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Abstract

In this thesis a proposal by Leigh, Minic and Yelnikov for the analytic computation of
the glueball mass spectrum of pure Yang-Mills theory in 2 + 1 spacetime dimensions is
critically analysed. It is based on the construction of local gauge-invariant variables in the
Hamiltonian formulation of the theory, that was developed by Karabali, Kim and Nair,
and which is also reviewed here in detail.

The results by Leigh et al. are based on a conjectured approximation to the vac-
uum wave functional that is quasi-Gaussian in the gauge-invariant variable, but with a
non-trivial kernel that interpolates between the UV where asymptotically free gluons are
recovered and the IR where it leads to confinement. However, its derivation relies on an
assumption that could not be verified and, strictly speaking, is even violated.

It is shown that the proposed vacuum wave functional has exactly the same form when
re-expressed in the original gauge field variables and the calculations are then repeated
in this framework. The key ingredient is the regularisation of the kinetic part of the
Hamiltonian, which is performed here using a well-known method first introduced by
Fujikawa in the calculation of the axial anomaly. The quantitative results contradict
those found by Leigh et al. and the reason for this discrepancy remains unclear. Finally,
the physical consequences of the values obtained here are discussed.





Acknowledgements

First of all, I would like to thank my advisor, Prof. Dr. Stefan Hofmann from the LMU,
for letting me join his research group and supporting me throughout this whole project.
I am very grateful for the many helpful discussions we had and for the motivation and
confidence he gave me.

I also want to express my sincere gratitude to Asst. Prof. Dr. Dennis D. Dietrich
from the University of Southern Denmark for a lot of enlightening discussions and a vivid
communication. Without him I would not have been as confident about my results as I
am now.

Furthermore, I would like to thank all the members of Prof. Hofmann’s group for
creating such an inspiring atmosphere of research and giving me the opportunity to discuss
a lot of very interesting physics.

I wish to express my deepest thanks to my parents, who supported me in all possible
ways during the whole period of my studies.

Above all, I thank my girlfriend Judith for repeatedly encouraging me, for cheering me
up and for making everything so much easier.





Contents

1. Introduction 1

2. Formalism 5
2.1. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. The Hamiltonian Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. The KKN Approach 11
3.1. New Field Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Gauge-Invariant Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3. Fields in Adjoint Representation . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4. Holomorphic Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5. Quantum Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1. Spin J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.2. Parity P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.3. Charge Conjugation C . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6. Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7. Hamiltonian in New Variables . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7.1. Potential Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.2. Kinetic Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.3. Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4. The LMY Proposal 29
4.1. Vacuum Wave Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1. Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2. Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2. Glueball Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1. Spin 0 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2. Spin 2 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5. Testing the LMY Conjecture 39
5.1. First Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1. n = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2. n = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.3. n = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2. Second Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3. Exact Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



Contents

6. Back to The Original Variables 47
6.1. Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2. The LMY Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1. n=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.2. n=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.3. n=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3. Further Regularisation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1. Choosing Different Regulators . . . . . . . . . . . . . . . . . . . . . 57
6.3.2. A More Careful Analysis . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4. A Modified Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4.1. Linear Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4.2. General IR Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 65

7. Conclusion 67

Appendix

A. Green’s Functions for ∂ and ∂̄ 73

B. Vacuum Wave Functional for Pure QED in 2+1 Dimensions 75

C. Regulated Calculations 77
C.1. In KKN Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
C.2. In Original Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 93

x



1. Introduction

In today’s standard model of particle physics, the strong interaction which is responsible
for binding quarks to form hadrons like the proton or neutron, is described by quantum
chromodynamics (QCD). It is a non-abelian (or Yang-Mills) gauge theory based on the
symmetry group SU(3), the corresponding charge is called colour charge and the gauge
bosons mediating the force are called gluons. Despite its great success in quantitatively
predicting observations made at collider experiments at high energies, the low energy
sector of the theory is still not understood very well. The reason for that originates from
the peculiar behaviour of the coupling constant: It becomes smaller at high energies (this
phenomenon is referred to as asymptotic freedom), allowing for standard perturbative
calculations in this regime, but at low energies it increases, making perturbation theory
inapplicable.

Two of the most important non-perturbative properties of QCD, which must be satisfied
in order to make it a viable theory describing our world, are the existence of a mass gap and
the confinement of quarks. The former states that there is a finite energy gap between
the vacuum and the first excited state, which is necessary to explain why the strong
interaction is very short ranged despite the fact that gluons are massless. The latter
means that it is impossible to separate a single quark from a colour-neutral bound state,
which would explain why no isolated quark has ever been observed. Even though there
exists a lot of evidence in favour of both of these important properties from computer
simulations performed in lattice QCD, where the continuous spacetime is replaced by a
discrete lattice, still nobody has succeeded in giving an analytic proof of them. Therefore,
even almost 50 years after the proposal of QCD as the theory of strong interactions, the
questions of the mass gap and confinement still remain outstanding unsolved problems in
theoretical physics.

In view of the technically complicated nature of non-perturbative problems, it might
be useful to first study a model that is somehow simpler, but that still incorporates the
main features of the theory. One possible prototype is pure Yang-Mills theory in 2 + 1
spacetime dimensions, as for example discussed on a qualitative level by Feynman in [1].

“Pure” means that it contains no quarks, but as Wilson argued in [2], the question
of confinement can be answered without quarks by the vacuum expectation value of the
gauge field phase factor around a closed loop. Furthermore, even without quarks there
remains the confinement problem for gluons, meaning that the first excited states above
the vacuum must be colour-neutral bound states of gluons, so-called glueballs. The mass
gap hypothesis then states that the lightest glueball mass must be greater than zero.

The reduction of the system by one spatial dimension is a more severe change and it is
a priori not clear that the qualitative behaviour in this theory will still be the same. But
the possibility to make any progress in this challenging field of research should be worth
the risk. Of course the hope is that once the 2 + 1 dimensional theory is understood, the
methods and insights can be carried over to the original higher dimensional theory, and
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1. Introduction

at the moment there is in fact some evidence for how this might work ([3], [4], [5], [6]).
One particular approach to analytically attack the mass gap and confinement problem

for pure Yang-Mills theory in 2 + 1 dimension was developed by Karabali, Kim and Nair
(KKN) ([7], [8], [9], [10]), where they constructed the theory in Hamiltonian formulation in
terms of new local gauge-invariant variables, similar to the “corner variables” introduced
earlier by Bars [11]. Based on this formalism, Leigh, Minic and Yelnikov (LMY) in
2007 proposed an approximation to the vacuum wave functional, from which they could
compute the glueball mass spectrum for this theory [12]. Their strategy was to directly
solve the Schrödinger equation in terms of the KKN variables up to quadratic order in
the relevant variable (which is roughly the same as the colour-magnetic field).

The good thing about the LMY proposal is that it asymptotes the expected form
corresponding to asymptotically free gluons in the high energy limit as well as a confining
vacuum in the low energy limit. Furthermore, the deduced string tension and glueball
masses are in good agreement with lattice simulation data, even though the agreement of
the mass spectrum is not as “excellent” as claimed by the authors.

But the major flaw is that in order to solve the Schrödinger equation they needed a
certain assumption about the spectrum of the kinetic energy operator, which they could
not prove. In fact, LMY were not only unable to prove their conjecture, they even found
disagreement by direct calculations. They used it anyway to derive their result, mainly
with the justification that in the end it nicely agrees with most expectations. The other
justification is that in terms of the KKN variables the conjecture seems rather natural at
a heuristic level, and the observed disagreement presents only small deviations from it,
which are closely related to the very subtle regularisation procedure of the kinetic energy
operator that is perhaps not yet completely understood. This situation is of course very
unsatisfying, and it would be desirable to have an independent approach to verify (or
falsify, and possibly correct) the LMY conjecture.

The main objective of this thesis is to work out all the details of the KKN and LMY
approach and to give all calculations in a thorough way. After this has been done, it is
shown how the LMY vacuum wave functional can be re-expressed in terms of the original
Yang-Mills variables, and that it has exactly the same quasi-Gaussian form. This raises
the question why the change of variables was necessary or helpful at all for the LMY
calculations, and they are repeated in the original variables, providing an independent
test of the key conjecture. Those calculations lead to divergent expressions, that are dealt
with similar to a well-known and widely accepted regularisation procedure, first used by
Fujikawa for the calculation of the axial anomaly [13]. The outcome is that although the
LMY conjecture is confirmed at a qualitative level, the quantitative results are different.
Finally, it is shown that a modification of the conjecture according to these results leads
to a vacuum wave functional that still has the correct UV limit but fails to reproduce the
confining IR behaviour. The discrepancy with the LMY results remains a puzzle that has
to be left for future research.

The thesis is organised as follows. In chapter 2 the Hamiltonian formulation of the
theory is reviewed. Chapter 3 explains the change to the KKN variables, with the main
focus on the derivation of the regularised Hamiltonian, which is of major importance for
the LMY calculations that are presented in chapter 4. Chapter 5 is devoted to testing the
LMY conjecture by direct calculations, emphasising the delicate dependence on the exact
regularisation procedure. In chapter 6 the LMY calculations are repeated in terms of the
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original variables, possible regularisation issues are discussed and the consequences of the
altered results for the vacuum wave functional are analysed. Chapter 7 gives a conclusion
and the appendix shows some detailed calculations that were omitted before.
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2. Formalism

In this chapter, after explaining some notational conventions, classical pure Yang-Mills
theory in 2+1 dimensions is defined and its quantisation in temporal gauge in the Hamil-
tonian formulation is briefly reviewed.

