold physically relevant information. We
make some hypotheses about what this could imply in the following discussion.
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6. q-monodromy

In line with the work from Beem, Dimofte and Pasquetti, the analytic continuation from |z| < 1 to |z| > 1
is given by the connection matrix of the Bessel equation. The continuation corresponds to transporting
the blocks from |y| > 1 to |y| < 1, i.e. from positive to negative real part of the complexified mass
deformation Y associated to the topological U(1)J symmetry (cf. 3.3).

As we mention above, the choice of character matrices enters in the connection matrix; in particular, the
choice of q-logarithm for the (degenerate) solutions around z = 0 will directly enter in the matrix. In
the main text above, we chose the q-logarithm `q1/2 (λt) which is admissible since it satisfies the correct
q-difference equation. Any other admissible q-logarithm will be an elliptic multiple of this choice.

According to [BDP14], the elliptic factors c(z; q) should be constrained by the factorization conjecture,
meaning that ‖c(z; q)‖2g = 1 modulo some pure q-dependent terms related to R-R Chern-Simons terms,
called contact terms. However purely from the point-of-view of the q-difference equations any choice is
admissible. One possible explanation

1. The (contour) integral solutions to q-difference equations “hold” more information than the respective
equations.

An integral expression for the solution to a q-difference equation will also specify the elliptic factor
ambiguity, if one has a scheme for choosing a contour. One can be further convinced that integral
solutions are special by the fact that solutions to q-difference (or differential) equations admitting
an (non-trivial) integral representation is a rare phenomenon.

This means that one cannot analyze the physical interpretation of such global data of q-difference
equations, without further input from the physics (e.g. explicit integrand and contour) even when
the equations stem from physical theories. This is reflected in the “infinity” of choices for arbitrary
parameters that can enter in the character matrices, e.g. by rescalings Θq(z)

Θq(az)
7→ Θq(λz)

Θq(aλz)
.

Similarly, one can take hints from the two-dimensional GLSM (cubic in P2): The analytic continuation
of the blocks, which can be viewed as three-dimensional lifts of the hemisphere partition function, corre-
sponds to transportation of “brane data”, in the form of boundary condition, across phases of the theory.
The partition function Z of the three-dimensional theory on the total manifold M3 should be invariant
of the choices in the elliptic factors.

Another possible resolution of the ambiguity would be to relax the factorization condition: similarly to
the two dimensional case [Hor03], one would construct the partition function as a quantum mechanical
amplitude

Z(M3) =
∑

Bα(x)ηα,β̄(x, x̄)Bβ(x̄) ≡ ‖B‖2g , (6.34)

where we have labeled the parameters of the theory by x and the “metric” ηα,β̄ can be interpreted
as a vacuum amplitude on a(n infinitely long) cylinder times S1 (actually a two-point function of the
corresponding operators). The gluing is geometrically determined by the boundary map g and should fix
the relation between x, x̄. In the examples S3

b , S
2 ×q S1 from [BDP14], the gluing map was an element

in the automorphism group of the torus. This generalization of factorization is applicable also when one
does not have the same theory on the two pieces. Now, transporting the blocks from negative to positive
real mass deformations in our two examples induces the transformation described by the connection
matrix, i.e. informally B 7→ PB, where P is elliptic and can contain arbitrary parameters. Since the
total partition function should not depend on the choice of these parameters, we con hypothesize that

2. The arbitrary choice of elliptic factors in the connection matrix appear as “covariant” transforma-
tions of the “metric” η in (6.34).

Explicitly, across the phases the blocks change by elliptic connection matrices B 7→ P1B. Making
another choice of q-characters is always related to the original one by elliptic factors, thus we can
say that B 7→ P1B where P2 = EP1, with all matrices being elliptic valued. To achieve invariance
of Z ∼ BT ηB we must have

Z(x)
!
= Z ′(x) = B′T (x)η′(x, x̄)B′(x̄)

independently of the choices. This would imply that

η
!
= PT1 (x)η′1(x, x̄)P1(x̄)

!
= PT2 (x)η′1(x, x̄)P2(x̄) = PT1 (x)ET (x)η′2(x, x̄)E(x̄)P1(x̄)

is sufficient for invariance of the partition function.
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6.4.3 Outlook and open questions

We briefly remark on some open question and possible future directions:

From 2D to 3D: One of the main goals of this large program is to study 3D (conformal) field theories
through gauge theories. It would be interesting to see further results established for 2D theories
find their 3D counterparts, e.g. grade restriction of D-branes [HHP08; HR13].