2.1. Conventions

Throughout this thesis Latin letters from the beginning of the alphabet are used as su(N)
indices, Greek letters denote spacetime indices in 2 + 1 dimensions and Latin letters from
the middle of the alphabet indicate purely spatial components:

a, b, . . . = 1, . . . , N2 − 1 (2.1a)

µ, ν, . . . = 0, 1, 2 (2.1b)

i, j, . . . = 1, 2. (2.1c)

Repeated indices of any kind should be summed over unless stated otherwise, and Greek
indices are lowered with the Minkowski-metric

ηµν = diag(−1,+1,+1,+1). (2.2)

A boldface notation of real variables is used for spatial vectors — for example x ∈ R2

— to distinguish them from the corresponding vectors in Minkowski space — x ∈ R2+1.
In the context of complex variables z ∈ C, boldface emphasises the general dependence
of functions on both z and its complex conjugate z̄ — for example f(z). Arguments z
(or z̄) indicate holomorphic (or antiholomorphic) functions of the complex variable, i.e.
∂̄f(z) = 0 = ∂f(z̄).

Spatial integrals over a real variable x ∈ R2 are written as∫
x

:=

∫
d2x ≡

∫
dx1 ∧ dx2 (2.3)

and similarly for a complex variable z ∈ C, z1 = Re(z), z2 = Im(z):∫
z

:=

∫
d2z ≡

∫
dz1 ∧ dz2 ≡

∫
1

2i
dz ∧ dz̄. (2.4)

To minimize the use of parentheses we adopt (until chapter 6) the convention that
derivative operators like ∂µ act only on the first function to their right. In contrast, when
they should be understood as operators acting on everything to their right, they will be
supplemented by a hat, ∂̂µ. When there is no function at all to their right, it is clear that
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2. Formalism

they are meant as operators and the hat will sometimes be omitted in those cases. So for
example we have

∂µfg = (∂µf)g (2.5a)

∂µ(fg) = ∂µfg + f∂µg (2.5b)

∂̂µf = ∂µf + f∂̂µ ⇔ [∂̂µ, f ] = ∂µf (2.5c)

∂̂µfg = ∂µfg + f∂µg + fg∂̂µ. (2.5d)

The conventions for the SU(N) generators ta and the gauge field Aµ (in the fundamental
representation) will be adopted from [12]:

[ta, tb] = ifabctc (2.6a)

Tr(tatb) =
1

2
δab (2.6b)

Aµ = −iAaµta, Aaµ ∈ R. (2.6c)

Note that in this convention the ta’s are hermitian and the Aµ’s anti-hermitian, traceless
N ×N matrices. Also, the coupling constant g is included in the field Aµ.

The covariant derivative ∇µ and the field strength tensor Fµν are given by

∇µ = ∂µ + Aµ (2.7a)

Fµν = [∇̂µ, ∇̂ν ] = ∂µAν − ∂νAµ + [Aµ, Aν ] = −iF a
µνt

a, (2.7b)

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν . (2.7c)

Gauge transformations take the form

Aµ 7→ gAµg
−1 − ∂µgg−1, g(x) ∈ SU(N). (2.8)

2.2. The Hamiltonian Formalism

Since the Hamiltonian formulation (especially in the Schrödinger picture) is not very
commonly used to describe a quantum field theory, it is worthwhile to give a brief review.
A more detailed presentation can be found for example in the text book by B. Hatfield
[14].

Pure Yang-Mills theory in 2 + 1 dimensions is defined by a Lagrangian density for the
non-abelian gauge field Aµ that reads

L =
1

2g2
Tr(FµνF

µν) = − 1

4g2
F a
µνF

aµν =
1

2g2

[
(F a

0i)
2 − (F a

12)2
]

(2.9)

giving rise to the classical field equations

∇ab
µ F

bµν = 0 (2.10)

where ∇ab
µ = δab∂µ + facbAcµ is the covariant derivative in adjoint representation.
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2.2. The Hamiltonian Formalism

For the Hamiltonian formalism that will be used it is convenient to adopt the temporal
gauge1

A0 = 0 (2.11)

so only the spatial field components Ai are left and the Lagrangian density simplifies to

L =
1

2g2

[
(∂0A

a
i )

2 − (Ba)2
]

(2.12)

where
Ba = F a

12 = ∂1A
a
2 − ∂2A

a
1 + fabcAb1A

c
2 (2.13)

is the colour-magnetic field which in 2 + 1 dimensions has only one (spatial) component.
The canonically conjugate momenta to the field Aai are given by

Πa
i =

∂L
∂(∂0Aai )

=
1

g2
∂0A

a
i = −Ea

i (2.14)

and represent (apart from sign) the colour electric field. So the pure Yang-Mills Hamilto-
nian in 2 + 1 dimensions in temporal gauge becomes

H =

∫
x

(
Πa
i ∂0A

a
i − L

)
=

∫
x

(
g2

2
(Ea

i )2 +
1

2g2
(Ba)2

)
. (2.15)

In the quantised version of the theory (in the Heisenberg picture) the state of a system
is described by a (time independent) state-vector |Ψ〉, and the field variables and their
conjugate momenta are replaced by (time dependent) operators satisfying the equal time
commutation relations

[Aai (x, t),Π
b
j(y, t)] = −[Aai (x, t), E

b
j (y, t)] = iδabδijδ(x− y). (2.16)

Their equations of motion are2

∂0A
a
i (x) = i [H, Aai (x)] = ig2

∫
y

Eb
i (y)

[
Eb
i (y), Aai (x)

]
= −g2Ea

i (x) (2.17a)

∂0E
a
i (x) = i [H, Ea

i (x)] =
i

g2

∫
y

Bb(y)
[
∂1A

b
2 − ∂2A

b
1 + f bcdAc1A

d
2, E

a
i (x)

]
=

=
1

g2

(
−δi2∂1B

a + δi1∂2B
a + δi2f

bcaAc1B
b + δi1f

badAd2B
b
)

(x) =

= − 1

g2

(
δi2∇ab

1 B
b − δi1∇ab

2 B
b
)

(x) = εij
1

g2
∇ab
j B

b(x) (2.17b)

and so the Hamiltonian system indeed reproduces the original field equations (2.10) in
temporal gauge for ν = 1, 2. But the ν = 0 field equation is missing, which in temporal
gauge becomes the “Gauss law” constraint

∇ab
i E

b
i ≡ ∂iE

a
i + fabcAbiE

c
i = 0. (2.18)

1It is also known as Hamiltonian- or Weyl gauge.
2For the sake of a compact notation we omit time arguments. All operators are to be taken at the same

time.
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2. Formalism

This equation, however, is inconsistent as an operator identity with the commutation
relations (2.16) because acting with ∇cb

j (y) on (2.16) does not give zero on the right hand
side. Nevertheless, it is enough to require the Gauss law operator (2.18) to vanish when
acting on physical states |Ψ〉:

∇ab
i E

b
i |Ψ〉 = 0. (2.19)

In the Schrödinger picture, the state is now described by a time dependent state-vector
|Ψ(t)〉 satisfying the Schrödinger equation

i∂t|Ψ(t)〉 = H|Ψ(t)〉 (2.20)

with the Hamiltonian to be understood as an operator valued functional of the canonical
variables Aai and their corresponding momenta −Ea

i . Those are now time independent
operators (and hence so is the Hamiltonian) satisfying the commutation relations

− [Aai (x), Eb
j (y)] = iδabδijδ(x− y). (2.21)

In A-representation (i.e. the representation in which the operator A is diagonal with
eigenvectors denoted by |A〉) the state is described by a wave-functional 〈A|Ψ(t)〉 ≡
Ψ(t)[A], the operator Aai acts as a multiplication operator and the momentum operator
becomes a functional derivative with respect to the gauge field:

Ea
i (x) = i

δ

δAai (x)
. (2.22)

So in this basis the Hamiltonian takes the form

H[A] = T[A] + V[A], (2.23a)

T[A] :=

∫
x

(
−g

2

2

δ2

δAai (x)2

)
(2.23b)

V[A] :=

∫
x

(
1

2g2
Ba(x)2

)
(2.23c)

with T and V denoting the kinetic and potential energy operators, respectively, in anal-
ogy to ordinary quantum mechanics. Since H is time independent, the time dependent
Schrödinger equation (2.20) can be solved just like in ordinary quantum mechanics by
a separation Ansatz ΨE(t)[A] = e−iEtΨE[A] with ΨE[A] satisfying the time independent
Schrödinger equation

H[A]ΨE[A] = EΨE[A] (2.24)

which for a field theory is a functional differential equation.
The Gauss law constraint (2.19) now reads

∇ab
i

δ

δAbi(x)
Ψ(t)[A] = 0. (2.25)

This is in fact equivalent to requiring all physical states to be invariant under residual
gauge transformations with respect to the gauge condition A0 = 0, i.e. gauge transforma-
tions which are independent of time:

Ai 7→ gAig
−1 − ∂igg−1, g(x) ∈ SU(N). (2.26)
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2.2. The Hamiltonian Formalism

The equivalence can be seen as follows [1]. For infinitesimal3 residual gauge transforma-
tions g = 1− iθa(x)ta +O(θ2) the transformation (2.26) becomes (terms of higher order
in θ are suppressed)

Aai 7→ Aai −∇ab
i θ

b = Aai − (∂iθ
a + fabcAbiθ

c) (2.27)

and the resulting change of the state functional Ψ[A] is

δΨ[A] =

∫
x

δAai (x)
δΨ[A]

δAai (x)
(2.28a)

= −
∫
x

(
∂iθ

a(x) + fabcAbi(x)θc(x)
) δ

δAai (x)
Ψ[A] (2.28b)

=

∫
x

θa(x)
(
δac∂i + fabcAbi(x)

) δ

δAci(x)
Ψ[A] (2.28c)

=

∫
x

θa(x)∇ab
i

δ

δAbi(x)
Ψ[A]

!
= 0 (2.28d)

which, because the θa are arbitrary functions of x, is indeed equivalent to (2.25). Therefore
the quantum system can be described by (2.23)-(2.24) together with the requirement on
physical states to be invariant under time independent gauge transformations.

3Note that in two space dimensions any gauge transformation can be reached by a continuous series of
infinitesimal ones, since π2(SU(N)) = 0. See for example [15, chapter 23].
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3. The KKN Approach

The calculations by Leigh et al. are based on a reformulation of the theory which was
developed by Karabali, Kim and Nair (KKN) in a series of papers ([7], [8], [9], [10]) and
will be reviewed in detail in this chapter. The emphasis will lie on those aspects that
are most important for the calculations by Leigh et al. in [12] and so the way they are
presented will to some extend also follow the discussion therein.

The main idea is to change from the original gauge field variables Ai to some new local
gauge-invariant variables and view the physical states as functionals of those. Moreover,
this approach uses the fact that in 2 +1 spacetime dimensions the two spatial coordinates
can be grouped into one complex coordinate.1 But as will be seen in section 3.4, there
is a price to pay for obtaining those gauge-invariant variables: the introduction of a new
“holomorphic” invariance that has to be taken care of. Nevertheless, the hope is that the
new variables offer a possibility to explore the non-perturbative features of Yang-Mills
theory.

3.1. New Field Variables

The first step in the KKN construction is to combine the two spatial coordinates into one
complex coordinate:

z = x1 − ix2 ∂ ≡ ∂z =
1

2
(∂1 + i∂2) (3.1a)

z̄ = x1 + ix2 ∂̄ ≡ ∂z̄ =
1

2
(∂1 − i∂2) (3.1b)

Since the Ai are the components of a 1-form, their corresponding transformation is

A ≡ Az =
1

2
(A1 + iA2) dz = dx1 − idx2 (3.2a)

Ā ≡ Az̄ =
1

2
(A1 − iA2) = −A† dz̄ = dx1 + idx2. (3.2b)

So instead of two traceless anti-hermitian matrices we now have one traceless but otherwise
general complex matrix. The complexified version of the covariant derivative becomes

∇ = ∂ + A ∇ = ∂̄ + Ā. (3.3)

1There is, however, an analogous way of defining gauge-invariant variables in 3 + 1 dimensions without
introducing any complex structure, which can be found in [5] and is closely related to the formalism
of Bars [11].
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3. The KKN Approach

Now the crucial step is the introduction of the new field variable M by the defining
equation

A = −∂MM−1 ⇒ Ā = M †−1∂̄M † (3.4)

which can be solved for M (and M †) by means of the Green’s functions for the operator
∂ (and ∂̄)2:

∂zG(z, z′) = δ(2)(z − z′) = ∂̄zḠ(z, z′) (3.5a)

⇒ G(z, z′) =
1

π(z̄ − z̄′)
, Ḡ(z, z′) =

1

π(z − z′)
. (3.5b)

(See section 2.1 for the use of boldface complex variables.) Equation (3.4) now yields

M(z) = h†(z̄) +

∫
z′
A(z′)M(z′)G(z′, z) (3.6a)

M †(z) = h(z) +

∫
z′
Ḡ(z, z′)M †(z′)Ā(z′) (3.6b)

where h† and h are matrices in the kernel of ∂ and ∂̄, respectively. These implicit expres-
sions can be solved iteratively, e.g. for h = 1 one gets:

M(z) = 1 +

∫
z′
A(z′)G(z′, z) +

∫
z′

∫
z′′
A(z′)A(z′′)G(z′′, z′)G(z′, z) + . . . (3.7a)

M †(z) = 1 +

∫
z′
Ḡ(z, z′)Ā(z′) +

∫
z′

∫
z′′
Ḡ(z, z′)Ḡ(z′, z′′)Ā(z′′)Ā(z′) + . . . (3.7b)

Other choices of h would give different M ’s. This is the origin of the new holomorphic
invariance examined below.

The tracelessness of A implies

0 = det(M) Tr(∂MM−1) = ∂ det(M) (3.8)

and so we can choose det(M) = 1, i.e.

M ∈ SL(N,C). (3.9)

(If det(Mold) 6= 1 just define M := Mold/ det(Mold) which has determinant one and can
be inserted in (3.4) instead of Mold because of (3.8).)

3.2. Gauge-Invariant Objects

The effect of a gauge transformation3 (2.26) of Ai with g(x) ∈ SU(N) on the complexified
filed variable A is obviously

A 7→ gAg−1 − ∂gg−1 (3.10)

2For a derivation of the Green’s functions see appendix A.
3From now on the adjective “residual” will be dropped and it will be understood that gauge transfor-

mations are time-independent.
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3.3. Fields in Adjoint Representation

which can be expressed in terms of M as

− ∂MM−1 7→ −(g∂MM−1g−1 + ∂gg−1) = −∂(gM)(gM)−1 (3.11)

and thus translates to
M 7→ gM. (3.12)

This simple behaviour under gauge transformations can be viewed as a motivation for
introducing the new variable M according to (3.4), and it allows us to define the local
gauge-invariant variable

H := M †M. (3.13)

It will be convenient also to introduce a gauge-invariant current4

J := ∂HH−1. (3.14)

Note that since H has determinant one, J is traceless:

Tr(J) = Tr(∂HH−1) = ∂ det(H) = 0 (3.15)

and can thus be expanded in the SU(N) generators with complex components Ja

J = Jata, Ja = 2 Tr(taJ). (3.16)

3.3. Fields in Adjoint Representation

Later on, the adjoint components of several field variables will be used, and so in this
section it will be explained how they are defined.

The components of the SU(N) generators in the adjoint representation are

(T a)bc = −ifabc, (3.17)

and since the adjoint representation of A in our conventions is

Aadj = −iAa T a, (3.18)

its components are given by5

Abc = −Aafabc = Aaf bac. (3.19)

The covariant derivative in the adjoint representation acts on a Lie algebra valued field
Φ(x) = −iΦa(x)ta as

∇adj Φ(x) = ∂Φ + Aadj Φ = ∂Φ− iAcT c Φ (3.20)

4This definition differs from the one given in [7] or [12] by a constant factor of cAπ ≡
N
π to simplify some

formulas.
5Note that by a slight abuse of notation we use the same symbol for objects in the adjoint and in the

fundamental representation. Which one is meant will always be clear from the number of indices —
one for the fundamental and two for the adjoint.
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3. The KKN Approach

or in components(
∇adj Φ

)a
= ∂Φa − iAc(T c)abΦb = ∂Φa + AabΦb = ∇abΦb, (3.21)

∇ab := δab∂ + Aab. (3.22)

It can also be written in terms of the covariant derivative in the fundamental representa-
tion as

∇adj Φ(x) = [∇fun,Φ(x)]. (3.23)

Now the new field variable M is not an algebra element, but rather an element of the
(complexified) group. Therefore its adjoint components are defined as

Mab := 2 Tr
(
taMtbM−1

)
. (3.24)

First note that this prescription for general N × N matrices A,B yields a simple multi-
plication rule:

AabBbc = 2 Tr
(
taAtbA−1

)
2 Tr

(
tbBtcB−1

)
(3.25a)

= 2
(
A−1taA

)
αβ

2
(
tb
)
βα

(
tb
)
γδ

(
BtcB−1

)
δγ

(3.25b)

= 2
(
A−1taA

)
αβ

(
δβδδαγ −

1

N
δβαδγδ

)(
BtcB−1

)
δγ

(3.25c)

= 2 Tr
(
taABtcB−1A−1

)
(3.25d)

= (AB)ac (3.25e)

where the second term in (3.25c) gives vanishing contribution because the ta are traceless.
In particular this identity shows that the inverse of Mab is in fact given by(

M−1
)ab

= 2 Tr
(
taM−1tbM

)
= M ba. (3.26)

To justify definition (3.24), one can show that Aab and Mab defined as above fulfil the
adjoint version of (3.4):

−
(
∂MM−1

)ab
= −∂Mac

(
M−1

)cb
= −2 ∂ Tr

[
taMtcM−1

]
2 Tr

[
tcM−1tbM

]
(3.27a)

= −2 Tr
[(
∂M−1taM +M−1ta∂M

)
tc
]

2 Tr
[
tcM−1tbM

]
(3.27b)

= −2 Tr
[(
∂M−1taM +M−1ta∂M

)
M−1tbM

]
(3.27c)

= 2 Tr
(
∂MM−1[ta, tb]

)
= 2iAc Tr

(
[ta, tb]tc

)
= −Acfabc (3.27d)

= Aab (3.27e)

where (3.27c) follows in the same way as (3.25c). Furthermore, since

Mac† = (M ca)∗ = 2 Tr
[
(tc)T M∗ (ta)T (M−1

)∗]
= 2 Tr

[(
M−1

)†
taM †tc

]
= (M †)ac

(3.28)
(here ∗ denotes complex conjugation), the adjoint version of H is given by

Hab = Mac†M cb = (M †M)ab = 2 Tr(taHtbH−1). (3.29)
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3.4. Holomorphic Invariance

Finally, repeating the calculation done in (3.27), one finds the adjoint components of J
to be

Jab = (∂HH−1)ab = ∂HacH−1cb = . . . = ifacbJ c (3.30)

as one might have expected. (Note that there is an extra factor of i here as compared
to the corresponding formula for A, (3.19). This is because the components of J were
defined in (3.16) without a factor of −i as opposed to the convention for A.)