From 3D to 2D: Similarly, it is also interesting to look at the inverse procedure: study if and how
three-dimensional results have a limit in two dimensions. In particular, it is an interesting project,
both physically and mathematically, to determine even the existence the q → 1 limit q-functions
and q-difference equations systematically.

Elliptic factors: We suspect that the choice of elliptic factors will encode more (physical) information
other than the choice of (background) Chern-Simons terms. It would be interesting to further
understand ind interpret the dependence on the choice of elliptic factors in physical terms. It would
also be interesting to ask if there is geometric information encoded in the elliptic factors, in analogy
to the two-dimensional case where the partition function on the sphere is supposed to compute the
quantum Kähler potential, related to genus zero Gromov-Witten invariants.

Further directions: Other points of further study would be to apply the prescription given by [BDP14]
to other backgrounds, i.e. a topologically of smoothly different choice of three-manifold (but always
fibered over S1) and/or different theories defined on it. This would provide further evidence for the
validity of the dictionary in terms of blocks, and also further illuminate the factorization conjecture.

Lastly, it would certainly be engaging to fully understand the relationship between line operator
identities, the q-difference equations stemming from them and the emergence of quantum spectral
curves encoding non-perturbative information [DGG11b; Dim11].
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A. Fun with q-functions

A.1 The q-Pochhammer symbols and generalizations

A.1.1 The q-Pochhammer symbol and its properties

Inside the unit q-circle

Motivated by the Pochhammer symbol also called “shifted (rising) factorial”

(z)n := z(z + 1) · · · (z + n− 1)

with (z)0 ≡ 1 we define the following symbol, called the q-Pochhammer symbol:

(z; q)n :=

{
1 if n = 0

(1− z)(1− zq) · · · (1− zqn−1) n=1,2,. . .
for z, q ∈ C.

The motivation comes from the simple but essential fact that the q-analogue of a number z ∈ C is
[z]q = 1−qz

1−q

lim
q→1

1− qz

1− q
= z,

for all z ∈ C. This is essentially the starting point of all q-analogues, which are objects — functions,
operators, etc — that reduce to a known object for q = 1. Note that we will often work in the “multi-
valued plane”, i.e. work with z ∈ C instead of ζ, where z = qζ . This choice also involves “picking a
branch” to properly define such exponentials, but we disregard such details in this work, and assume we
have made a choice for the logarithm of log q =: ~, with ~ ∈ C.

We want to extend these definitions for more values of n ∈ CP1 = C ∪ {∞}, in particular n→∞, for as
many values of z, q as possible. A simple convergence argument∗ convinces one that when |q| < 1 we can
define the (absolutely) convergent product

(z; q)∞ :=

∞∏
k=0

(1− zqk), for |q| < 1. (A.1.1)

One can then easily verify the identity (z; q)n = (z;q)∞
(zqn;q)∞

. An identity that is not as easy to verify is the
so called q-binomial theorem that asserts that

(az; q)∞
(z; q)∞

=

∞∑
n=0

(a; q)n
(q; q)n

zn, for |z| < 1, |q| < 1. (A.1.2)

Note that the left-hand side makes sense even when |z| > 1, and has simple poles at z = q−k for k ∈ N0,
but the right-hand side has radius of convergence |z| < 1† when |q| < 1, since z = 1 is the first pole that
a disc of increasing radius centered at 0 “encounters”. Also note that the left-hand side has some obvious
zeros (z = a−1q−k), which are not obvious at all on the right-hand side.