3.4. Holomorphic Invariance

As already mentioned above, the definition of the new field variables M by equation
(3.4) is not unique. In fact, the corresponding A and Ā will be left unchanged by the
transformation

M(z) 7→M(z)h†(z̄), M †(z) 7→ h(z)M †(z) (3.31)

where h is some unimodular complex matrix with ∂̄h = 0 (⇔ ∂h† = 0), i.e. the matrix
elements of h are holomorphic functions of the complex space-variable z. Therefore this
new invariance is called holomorphic invariance. Note that this transformation of M is
equivalent to keeping h†(z̄) in (3.6) arbitrary (and regarding the M ’s appearing in (3.6)
as the transformed ones), and at the same time imposing the following transformation
rules for the Green’s functions:

G(z, z′) 7→ h†
−1

(z̄)G(z, z′)h†(z̄′) (3.32a)

Ḡ(z, z′) 7→ h(z)Ḡ(z, z′)h−1(z′) (3.32b)

Because of the (anti-)holomorphicity of the transformation matrix, the new Green’s func-
tions will still fulfil the defining equations ∂zG

(h)(z, z′) = δ(z−z′) = ∂̄zḠ
(h)(z, z′), but it

has to be kept in mind that they have nevertheless now become matrices, and so their or-
dering becomes important. In particular, the transformation rule (3.32) only makes sense
if the ordering of Green’s functions in (3.7) is the way it is written there, i.e. the Green’s
function with, say z̃ as its second argument is adjacent to the left of the Green’s function
with z̃ as its first argument. The ordering of other expressions involving Green’s func-
tions will always be determined by requiring the correct behaviour of the whole expression
under holomorphic transformations.

Next, let us investigate the transformation behaviour of the gauge-invariant variables
defined above under this new symmetry. The H field is not invariant but transforms under
h as

H(z) 7→ h(z)H(z)h†(z̄). (3.33)

This means that H is still not a suitable variable for the construction of physical states,
which must of course be invariant under h-transformations. The current J transforms as

J = ∂HH−1 7→ ∂(hHh†)(hHh†)−1

= ∂hh−1 + h∂HH−1h−1 + 0

= hJh−1 + ∂hh−1.

(3.34)

This shows that J is a connection for holomorphic transformations (just like the original A-
field is a connection for gauge transformations) and so there is a corresponding h-covariant
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3. The KKN Approach

derivative6

D̂ := ∂̂ − J 7→ ∂̂ − hJh−1 − ∂hh−1

= (∂̂ − hJh−1 − ∂hh−1)hh−1 = hD̂h−1
(3.35)

which in the adjoint representation acts on a matrix-valued field Φ = Φata as

DΦ = [D̂,Φ] = ∂Φ− [J,Φ] =
(
DabΦb

)
ta, (3.36a)

Dab = δab∂ − ifacbJ c = δab∂ − Jab, (3.36b)

in complete analogy to the gauge-covariant derivative (3.21). Furthermore, one can define
a h-covariant Laplacian7

∆ :=
1

2

(
ˆ̄∂D̂ + D̂ ˆ̄∂

)
(3.37)

acting in the adjoint representation on Φ as

∆Φ =
1

2

([ ˆ̄∂, [D̂,Φ]
]

+
[
D̂, [ ˆ̄∂,Φ]

])
=

1

2

(
∂̄[D̂,Φ] + [D̂, ∂̄Φ]

)
= ∂∂̄Φ− 1

2

(
∂̄[J,Φ] + [J, ∂̄Φ]

)
=
(
∆abΦb

)
ta, (3.38a)

∆ab = δab∂∂̄ − 1

2
ifacb

(
ˆ̄∂J c + J c∂̄

)
(3.38b)

= δab∂∂̄ − 1

2

(
ˆ̄∂Jab + Jab∂̄

)
(3.38c)

= δab∂∂̄ − 1

2
∂̄Jab − Jab∂̄. (3.38d)

The point of these definitions is that if Φ is h-covariant, i.e. Φ 7→ hΦh−1, then the same
is true for DΦ and ∆Φ, as can immediately be seen by using the transformation (3.35)
in the corresponding commutators. Thus, these h-covariant derivative operators can be
used (instead of the usual partial derivative ∂ and Laplacian ∂̄∂) in the construction of
physical states. Finally, note that such a Φ is given by ∂̄J , because h is holomorphic and
therefore

∂̄J 7→ ∂̄(hJh−1 + ∂hh−1) = h∂̄Jh−1. (3.39)

Furthermore, ∂̄J is essentially real in the following sense:

(∂̄J)† = ∂(H−1∂̄H) = ∂H−1∂̄H +H−1∂̄∂H

= −H−1∂HH−1∂̄H +H−1∂̄(∂HH−1H)

= −H−1J∂̄H +H−1∂̄(JH)

= H−1∂̄JH

(3.40)

where in the second line we inserted 1 = H−1H and used the fact that ∂HH−1 =
−H∂H−1. These two properties of ∂̄J already indicate that it will be a very useful
variable for the construction of the vacuum wave functional of the theory.

6The minus sign in front of J is due to the plus sign of the inhomogeneous part in the h-transformation
behaviour of J in (3.34) as opposed to the g-transformation behaviour of A.

7Any other linear combination of ˆ̄∂ and D̂ would also be h-covariant, simply because ˆ̄∂ and h commute.
The reason for taking this particular form for ∆ is that it is parity-even as will be shown in section
3.5.
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3.5. Quantum Numbers

3.5. Quantum Numbers

Since the glueball spectrum of the theory will later be probed by taking two point functions
of operators with the desired quantum numbers JPC, it is worthwhile to discuss those
quantum numbers for the new field variables now. The main attention will be paid to the
transformation behaviour of ∂̄J and the h-covariant Laplacian ∆, which as just argued
are good candidates for the construction of the vacuum state.

3.5.1. Spin J

This is the quantum number corresponding to rotations in the 1-2-plane, i.e. the spatial
SO(2) subgroup of the Lorentz group. Since Ai and ∂i are the components of a (co-)vector
field we have:

JA = J∂ = −1, JĀ = J∂̄ = +1 (3.41)

From equation (3.7) we see that M is invariant under rotations and so

JM = JH = 0, (3.42a)

JJ = −1, (3.42b)

J∂̄J = J∆ = 0. (3.42c)

The last line shows that a state that is constructed only from ∂̄J and ∆ will have J = 0,
as required for the vacuum state.

3.5.2. Parity P

Parity in 2 + 1 dimensions can be defined as the transformation8

P :

(
x1

x2

)
7→
(
x1

−x2

)
. (3.43)

For the complex coordinate z this implies

z = x1 − ix2
P7→ x1 + ix2 = z̄ (3.44)

which is simply complex conjugation. Thus under P:

A 7→ Ā, ∂̂ 7→ ˆ̄∂
(3.4)⇒ M 7→M †−1 (3.13)⇒ H 7→ H−1 (3.45)

and

∂̄J ≡ ∂̄(∂HH−1) 7→ ∂(∂̄H−1H)

= ∂∂̄H−1H + ∂̄H−1∂H

= H−1(H∂∂̄H−1 +H∂̄H−1∂HH−1)H

= H−1(H∂∂̄H−1 + ∂̄HH−1H∂H−1)H

= H−1∂̄(H∂H−1)H

= −H−1∂̄JH.

(3.46)

8The crucial point is that it induces an odd number of minus signs, i.e. that the determinant of the
corresponding matrix is −1.
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3. The KKN Approach

To simplify the calculation for the behaviour of ∆̂ under P first note that one can
express the h-covariant derivative as

D̂ ≡ ∂̂ − J = ∂̂ − ∂HH−1 = ∂̂ +H∂H−1 = H∂̂H−1. (3.47)

Then, for a field Φ transforming under parity as

Φ
P7→ αΦH

−1ΦH, αΦ = ±1, (3.48)

one finds:[ ˆ̄∂, [D̂,Φ]
] P7→ αΦ

[
∂̂, H−1[ ˆ̄∂,Φ]H

]
= αΦH

−1
[
H∂̂H−1, [ ˆ̄∂,Φ]

]
H = H−1

[
D̂, [ ˆ̄∂,Φ]

]
H,

(3.49a)[
D̂, [ ˆ̄∂,Φ]

] P7→ αΦH
−1
[ ˆ̄∂, [D̂,Φ]

]
H (3.49b)

and thus, as promised in section 3.4, the sum of those is parity even in the sense that

∆Φ ≡ 1

2

([ ˆ̄∂, [D̂,Φ]
]

+
[
D̂, [ ˆ̄∂,Φ]

]) P7→ +αΦH
−1∆ΦH. (3.50)

3.5.3. Charge Conjugation C

The transformation of the original gluon field under charge conjugation is9

C : Ai 7→ −AT
i (3.51)

where T denotes the transposed matrix. So the complex field A also transforms as

C : A 7→ −AT (3.52)

which in terms of the new field variable M reads

− ∂MM−1 C7→ (∂MM−1)T = M−1T
∂MT = −∂M−1T

MT (3.53)

and thus

M
C7→M−1T

(3.54a)