∗Recall, an infinite product
∏∞
k=1 cn converges if and only if the sum

∑∞
k=1 ln cn converges. In addition, products of

the form
∏∞
k=1(1− cn) for cn ∈ C and for

∑∞
k=1 |cn|

2 <∞ converge if and only if the sum
∑∞
k=0 cn converges.

†Recall, the radius of convergence R for
∑∞
n=0 cn(z − a)n is given by R := limn→∞

∣∣∣ cn
cn+1

∣∣∣.
87



A. Fun with q-functions

Proof. We are following [GR04]: We set

ha(z) =

∞∑
n=0

(a; q)n
(q; q)n

zn, for |z| < 1, |q| < 1

and compute the difference‡

ha(z)− haq(z) =

∞∑
n=1

(a; q)n − (aq; q)n
(q; q)n

zn

=

∞∑
n=1

(aq; q)n−1

(q; q)n

(
(1− a)− (1− aqn)

)
zn

= −a
∞∑
n=1

(1− qn)(aq; q)n−1

(q; q)n
zn

= −a
∞∑
n=1

(aq; q)n−1

(q; q)n−1
zn

= −azhaq(z).

Next, we compute the difference

ha(z)− ha(qz) =

∞∑
n=1

(a; q)n
(q; q)n

(zn − qnzn)

=

∞∑
n=1

(1− qn)(a; q)n
(q; q)n

zn

=

∞∑
n=1

(a; q)n
(q; q)n−1

zn

= (1− a)z

∞∑
n′=0

(aq; q)n′

(q; q)n′
zn
′

= (1− a)zhaq(z).

Combining the two results to eliminate haq(z) we obtain ha(z) = 1−az
1−z ha(qz). Iterating we obtain

ha(z) =
1− az
1− z

ha(qz) =
1− az
1− z

1− aqz
1− qz

ha(q2z) = . . . =
(az; q)k
(z; q)k

ha(qkz).

We can now take the limit k →∞, using qk → 0 for |q| < 1 and ha(0) = 1, to obtain indeed that

ha(z) ≡
∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

for |q| < 1, |z| < 1.

�

Using this result, we can prove more interesting identities, using the “freedom” that there is no restriction
on a. Setting a = 0 we readily arrive at

1

(z; q)∞
=

∞∑
n=0

zn

(q; q)n
for |q| < 1, |z| < 1. (A.1.3)

Note again that the left-hand side makes sense for |z| > 1, and has simple poles at z = q−k for k ∈ N0

as before, while the right-hand side converges only for |z| < 1, when |q| < 1. Another important result is
the q-series expansion of the q-Pochhammer symbol:

(z; q)∞ =

∞∑
n=0

(−1)nq
1
2n(n−1)zn

(q; q)n
for |q| < 1.

‡The motivation for these calculations comes from the commuting case q = 1, where the analogous result holds for
fa(z) =

∑∞
n=0

(a)n
n!

zn.
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To see this identity, set z 7→ z
a in the q-binomial theorem to obtain

(z; q)∞
(za−1; q)∞

=

∞∑
n=0

(a; q)na
−n

(q; q)n
zn,

and we note that the numerator in the sum is written as

(a; q)na
−n = (a−1 − 1)(a−1 − q) · · · (a−1 − qn−1).

We now take the limit a → ∞ (which lifts the constraint |z| < 1), where the numerator reduces to
(−1) · · · (−qn−1) = (−1)nq

1
2n(n−1) and we have finally our desired result

(z; q)∞ =

∞∑
n=0

(−1)nq
1
2n(n−1)

(q; q)n
zn, for |q| < 1. (A.1.4)

Outside the unit q-circle

We started our discussion saying we want to extend the definition of the q-Pochhammer symbol (z; q)n
to n→∞ for as many values of z, q as possible; in particular, the finite q-Pochhammer symbol is defined
also “outside the unit q-circle” |q| > 1. To implement this we simply take (A.1.4) as the definition of our
symbol: it reduces to (A.1.1) for |q| < 1 as we would wish. What about |q| > 1? A ratio test shows that
the right-hand side of (A.1.4) has a radius of convergence R = |q| when |q| > 1. We claim in fact that

(z; q)∞ :=

∞∑
n=0

(−1)nq
1
2n(n−1)

(q; q)n
zn =

{∏∞
k=0(1− zqk) if |q| < 1,∏∞
k=1(1− zq−k)−1 if |q| > 1.

(A.1.5)

The sum converges for |z| < |q|, when |q| > 1 while the very right-hand side is defined for all z when
|q| < 1 and for all z ∈ C \ {qk}k∈N (where the function has simple poles) when |q| > 1. To see this claim,
we can use the definition of (z; `)∞ for |`| < 1 and the results we have so far: Starting from the |q| > 1
case of the right-hand side of (A.1.5) we have

∞∏
k=1

(1− zq−k)−1 =

∞∏
k=0

(1− zpk+1)−1 =
1

(pz; p)∞
,

for p = q−1. We are thus in the first regime |p| < 1 and we can use the property (A.1.3) when |z| < |q|
(avoiding even the first pole at z = q) to obtain

1

(pz; p)∞
=
∞∑
n=0

pnzn

(p; p)n
,

and we investigate the coefficients

pn

(p; p)n
=

q−n

(1− q−1) · · · (1− q−n)
=

(−1)nq−nq
∑n
k=1 k

(1− q) · · · (1− qn)
=

(−1)nq
1
2n(n−1)

(q, q)n
,

which shows our claim in (A.1.5).

We thus have one of the most useful identities in the study of q-functions with focus on both |q| ≷ 1: the
inversion formula

(z; q)∞ =
1

(pz; p)∞
, with (|q| − 1)(|p| − 1) < 0. (A.1.6)

At this point we need to make an important remark: even though we have defined (z; q)∞ by a power
series in z — called a q-hypergeometric series — convergent for both |q| ≷ 1, it is crucial to remember
that it represents in fact two different functions, that happen to have the same q-series expansion. This
is already seen by the inversion formula: it would make little sense if the symbol (· ; ·)∞ represented the
same function for both regimes. In addition the function has no poles in one regime (inside the q-circle)
while the it has countable poles in the other (outside the q-circle), which is also evident in the differing
radii of convergence. The same holds for the zeros of each function.

The inversion formula can also be derived for the “finite” index symbol

(z; q)α = (pz; p)
−1
−α , p = q−1. (A.1.7)
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Next we want to ask, does the q-binomial theorem (A.1.2) hold for our newly defined function (z; q)∞
(A.1.5)? In particular, does it hold when |q| > 1? The answer is yes: We simply need to repeatedly use
that (z; q)∞ = (pz; p)−1

∞ for p = q−1 and invoke the q-binomial theorem for inside the unit p-circle:

(az; q)∞
(z; q)∞

=
(pz; p)∞
(paz; p)∞

=

∞∑
n=0

(ã; p)n
(p; p)n

z̃n for |z| <
∣∣∣ q
a

∣∣∣ ,
where ã = a−1 and z̃ = paz, and we investigate the coefficient of zn:

pnan(ã; p)n
(p; p)n

=
q−nan(a−1; q−1)n

(q−1; q−1)n
=
q−nan(1− a−1) · · · (1− a−1q−n+1)

(1− q−1) · · · (1− q−n)
=

(a; q)n
(q; q)n

,

which recovers (A.1.2) with a radius of convergence R =
∣∣ q
a

∣∣.
The q-Pochhammer symbol for complex index

We can now define the q-Pochhammer symbol for any index α ∈ C:

(z; q)α :=
(z; q)∞

(qαz; q)∞
, with z ∈ C, q ∈ C \ U(1), αCP1.

It is easy to verify that the ratio of these a-priori infinite products truncates in the case n ∈ Z and we
obtain the q-Pochhammer symbols for positive and negative integer n:

(z; q)n =


(1− z)(1− qz) . . . (1− qn−1z) n = 1, 2, . . .

1 n = 0

[(1− zq−1)(1− zq−2) . . . (1− zqn)]−1 n = −1,−2, . . . .