⇒ H ≡M †M
C7→ H−1T

(3.54b)

⇒ J ≡ ∂HH−1 C7→ ∂H−1T
HT = −H−1T

∂HT = −(∂HH−1)T = −JT (3.54c)

i.e. J is C-odd whereas D is C-even in the sense that for a field transforming as Φ
C7→ ΦcT

DΦ ≡ [D̂,Φ]
C7→ [∂̂ + JT,ΦcT] = [∂̂ − J,Φc]T = +(DΦc)T. (3.55)

9In QCD this follows from demanding invariance of the quark-gluon coupling ∝ ΨAaµt
aγµΨ under C,

under which the quark field Ψ transforms as Ψ 7→ CΨC−1 = CΨT
where C is the charge conjugation

matrix acting on the spinor indices , see e.g. [16].
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3.6. Jacobian

The change of variables from the original Yang-Mills gauge field A to the new gauge-
invariant variable H implies a Jacobian relating the corresponding path-integral measures
which was explicitly computed by KKN [10]:

First consider the change of variables from (A, Ā) to (M,M †). From the definition (3.4)
it follows that

dA = −∂dMM−1 − ∂MdM−1

= −∂(dMM−1) + dM(M−1M)∂M−1 − ∂M(M−1M)dM−1

= −∂(dMM−1) + dMM−1A− AdMM−1

= −[∇̂, dMM−1] (3.56a)

dĀ = [∇̂,M †−1
dM †]. (3.56b)

and so their Haar measures are related by

dµ[A] = [dAdĀ] = det(∇∇) dµ[M,M †] (3.57)

where ∇ and ∇ are in the adjoint representation. Now M can be uniquely decomposed as
M = Uρ where U is unitary and ρ is hermitian, related to the field variable H by ρ2 = H.
The measure factorises accordingly (for the explicit calculation see [10]),

dµ[M,M †] = dµ[H]Vol(G∗), (3.58)

where G∗ = {g(x) ∈ SU(N), g → 1 as |x| → ∞}, and so the path integral measure on
the space of gauge-invariant field configurations C = {Aai }/G∗ can be written as

dµ[C] =
dµ[A]

Vol(G∗)
= det(∇∇)dµ[H]. (3.59)

The determinant can be computed (see [10] and references therein) with the result

det(∇∇) = σe2NSWZW[H], (3.60)

where σ is a constant determinant factor and SWZW is the Wess-Zumino-Witten (WZW)
action [17]

SWZW[H] =
1

2π

∫
d2zTr(∂H∂̄H−1) +

i

12π

∫
d3xεµνλ Tr(H−1∂µHH

−1∂νHH
−1∂λH)

(3.61)
which is gauge- and holomorphic-invariant10. The inner product of two wave-functionals
now takes the form:

〈Ψ1|Ψ2〉 =

∫
dµ[H]e2NSWZW[H]Ψ∗1Ψ2. (3.62)

It should be noted at this point that the appearance of the WZW-term in the Jacobian
is an artefact that stems from the complex parametrisation that was chosen. As already
mentioned above, one could also keep the original real coordinates and gauge fields and
introduce new M -variables in a similar way. In that case the Jacobian would only contain
a field independent term and would thus be trivial. [5]

10The holomorphic invariance can be seen by using the Polyakov-Wiegmann formula, i.e. equation (7) in
[18].
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3.7. Hamiltonian in New Variables

As already argued, the simple behaviour (3.39) of ∂̄J under holomorphic transformations
suggests that this might be a good variable to express physical states in, as it is not only
gauge-invariant but also holomorphic-covariant. Therefore, also the Hamiltonian (2.23)
should be expressed in terms of ∂̄J (or J).

Just as H[A] is invariant under gauge transformations, we have to make sure that H[J ]
will be invariant under holomorphic transformations. This consistency requirement will
be of crucial importance for the transformation of the kinetic part T.

3.7.1. Potential Term

The potential part V is easy to handle, because ∂̄J is nearly the same as the colour-
magnetic field. To see this, first note that the complex covariant derivative and its conju-
gate can be written as

∇̂ := ∂̂ + A = ∂̂ +M∂M−1 = M∂̂M−1 (3.63a)

∇̂ := ˆ̄∂ + Ā = ˆ̄∂ +M †−1
∂̄M † = M †−1 ˆ̄∂M †. (3.63b)

Now we use this and the definition H = M †M to express B in terms of the gauge-invariant
variables:

B = F12 = [∇̂1, ∇̂2] = −i[∇̂+ ∇̂, ∇̂ − ∇̂] = 2i[∇̂, ∇̂]

= 2i
(
M∂̂M−1M †−1 ˆ̄∂M † −M †−1 ˆ̄∂M †M∂̂M−1

)
= 2iM †−1

(
H∂̂H−1 ˆ̄∂ − ˆ̄∂H∂̂H−1

)
M †

= 2iM †−1
[
−∂̄(H∂̂H−1)

]
M †

= 2iM †−1 [−∂̄(H∂H−1)
]
M †

= 2iM †−1
∂̄JM †.

(3.64)

(The factor of i is due to the fact that we chose the convention B = −iBata for the mag-
netic field components in analogy to A and F , but J = Jata for the current.) Therefore,
we can rewrite the potential energy operator as

V ≡ 1

2g2

∫
(Ba)2 = − 1

g2

∫
Tr(B2) =

4

g2

∫
Tr[(∂̄J)2] =

2

g2

∫
(∂̄Ja)2. (3.65)

Since ∂̄J transforms homogeneously under h, we immediately see that this expression is
h-invariant, as it should be.

3.7.2. Kinetic Term

The kinetic energy operator T, which involves functional derivatives with respect to A,
is more difficult to deal with. The problem is that because it involves two functional
derivatives acting at the same point, it needs to be regularised. The maintenance of the
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3.7. Hamiltonian in New Variables

holomorphic invariance will be crucial for this regularisation procedure. This calculation
was first done by Karabali, Kim and Nair in [8] and will now be reviewed.

T is essentially the functional Laplacian with respect to the fields Aai and as for the
usual Laplacian a change of variables produces two terms:

T = −g
2

2

∫
x

δ2

δAai (x)2
= −g

2

2

∫
x

δ2

δAa(x)δĀa(x)

= −g
2

2

∫
x,y

δ

δAa(x)

(
δJ b(y)

δĀa(x)

δ

δJ b(y)

)
= −g

2

2

(∫
x,y

δ2J b(y)

δAa(x)δĀa(x)

δ

δJ b(y)
+

∫
x,y,z

δJ b(y)

δAa(x)

δJ c(z)

δĀa(x)

δ2

δJ b(y)δJ c(z)

)
= m

(∫
y

ωb(y)
δ

δJ b(y)
+
π

N

∫
y,z

Ωbc(y, z)
δ2

δJ b(y)δJ c(z)

)
=: T1 + T2

(3.66)

where in the last line the following abbreviations were introduced:

m :=
Ng2

2π
(3.67a)

ωb(y) := − π
N

∫
x

δ2J b(y)

δAa(x)δĀa(x)
(3.67b)

Ωbc(y, z) := −
∫
x

δJ b(y)

δAa(x)

δJ c(z)

δĀa(x)
. (3.67c)

Note that in 2 + 1 dimensions the Yang-Mills coupling constant g has mass dimensions
1/2 and so m (which is – apart from a factor of 2π – the ’t Hooft coupling constant [19])
has the dimension of a mass.

The h-transformation behaviour of Ja, viz. Ja 7→ habJ b + (∂hh−1)a, with the adjoint
components of h being

hab = 2 Tr(tahtbh−1), (3.68)

shows that ω and Ω transform as

ωb(y) 7→ hbc(y)ωc(y) (3.69a)

Ωbc(y, z) 7→ hbd(y)hce(z)Ωde(y, z). (3.69b)

Since the functional derivative with respect to J b transforms as δ/δJ b 7→ hbcδ/δJ c, we see
that both T1 and T2 are separately h-invariant.

To evaluate ω and Ω one first has to calculate the functional derivative of the current
J with respect to A and Ā. To this end, one can first rewrite J in terms of A and M † by
using the definitions J = ∂HH−1, H = M †M and A = −∂MM−1:

J = ∂(M †M)M−1M †−1
= ∂M †M †−1 −M †AM †−1

. (3.70)

The expansions in the su(N)-basis J = J btb and A = −iAata then give

J b = 2 Tr
[
tbJ
]

= 2 Tr
[
tb
(
∂M †M †−1 −M †AM †−1

)]
= 2 Tr

[
tb∂M †M †−1

]
+ 2iTr

[
tbM †taM †−1

]
Aa

=
(
∂M †M †−1

)b
+ i(M †)baAa.

(3.71)
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3. The KKN Approach

From their definitions it is clear that M depends only on A and M † only on Ā and so one
immediately obtains

δJ b(y)

δAa(x)
= i
(
M †(y)

)ba
δ(y − x). (3.72)

The derivative with respect to Ā is a bit more involved. Starting again from (3.70) one
gets (the arguments x and y are suppressed during the calculation for the sake of clarity)

δJ(y)

δĀa(x)
= ∂

(
δM †

δĀa
M

)
M−1M †−1

+ ∂(M †M)M−1 δM
†−1

δĀa

= ∂
δM †

δĀa
M †−1 − δM †

δĀa
AM †−1

+ JM † δM
†−1

δĀa

= ∂
δM †

δĀa
M †−1 − δM †

δĀa
M †−1

(∂M †M †−1 − J)− J δM
†

δĀa
M †−1

= ∂
δM †

δĀa
M †−1

+
δM †

δĀa
∂M †−1

+
δM †

δĀa
M †−1

J − J δM
†

δĀa
M †−1

= ∂

(
δM †

δĀa
M †−1

)
−
[
J,
δM †

δĀa
M †−1

]
=

[
D̂y,

δM †(y)

δĀa(x)
M †−1

(y)

]
.