A.1.2 Summary

We sum up the relevant definition and properties:

• We define the (infinite) q-Pochhammer symbol as

(z; q)∞ :=

{∏∞
k=0(1− zqk) if |q| < 1,∏∞
k=1(1− zq−k)−1 if |q| > 1.

For |q| < 1, the function is defined for all z ∈ C and has simple zeros at z = q−k for k ∈ N0. For
|q| > 1 the function has simple poles at z = qk for k ∈ N and has no non-trivial zeros (except at
z =∞).

• The symbol has a single q-hypergeometric series expansion for both regimes |q| ≷ 1, justifying the
single symbol

(z; q)∞ =

∞∑
n=0

(−1)nq
1
2n(n−1)

(q; q)n
zn, convergent for

{
|z| <∞ if |q| < 1,

|z| < |q| if |q| > 1.

Despite this, the symbol denotes two different functions for each regime |q| ≷ 1, and one can
“connect” the two regimes by the formula

(z; q)∞ =
1

(pz; p)∞
, p = q−1 for both |q| ≷ 1.

• The symbol satisfies the identity
(z; q)∞

(qαz; q)∞
= (z; q)α

for all α ∈ C and in both chambers |q| ≷ 1.
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• The symbol satisfies the q-binomial theorem in both regimes, which asserts that

(az; q)∞
(z; q)∞

=

∞∑
n=0

(a; q)n
(q; q)n

zn, valid for

{
|z| < 1 if |q| < 1,

|z| <
∣∣ q
a

∣∣ if |q| > 1.

This evidently also shows that we can write

1

(z; q)∞
=

∞∑
n=0

1

(q; q)n
zn, valid for

{
|z| < 1 if |q| < 1,

|z| <∞ if |q| > 1.

• Maybe the most important property for our purposes is that it satisfies the q-difference equation
(cf. section 6.1) [

σq − (1− z)−1
]
f(z) = 0

for both chambers |q| ≷ 1.

For many more properties of the (finite or infinite symbols) we refer the reader to the rich literature: the
“bible” [GR04], as well as the books by Harald Exton and Joan Slater [Ext83; Sla09]. Notable mentions
in no particular order include [KC01; Ern12; Ern03; Jac10; Tho69; Car12].

A.1.3 The q-Pochhammer symbol as an exponential series

There is one more interesting property of the q-Pochhammer symbol, namely an asymptotic series. We
calculate, for |q| < 1, |z| < 1

log(z; q)∞ = log

( ∞∏
k=0

(1− zqk)

)
=

∞∑
k=0

log(1− zqk) = −
∞∑
k=0

∞∑
n=1

znqnk

n
= −

∞∑
n=1

zn

n(1− qn)
.

where we have used the Taylor expansion log(1− a) = −
∑∞
n=1

an

n for |a| < 1. This shows that

(z; q)∞ = exp

[
−
∞∑
n=1

zn

n(1− qn)

]
.

Setting z = qx we recognize the exponent as the Lambert series

Lq(s, x) :=

∞∑
n=1

nsqnx

1− qn
, s ∈ C, |q| < 1

for s = −1, i.e. (qx; q)∞ = exp[−Lq(−1, x)]. We can relate the Lambert series with the polylogarithm
functions Lis(x) =

∑∞
n=1

xn

ns for |x| < 1 by

∞∑
n=0

Lis(q
n+x) = Lq(−s, x),

which is easily verified. In addition one can verify that

Lq(s, x) = −
d

dx

e
d
dx − 1

Li1−s(q
x)

log q
. (A.1.8)

which, combined with the above yields

(qx; q)∞ = exp

[ d
dx

e
d
dx − 1

Li2(qx)

log q

]
,

which after setting back z = qx can be rewritten as

(z; q)∞ = exp

[
θz

qθz − 1
Li2(z)

]
= exp

[
(log q)−1 θz log q

eθz log q − 1
Li2(z)

]
, (A.1.9)

where θz := z d
dz and we also recognize the q-shift operator p̂ = qθz . To verify (A.1.8) one needs to use

the expansion [BW16]
teat

et − 1
=

∞∑
n=0

Bn(a)tn

n!
.

91



A. Fun with q-functions

where Bn(x), (Bn := Bn(0)) are the Bernoulli polynomials (numbers§). We can use this expansion again
in (A.1.9) to obtain

(z; q)∞ = exp

[ ∞∑
n=0

Bn(log q)n−1

n!
θnz Li2(z)

]
= exp

[ ∞∑
n=0

Bn(log q)n−1

n!
Li2−n(z)

]
, (A.1.10)

where we have used that θz Lis(z) = Lis−1(z). Setting now q = e~ with Re ~ < 0 (to be in the |q| < 1
regime) we obtain the result

(z; e~)∞ = exp

[
1

~

∞∑
n=0

Bn~n

n!
Li2−n(z)

]
, for

∣∣e~∣∣ < 1.

For Re ~ > 0 we have to calculate using our result for inside the unit q-circle

(z; e~)∞ ≡
1

(e−~z; e−~)∞
= exp

[
1

~

∞∑
n=0

Bn(−1)n~n

n!
Li2−n(e−~z)

]

= exp

[
1

~

∞∑
n,m=0

Bn(−~)n+m

n!m!
Li2−n−m(z)

]
, nn

where we have used Lin(eαz) =
∑∞
m=0

αm

m! Lin−m(z). The double sum can be re-summed as a Cauchy
product

∞∑
n,m=0

Bn(−~)n+m

n!m!
Li2−n−m(z) =

∞∑
k=0

(−~)k Li2−k(z)

k∑
`=0

B`
`!(k − `)!

,

and one can check that
∑k
`=0

B`
`!(k−`)! = (−1)kBk

k! . We thus have that

(z; e~)∞ = exp

[
1

~

∞∑
n=0

Bn~n

n!
Li2−n(z)

]
, for both

∣∣e~∣∣ ≷ 1.

Looking towards our applications, we have also verified in the previous that the “tetrahedron block”
satisfies

B∆(x; q) := (qx−1; q)∞ = exp

[
1

~

∞∑
n=0

B̃n~n

n!
Li2−n(x−1)

]
, for q = e~, |q| ≷ 1,

where B̃n are the second Bernoulli numbers B̃n = (−1)nBn (which some authors call “Bernoulli numbers”),
and we have used the identity (qz; q)∞ = (z; q−1)−1

∞ .

A.2 Other special q-functions

We review some of the q-functions that we are going to use throughout this work and we investigate some
of their useful properties.

A.2.1 The Jacobi theta function

One of the most useful functions to define is the Jacobi theta function which we¶ define as

Θq (z) := (q)∞ (z; q)∞

(q
z

; q
)
∞
, with

{
z ∈ C if |q| < 1,

z ∈ C \ qZ if |q| > 1
,

where we have set (q)∞ =

{
(q; q)∞ if |q| < 1(
q−1; q−1

)−1

∞ if |q| > 1.
.

§Bn are also called first Bernoulli numbers. Note that for some authors (e.g. for [BDP14]), the symbol Bn is reserved
for the second Bernoulli numbers, here denoted by B̃n := Bn(1) ≡ (−1)nBn.

¶One has to be careful when comparing expressions in the literature. The definition of the Jacobi theta function often
varies. We use the definition from [Roq08].
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It satisfies the Jacobi triple product identity [GR04]

Θq (z) =


∑
n∈Z

(−1)nq(
n
2)zn if |q| < 1,(∑

n∈Z
(−1)nq−(n+1

2 )zn
)−1

if |q| > 1

and more importantly, it satisfies the q-difference equation

σqΘq (z) = −1

z
Θq (z) , (A.2.11)

and more generally
σnq Θq (z) = (−z)−nq−(n2)Θq (z) .

More properties are easy to verify

Θp (z) = Θq (qz)
−1 ≡ −zΘq (z)

−1
, where p = q−1 (A.2.12a)

Θq

(
z−1
)

= Θq (qz) ≡ −1

z
Θq (z) (A.2.12b)

thus also Θq

(
z−1
)

= Θp (z)
−1. We also have

Lemma ([Mor11]). For x ∈ C \ (−∞, 0] and a constant K ∈ C we have

Θq

(
−q1/2

)
Θq

(
−K
x

)
= Θq1/2

(√
K

x

)
Θq1/2

(
−
√
K

x

)
.