(3.73)

One way to evaluate the second term in the commutator is to take the functional derivative
of the defining equation of M †(y) (3.4) with respect to Āa(x):

−iδ(y − x)ta =
δ(M †−1

∂̄M †)(y)

δĀa(x)
=
δM †−1

δĀa
∂̄M † +M †−1

∂̄
δM †

δĀa

= M †−1 δM †

δĀa
∂̄M †−1

M † +M †−1
∂̄
δM †

δĀa
.

(3.74)

(Arguments on the right hand side are x for Āa and y for everything else.) Multiplying

this with M †(y) from the left and with M †−1
(y) from the right yields

−iδ(y − x)M †(y)taM †−1
(y) =

δM †

δĀa
∂̄M †−1

+ ∂̄
δM †

δĀa
M †−1

= ∂̄y

(
δM †(y)

δĀa(x)
M †−1

(y)

)
.

(3.75)

It is now tempting to invert the ∂̄ on the right hand side by using the Green’s function Ḡ
to obtain

δM †(y)

δĀa(x)
M †−1

(y) = −iḠ(y,x)M †(x)taM †−1
(x).

The problem with this equation is that the terms on both sides do not transform the
same way under a holomorphic transformation, which looks inconsistent. The reason for
this is that the Green’s function as introduced in section 3.1 were used to invert ∂ and
∂̄ in the equations −AM = ∂M and M †Ā = ∂̄M †. There the derivative operators act
on M and M † transforming as M 7→ Mh† and M † 7→ hM †, which then dictates the h-
transformation behaviour for the Green’s functions as given in (3.32). But here the object
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3.7. Hamiltonian in New Variables

on which ∂̄ acts transforms as (. . .) 7→ h (. . .)h−1, and so one cannot use Green’s function
transforming as in (3.32) here without losing holomorphic covariance. In order to keep
the whole calculation consistent with h-transformations, one can first multiply equation
(3.75) with 2 tb from the left and take the trace which gives

− iδ(y − x)
(
M †(y)

)ba
= ∂̄y

(
δM †(y)

δĀa(x)
M †−1

(y)

)b
. (3.76)

Now the object which ∂̄ acts on transforms as (. . .)b 7→ hbc (. . .)c which is the same
transformation as for the adjoint components of M †:

(M †)ab 7→ hac(M †)cb (3.77)

and so ∂̄ can be inverted using the adjoint Green’s function, defined as

Ḡab(x,y) := δabḠ(x,y) (3.78)

but transforming under h as:

Ḡab(x,y) 7→ hac(x)Ḡcd(x,y)(h−1)db(y), (3.79)

which then yields (
δM †(y)

δĀa(x)
M †−1

(y)

)b
= −iḠbc(y,x)M †ca(x)

≡ −i
(
Ḡ(y,x)M †(x)

)ba
.

(3.80)

Note that now both sides have the same h-transformation behaviour, the same as in (3.77).
Projecting out the b-component of equation (3.73) finally gives

δJ b(y)

δĀa(x)
= −i

(
DyḠ(y,x)M †(x)

)ba
. (3.81)

Now using the results (3.72) and (3.81), Ω can already be evaluated:

Ωbc(y, z) = −
∫
x

M †ba(y)δ(y − x)
(
DzḠ(z,x)M †(x)

)ca
= −

(
DzḠ(z,y)M †(y)

)ca
(M †−1

)ab(y) = −
(
DzḠ(z,y)

)cb
.

(3.82)

The transformation behaviour of D and Ḡ in adjoint representation shows that this result
is consistent with (3.69b).

Inserting (3.72) into the definition of ω gives:

ωb(y) = −i π
N

∫
x

δM †ba(y)

δĀa(x)
δ(y − x) (3.83)

23



3. The KKN Approach

The functional derivative of the adjoint components of M can be computed using the
result (3.80):

δM †ba(y)

δĀa(x)
= 2 Tr

{
tb
δM †(y)

δĀa(x)
taM †−1

(y) + tbM †(y)ta
δM †−1

(y)

δĀa(x)

}

= 2 Tr

{
tb
δM †

δĀa
M †−1

M †taM †−1 − tbM †taM †−1 δM †

δĀa
M †−1

}
=

(
δM †

δĀa
M †−1

)c
2 Tr

{
tbtcM †taM †−1 − tbM †taM †−1

tc
}

= −i
[
Ḡ(y,x)M †(x)

]ca
2 Tr

{
[tb, tc]M †(y)taM †−1

(y)
}

=
[
Ḡ(y,x)M †(x)

]ca
f bcd(M †)da(y)

= f bcd
[
Ḡ(y,x)M †(x)M †−1

(y)
]cd

(3.84)

and so we find
ωb(y) = −i π

N
f bcd

[
Ḡ(y,x)

]cd
x→y

. (3.85)

To check the h-transformation property of this result, note that the right hand side trans-
forms as

(rhs)b(y) := −i π
N
f bcd

[
Ḡ(y,x)

]cd
x→y
7→ −i π

N
f bcdhce(y)hdf (y)

[
Ḡ(y,x)

]ef
x→y

(3.86a)

= −i π
N
hbc(y)f cef

[
Ḡ(y,x)

]ef
x→y

(3.86b)

= hbc(y) (rhs)c(y), (3.86c)

which is indeed the expected homogeneous transformation behaviour (3.69a) of ωb(y).
(To arrive at (3.86b), the following identity was used:

f bcdhcehdf = −2iTr
{

[td, tb]hteh−1
}
hdf

= −2iTr
{
tbhteh−1td − hteh−1tbtd

}
2 Tr

{
tdhtfh−1

}
= −2iTr

{
tbhteh−1htfh−1 − hteh−1tbhtfh−1

}
= −2iTr

{
tbh[te, tf ]h−1

}
= hbcf cef .)

(3.87)

As a consistency check for (3.85), one can also derive ω by interchanging the order of
functional derivatives, that is, by taking the functional derivative of (3.81) with respect
to Aa(x) which gives

ωb(y) = i
π

N

∫
x

δ

δAa(x)

[
DyḠ(y,x)M †(x)

]ba
= − π

N
f bcd

∫
x

δJd(y)

δAa(x)

[
Ḡ(y,x)M †(x)

]ca
= −i π

N
f bcd

∫
x

M †da(y)δ(y − x)
[
Ḡ(y,x)M †(x)

]ca
= −i π

N
f bcd

[
Ḡ(y,x)

]cd
x→y

,

(3.88)
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in agreement with (3.85). The problem with this result is that the coincidence limit
the Green’s function Ḡ(x,y) = 1

π(x−y)
diverges and therefore one has to introduce some

regularisation to make sense of it.

3.7.3. Regularisation

The singular nature of the Green’s functions stems from the fact that the source term
in their definitions is a delta function. Therefore, the simplest way to regularise them
would be to smear out the delta function, i.e. replace it by some sharply peaked, but
finite approximation like

δε(x,y) :=
1

πε
e−|x−y|

2/ε. (3.89)

Here ε denotes some small positive real number of mass dimension −2 that should be
sent to zero only at the very end of a calculation. This would then lead to the reg-
ularised Green’s function G(x,y) =

∫
z
G(x, z)δε(z,y). The problem is that this ex-

pression does not transform under h-transformations like the original Green’s function
G(x,y) 7→ h†

−1
(x̄)G(x,y)h†(ȳ), but the regularisation scheme has to preserve holomor-

phic invariance. Since the field H transforms under h as H(z) 7→ h(z)H(z)h†(z̄), the
desired transformation behaviour can be restored by including appropriate factors of H
and H−1, serving as a parallel transport:

G(x,y) :=

∫
z

G(x, z)δε(z,y)H−1(y, z̄)H(y) (3.90a)

Ḡ(x,y) :=

∫
z

Ḡ(x, z)δε(z,y)H(z, ȳ)H−1(y) (3.90b)

Defined this way, they have the correct transformation behaviour (3.32) and reproduce
the original Green’s functions for x 6= y in the limit ε → 0, in which δε(z,y) → δ(z,y).
The z-integrals in (3.90) can also be carried out explicitly:

G(x,y) =

∫
d2z

1

π(x̄− z̄)

e−|z−y|
2/ε

πε
H−1(y, z̄)H(y)

=

∫
d2z

1

π(x̄− ȳ − z̄)

e−zz̄/ε

πε
H−1(y, ȳ + z̄)H(y)

=

∫
d2z

1

π(x̄− ȳ − z̄)

(
− 1

πz̄

)
∂ze
−zz̄/εH−1(y, ȳ + z̄)H(y)

i.b.p.
= −

∫
d2z ∂z

[
1

πz̄
· 1

π (z̄ − (x̄− ȳ))

]
e−zz̄/εH−1(y, ȳ + z̄)H(y)

= −
∫

d2z

[
δ2(z)

1

π(z̄ − (x̄− ȳ))
+

1

πz̄
δ2
(
z − (x− y)

)]
e−zz̄/εH−1(y, ȳ + z̄)H(y)

=
1

π (x̄− ȳ)
− e−|x−y|

2/ε

π (x̄− ȳ)
H−1(y, x̄)H(y)

= G(x,y)
[
1− e−|x−y|2/εH−1(y, x̄)H(y)

]
(3.91a)

Ḡ(x,y) = Ḡ(x,y)
[
1− e−|x−y|2/εH(x, ȳ)H−1(y)

]
. (3.91b)
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In the fourth line the boundary term from the integration by parts vanishes due to the
factor of e−zz̄/ε. In the fifth line the product rule and the defining property of the Green’s
function were used. The calculation of Ḡ is completely analogous. Note that the matrix
factors included in G and Ḡ can be expanded in Taylor series around x = y:

H−1(y, x̄)H(y) =
∞∑
n=0

(x̄− ȳ)n

n!