Modular properties

We want to compute the monodromy of Θq (z), i.e. see how it behaves when z is transported around
a loop around 0. This means we must write it as a function of ζ, τ where z = e2πiζ and q = eπiτ and
transform ζ 7→ ζ + 1. We can write this function in terms of

ϑ(ζ, τ) :=
∑
n∈Z

exp(πiτn2 + 2πiζ) =
∑
n∈Z

qn
2

zn,

where we have set q = eπiτ and z = e2πiζ . We see immediately that we have

ϑ(ζ, τ) = Θq2 (−qz) and thus also Θq (z) = ϑ(ζ − τ

4
+

1

2
,
τ

2
).

The known modular properties of ϑ are ϑ(ζ + α + βτ) = exp(−πiβ2τ − 2πiβζ)ϑ(ζ, τ). In particular,
ϑ(ζ + 1, τ) = ϑ(ζ, τ), therefore also

Θq

(
ze2πi

)
= ϑ(ζ + 1− τ

4
+

1

2
,
τ

2
) = ϑ(ζ − τ

4
+

1

2
,
τ

2
) ≡ Θq (z) ,

where we have sloppily written e2πiz to indicate the shift ζ+1 in the covering space. Thus the monodromy
properties of Θq (z) are trivial. The full transformation of ϑ recovers the behavior of Θq (z) as in the
difference equation (A.2.11)

A.2.2 The q-characters

In this subsection we explore some of the peculiar properties of the q-characters ea (z; q) ≡ ea (z) intro-
duced to replace the “traditional” characters zα in 6.1.4. Recall we defined

ea (z) :=
Θq (z)

Θq (az)
=

(z; q)∞
(
q
z ; q
)
∞

(az; q)∞
(
q
az ; q

)
∞
, z ∈ C, a ∈ C∗, |q| ≷ 1.

Setting qα = a, this can also be neatly written as

eqα (z) = (z; q)α

(q
z

; q
)
−α

.
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It satisfies the q-difference equation
σqea (z) = aea (z) .

So why do we choose these functions? The main advantage of using these functions as q-characters
instead of the monomials zα is of course the fact that they are globally defined (up to the poles on qZ):
the monomial zα is only well defined up to a branch cut. Furthermore, the theta functions are used to
describe the complete field of elliptic functions [HSS16, Remark 3.3.3]. Lastly, a circumstantial advantage
is that these functions “popped up” in calculations in [Hah49; GR04; Mor11; Mor13] replacing the role
of monomials in an almost natural fashion.

This choice is however not “a free meal”: the functions ea (z) have bad multiplicative properties, meaning
that ea (z) eb (z) 6= eab (z). Furthermore, it is far from canonical: there are many choices of functions

that satisfy the same q-difference equation, e.g. take
Θq(az−1)
Θq(z−1) or the function one obtains by rescaling

z by any non-zero complex number. However, there are still some properties of zα which extend to this
function, and we would like to list some of them.

Consider f(z, α) := zα as a function of both arguments. It clearly satisfies

f(z,−α)
(i)
= f(z, α)−1 (ii)

= f
(
z−1, α

) (iii)
= f(z,−α)

We investigate what the corresponding relations are in the case of g(z, α) := eqα (z). We find after some
easy manipulations involving the properties (A.2.12a),(A.2.12b) that g(z,−α) = g(qz−1, α) which implies
that

g(z−1, α) = g(qz,−α) = q−αg(z,−α) [replaces (iii)].
For the total inverse we find using (A.1.7)

g(z, α)−1 = (z; q)
−1
α

(
qz−1; q

)−1

−α = (zqα; q)−α
(
qz−1q−α; q

)
α

= g(zqα,−α) [replaces (i)]

= g(qz−1q−α, α) [replaces (ii)]

We can rewrite these equations as

ea (z)
−1

= ea−1 (az) (A.2.13a)

ea (z)
−1

= ea
(
qa−1z−1

)
(A.2.13b)

ea
(
z−1
)

= a−1ea−1 (z) . (A.2.13c)

A.2.3 The q-gamma function

The q-gamma function Γq(ζ) is the q-generalization of the classical Gamma function Γ(z) satisfying

Γ(z + 1) = zΓ(z),

with Γ(1) = 1. It has simple poles at z = Z≤0 with residue Res(Γ,−k) = (−1)k

k! and it also satisfies the
useful identity

1

Γ(z, 1− z)
=

π

sinπz
.