(
∂̄nH−1H

)
(y) (3.92a)

H(x, ȳ)H−1(y) =
∞∑
n=0

(x− y)n

n!

(
∂nHH−1

)
(y) (3.92b)

Using this as well as the expansion of the exponential, one can check that G and Ḡ indeed
still are regulated expressions, i.e. well defined for y → x:

G(x,y) =
1

π(x̄− ȳ)

[
1−

∞∑
m=0

[−(x− y)(x̄− ȳ)]m

m!εm

∞∑
n=0

(x̄− ȳ)n

n!

(
∂̄nH−1H

)
(y)

]

=
1

π(x̄− ȳ)

[
−(x̄− ȳ)∂̄H−1H(y) +

(x− y)(x̄− ȳ)

ε
+O

(
(x− y), (x̄− ȳ)2

)]
=

1

π

[
−∂̄H−1H(y) +O

(
(x− y), (x̄− ȳ)

)] y→x→ − 1

π
∂̄H−1H(x) = − 1

π
J†(x)

(3.93a)

Ḡ(x,y) =
1

π

[
−∂HH−1(y) +O

(
(x− y), (x̄− ȳ)

)] y→x→ − 1

π
∂HH−1(x) = − 1

π
J(x)

(3.93b)

Plugging this into (3.85) finally gives the result

ωb(y) =
i

N
f bcdJ cd(y) = J b(y). (3.94)

To summarise, the Hamiltonian expressed in terms of the new variable J takes the form:

H = T + V (3.95a)

T = T1 + T2 = m

(∫
z

Ja(z)
δ

δJa(z)
+
π

N

∫
z,z′

Ωab(z, z′)
δ

δJa(z)

δ

δJ b(z′)

)
(3.95b)

V =
N

mπ

∫
z

∂̄Ja(z)∂̄Ja(z), (3.95c)

with

m =
g2N

2π
(3.96a)

Ωab(z, z′) = −
[
Dz′Ḡ(z′, z)

]ba
. (3.96b)

It should be mentioned that the result for T1 as written in (3.95) is not manifestly
holomorphic invariant, because J does not transform homogeneously. The reason why
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this could happen, even though the regulators were constructed to preserve holomorphic
invariance, is that in the derivation a Green’s function was cancelled against a positive
power of x̄− ȳ. However, as noted by Karabali et al. [10, p. 681], T1 can by an integration
by parts be brought to the form

T1 = −m
∫
z,z′

∂̄Ja(z)Ḡab(z, z′)
δ

δJ b(z′)
(3.97)

which now has manifest holomorphic invariance and is equivalent to the form in (3.95) up
to boundary terms that are assumed to vanish.

When the kinetic energy operator T acts on products of currents at the same point it
will produce divergences coming from the coincident limit of Ḡ. Therefore, in those cases,
one has to replace the Green’s function by its regulated version as given above yielding

Ωab(z, z′) = −Dbc
z′ Ḡca(z′, z)

= −Dbc
z′

{
Ḡ(z′, z)

(
δca − e−|z′−z|2/ε

[
H(z′, z̄)H−1(z)

]ca)}
.

(3.98)

In a more recent paper from 1998, Karablai et al. give another derivation for the Hamil-
tonian in terms of J , treating regularisation issues “in much greater detail” [10, p. 662].
The main difference affecting the derivation of H[J ] is that the regulators are introduced
at the very beginning of the calculation, which may be a more consistent way to proceed.
Here we only cite the result, which has the same form as (3.95). The linear part of the
kinetic energy operator, T1 stays the same. But for the quadratic part there are some
subtle differences which will become important later on: Ω is now given by [10, pp. 679 -
681]

Ωab(z, z′) = Dbc
z′Λ

ca(z′, z) (3.99a)

Λca(z′, z) =

∫
x

Ḡdc(x, z′)G(x, z)e−|x−z|
2/ε

[
x̄− z̄
ε

H(x, x̄)H−1(z, x̄)

+H(x)∂z
(
H−1(z, x̄)H(z)

)
H−1(z)

]da
(3.99b)

=
1

π(z − z′)

[
1− e−|z−z

′|2/2εH(z′)H−1(u, z̄′)H(u)H−1(z, ū)
]ca

+
ε

π
e−|z−z

′|2/2ε[...]ca +O(ε2) (3.99c)

= Ḡ(z, z′)
(
δca − e−|z−z′|2/2ε

[
H(z′)H−1(z, z̄′)

]ca)
+ . . . (3.99d)

where u := (z + z′)/2, [...] in (3.99c) stands for another complicated expression involving
H and H−1’s (the exact form is not of interest here) and the ellipsis in (3.99d) refers to
terms of higher order in ε or (z − z′), (z̄ − z̄′). Using the last approximation (3.99d) for
Λ gives nearly the same Ω as (3.98), but with ε replaced by 2ε and, more important, the
arguments z̄ of H and H−1 replaced by z̄′.
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4. The LMY Proposal

In this chapter a detailed review of the paper [12] by Leigh, Minic and Yelnikov (LMY) is
given, where the authors want to determine the glueball mass spectrum of pure Yang-Mills
theory in 2 + 1 dimensions using the KKN formalism. To this end, they try to find the
quasi-Gaussian part of the vacuum wave functional by solving the Schrödinger equation
up to second order in the KKN variable ∂̄J . The hope is that this approximation captures
enough non-perturbative information to allow for reliable predictions about the infra-red
sector of the theory.

After making a very non-trivial assumption about the spectrum of the kinetic energy op-
erator when acting on a certain class of operators, an analytic solution to the Schrödinger
equation in this approximation can be obtained. This solution has the correct high en-
ergy limit corresponding to asymptotically free gluons, and — more important — also the
correct low energy limit to give rise to confinement, with a string tension that is in good
agreement with lattice simulation data. Furthermore, using this vacuum wave functional,
the glueball masses can be inferred from the exponential fall-off of vacuum expectation
values of appropriate gauge-invariant operators. The agreement of those glueball masses
with lattice data is claimed to be “excellent” by the authors, but this statement has to be
qualified as discussed here in section 4.2.

The main problem of their calculations is that LMY do not succeed in verifying the
aforementioned assumption, and so the proposed vacuum wave functional must be consid-
ered conjectural. It would therefore be of great interest to have an independent approach
to test their conjecture. One possibility will be explored here in section 6.2.

The other problem is that it is a priori not clear whether (or to what extent, or in which
regime) the quasi-Gaussian truncation really approximates the true vacuum state. The
main argument in favour of its validity is given a posteriori by the good agreement with
lattice simulation data.

4.1. Vacuum Wave Functional

As just explained, the strategy pursued by LMY to obtain the vacuum functional Ψ0 is
to solve the time independent Schrödinger equation

HΨ0 = E0Ψ0 (4.1)

where E0 denotes the (divergent) vacuum energy. Since it is very hard to find the exact
solution, the authors of [12] content themselves with solving (4.1) up to second order in
the current ∂̄J , i.e. finding the quasi-Gaussian generalization of the QED case1.

1See appendix B.
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4.1.1. Ansatz

As argued by Feynman in [1], Ψ0 can be assumed to be real and positive. Furthermore,
it should be invariant under gauge- and holomorphic transformations, as well as under
spacetime symmetries. Thus, according to the considerations made in sections 3.4 and
3.5, one can make the general ansatz

Ψ0 = exp

[
− N

πm2

∫
z

Tr

(
∂̄J(z)K

(
∆

m2

)
∂̄J(z) + . . .

)]
= exp

[
− N

2πm2

∫
z

(
∂̄Ja(z)Kab

(
∆

m2

)
∂̄J b(z) + . . .

)]
=: eP ,

(4.2)

where the ellipsis refers to quartic and higher terms in ∂̄J (with additional kernels), which
will be neglected. Note that since the kernel K is a function of the h-covariant Laplacian
∆ which depends on J , this ansatz is not purely quadratic in the current (and therefore
called “quasi-Gaussian”). But it is also not the most general ansatz, because only those
terms of higher order in J that are necessary for consistency are taken into account.

Now K can be thought of as a formal power series of the dimensionless argument
L := ∆/m2

K(L) =
∞∑
n=0

cnL
n (4.3)

or in components

Kab(L) =
∞∑
n=0

cn
m2n

(∆n)ab, (∆n)ab = ∆ac1∆c1c2 · · ·∆cn−1b (4.4)

and has to be determined by solving the Schrödinger equation (4.1). Even though the
ansatz (4.2) looks as if it was local (the currents are evaluated at the same point), the
fact that K may be written as an infinite power series allows for a non-local solution.

The strategy is now to apply the Hamiltonian (3.95) to Ψ0 and only keep terms up to
second order in J . Terms independent of J will be identified with the vacuum energy and
those quadratic in J have to be equal to zero. This will in the end result in a differential
equation for K as a function of L.