Similarly, the q-gamma function satisfies the q-difference equation

Γq(ζ + 1) =
1− qζ

1− q
Γq(ζ),

with Γq(1) = 1. It is defined as follows

Γq(ζ) =


(q;q)∞
(qζ ;q)∞

(1− q)1−ζ ≡ (q;q)ζ−1

(1−q)ζ−1 if |q| < 1,

q(
ζ
2) (q−1;q−1)∞

(q−ζ ;q−1)∞
(q − 1)1−ζ ≡ q(

ζ
2)
(
q−1; q−1

)
ζ−1

(q − 1)1−ζ if |q| > 1.

An interesting feature is the analogue of the interesting relation of Γ(z). We have

Γq(ζ, 1− ζ) =

(1− q) (q; q)
3
∞

1
Θq(z)

if |q| < 1

qζ(ζ−1)(q−1;q−1)
3

∞
q−1 Θq (z) if |q| > 1,

where we have picked a logarithm qζ = z. It also has simple poles at ζ ∈ Z≤0 with residues

Res(Γq,−k) = − (1− q)k+1

log q (q−k; q)k
.
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A.3 q-generalizations

It is obvious that the quest for a canonical definition of a q-generalization of some object, e.g. a function
f(z) is pointless. There are an infinite number of ways one can q-generalize such a function: in principle,
any function g(z, q) with limq→1 g(z, q) = f(z) will do. We try to impose further restrictions on this
deformation, mainly motivated by empirical examples. This is by no means a rigorous list of requirements;
a q-generalization may follow all or some of these rules.

Rule: the q-generalization fq(z) of a function f(z) that satisfies a differential equation L
(

d
dz

)
f = 0

must satisfy
L (Dq)φq = 0.

This restriction is of course relevant up to multiplication by elliptic factors, as discussed in section 6.1.
Note also that the substitution d

dz 7→ Dq is degenerate: the coefficients of the differential equation may
be deformed by arbitrary functions of q with limit equal to 1.

Rule: the q-generalization fq(z) of an analytic function f(z) =
∑
n≥0 fnz

n is given by a function

fq(z) =

∞∑
n=0

fn(q)zn,

such that the series converges and lim
q→1

fn(q) = fn up to a redefinition of z. (e.g. lim
q→1

fq
(
g(q)z

)
= f(z)).

Furthermore one might require that the series converges for both regimes |q| ≷ 1.

Rule: The q-generalization of a function that solves a q-difference equation, has the same form for
|q| ≷ 1 either for generic or special (integer) values of the arguments.

By same form, we mean something stronger than just “the same symbol”, e.g. same convergent power
series in z for both chambers. An example is of course the q-Pochhammer symbol (z; q)∞ and more
generally (z; q)α both of which satisfy the same q-difference equation for |q| ≷ 1. In addition, in both
regimes, choosing α in Z reduces the infinite products to finite ones.

An example of a q-function that does not have the same form in the two chambers is the q-gamma
function. However, one can certainly motivate a connection between the two forms: picking ζ = n ∈ Z
we have for |q| > 1:

Γq(n) = q(
n
2) (p; p)∞

(pn; p)∞
(q − 1)1−n = q(

n
2) (p; p)n−1 (q − 1)1−n,

where p = q−1. But for integer n we have that q(
n
2) (p; p)n−1 = (−1)n−1 (q; q)n−1 and thus

Γq(n) = (q; q)n−1(1− q)1−n,

which is exactly the same form as for |q| < 1.
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