4.1.2. Calculation

Functional derivatives acting on Ψ0 = eP give

δΨ0

δJa(z)
=

δP

δJa(z)
Ψ0, (4.5a)

δ2Ψ0

δJa(z)δJ b(z′)
=

(
δ2P

δJa(z)δJ b(z′)
+

δP

δJa(z)

δP

δJ b(z′)

)
Ψ0 (4.5b)

and thus

HΨ0 =

[
(TP ) +

πm

N

∫
z,z′

Ωab(z, z′)
δP

δJa(z)

δP

δJ b(z′)︸ ︷︷ ︸
=:C

+
N

πm

∫
z

∂̄Ja(z)∂̄Ja(z)

]
Ψ0. (4.6)
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For the evaluation of functional derivatives acting on P , first note that the h-covariant
derivative in adjoint representation can be “integrated by parts” just like a usual partial
derivative, meaning that for any functions φa and ψa vanishing at infinity we have the
identity ∫

φa(Dψ)a =

∫
φaDabψb =

∫
φa
(
δab∂ − Jab

)
ψb

i.b.p.
=

∫
ψb
(
−δab∂φa − Jabφa

)
a↔b
=

∫
ψa
(
−δab∂φa + Jabφb

)
= −

∫
Dabφbψa = −

∫
(Dφ)aψa.

(4.7)

The minus sign for the derivative coming from the integration by parts in the second line
arises for the J-part in the third line because Jab is anti-symmetric in a and b. From this
it immediately follows for the h-covariant Laplacian that∫

φa(∆ψ)a = +

∫
(∆φ)aψa. (4.8)

Since K can be expressed as a power series in ∆, the same identity holds with ∆ replaced
by K. Using this one finds

δP

δJa(z)
= − N

2πm2

{
−2∂̄

[
Kab(L)∂̄J b(z)

]
+

∫
z′
∂̄J b(z′)

δKbc(Lz′)

δJa(z)
∂̄J c(z′)

}
(4.9a)

=
N

πm

[
∂̄

m
K

(
∂̄∂

m2

)]
∂̄Ja(z) +O(J2) (4.9b)

Only the linear part of this is needed to calculate the term C in(4.6) up to second order
in J . Likewise, the h-covariant derivative contained in Ω in C can be replaced by an
ordinary derivative and since the currents in C are not evaluated at the same point, we
can use the unregulated result (3.96b) and find2

C =
N

πm

∫
z,z′

∂z′Ḡ(z, z′)

[
∂̄

m
K

(
∂̄∂

m2

)]
z

∂̄Ja(z)

[
∂̄

m
K

(
∂̄∂

m2

)]
z′
∂̄Ja(z′)

=
N

πm

∫
z,z′

∂̄zḠ(z, z′)︸ ︷︷ ︸
=δ2(z−z′)

[
K

(
∂̄∂

m2

)]
z

∂̄Ja(z)

[
∂̄∂

m2
K

(
∂̄∂

m2

)]
z′
∂̄Ja(z′)

=
N

πm

∫
z

∂̄Ja(z)
∂̄∂

m2
K2

(
∂̄∂

m2

)
∂̄Ja(z)

=
N

πm

∫
z

∂̄Ja(z)
[
LK2(L)

]ab
∂̄J b(z)

(4.10)

where all terms of higher order than quadratic in J have been suppressed. So equation
(4.6) now becomes

HΨ0 =

[
(TP ) +

N

πm

∫
z

∂̄Ja(z)
[
LK2(L) + 1

]ab
∂̄J b(z) +O(J3)

]
Ψ0. (4.11)

2The subscripts emphasise which argument the derivatives act on.
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The evaluation of TP is more involved, because there are two functional derivatives
acting on P which have to be calculated to second order in J . Consequently, one has
to keep the second term in (4.9a) which is not easy to compute. Furthermore, there are
divergent expressions arising that have to be dealt with by using the regularised version
of Ω. Because of those complications, LMY do not succeed in finding TP to second order
in J by direct calculation. Instead, they conjecture that T applied to the holomorphic
invariant operators

On :=

∫
∂̄Ja(∆n)ab∂̄J b (4.12)

should give

T :On:
?
= (2 + n)m :On: +O(J3) (4.13)

where : · : denotes normal ordering, which means that divergent terms contributing to E0

have been subtracted.

Their heuristic argument in favour of this conjecture is that T1 ∼ J δ/δJ basically
counts the number of J ’s in each term of On when expanded in powers of J , which will
give something that is not holomorphic invariant. T2 will then only serve to restore
holomorphic invariance. Since On contains a term with 2 +n J ’s, they expect the general
rule (4.13) to hold.

This rather naive reasoning indeed turns out to work out for n = 0 and n = 1, at least
when one uses one particular approximate form of Ω.3 But what is puzzling about this
argument is that the two parts of T should actually be separately h-invariant (at least
up to boundary terms, cf. the remark below equation (3.95)) — this was the essential
requirement in the derivation of T[J ], and in particular the appearance of the J δ/δJ term
strongly depends on demanding a h-covariant regulator. So the apparent restoration of
h-invariance in the n = 1 case might rather be an accident, and the interplay between T1

and T2 might be more subtle than argued by LMY.

In fact they find that for n = 2 the conjecture fails, but then they claim that this
discrepancy might stem from the fact that the On are local operators, and so it may be
that they “have not taken proper account of the nonlocal character of the theory” [12,
p. 19]. Indeed, the calculations were so far done by LMY using an approximate form
of Ω which is actually not allowed when T2 acts on local operators such as On. But the
problem is, that using a more exact form of Ω as proposed by KKN leads to disagreement
with the conjecture even for n = 0 and 1.

So in the end LMY admit that they were not able to prove their conjecture (4.13); but
they use it anyway with the main justification that in the end it leads to “sensible physical
results” [12, p. 7].4 This is of course rather unsatisfying, and it would be of great interest
to get another, independent verification (or maybe falsification) of equation (4.13).

Disregarding all those problems for a moment, and just assuming that (4.13) is true,

3These calculations are repeated and extended as well as discussed in much detail in chapter 5.
4Another, more recent justification for using equation (4.13) is given in the paper by Fukuma et al. [20],

where the regularised Hamiltonian is derived in a different way and the same Kernel ODE (4.16) is
obtained for the Gaussian part of the vacuum wave functional. But this derivation also relies on an
assumption that is put in by hand and can thus not yet be considered rigorous.
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4.1. Vacuum Wave Functional

one finds

TP = − N

2πm2
T

(
∞∑
n=0

cn
m2n
On

)
= − N

2πm

(
∞∑
n=0

cn
m2n

(2 + n)On

)
+ E0

= − N

2πm

∫
∂̄Ja

(
∞∑
n=0

cn(2 + n)(Ln)ab

)
∂̄J b + E0

=
N

πm

∫
∂̄Ja

(
−K(L)− L

2

d

dL
K(L)

)ab
∂̄J b + E0

(4.14)

where higher order terms in J were again neglected. Plugging the intermediate results
(4.6), (4.10) and (4.14) into (4.1) gives:∫

∂̄Ja
(
−K − L

2

d

dL
K + LK2 + 1

)
∂̄Ja +O(J3) = 0 (4.15)

which finally yields the following differential equation for the kernel:

−K − L

2

d

dL
K + LK2 + 1 = 0. (4.16)

4.1.3. Solution

The general solution of the differential equation (4.16) is5

K(L) =
1√
L

CJ2(4
√
L) + Y2(4

√
L)

CJ1(4
√
L) + Y1(4

√
L)

(4.17)

where C is a constant of integration and Jn and Yn denote the Bessel functions of the first
and second kind respectively. The only normalisable vacuum wave functional is obtained
for a kernel that is everywhere positive, since otherwise Ψ0 would grow exponentially for
some field configurations. This can only be achieved by taking C →∞, in which case the
kernel becomes

K(L) =
1√
L

J2(4
√
L)

J1(4
√
L)

=
1√
|L|

I2(4
√
|L|)

I1(4
√
|L|)

. (4.18)

Here the Bessel functions Jn were replaced by modified Bessel functions In using the
identities

J1(ix) = iI1(x) J2(ix) = −I2(x) (4.19)

because L (in momentum space) is negative.

Asymptotic Behaviour

There are now two asymptotic regimes of special interest: the high energy (or UV) limit,
for which we know from perturbation theory that the vacuum wave functional must ap-
proach the QED result, and of course the low energy (or IR) limit, which can give infor-
mation about the confining properties of the theory. Since

L =
1

m2
∂∂̄ +O(∂̄, J) = − 1

4m2
p2 +O(pi, J), (4.20)

5Here we only quote the results; for the detailed derivation see [12].
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the UV and IR limit correspond to L ∼ −p2/4m2 → −∞ and L → 0 respectively. In
these limits the kernel has the following asymptotic behaviour:

K(L) ∼

{
1/
√
−L (L→ −∞)

1 (L→ 0)
(4.21)

So the vacuum wave functional for high energies becomes

ΨUV
0 = exp

[
− N

2πm2

∫
z

∂̄Ja(z)
m√
−∂∂̄

∂̄Ja(z)

]

= exp

[
− N

2πm

∫
d2p

(2π)2

1

4
Ba(p)

2√
p2
Ba(−p)

]

= exp

[
− 1

2g2

∫
d2p

(2π)2
Ba(p)

1

|p|
Ba(−p)

]
(4.22)

and thus correctly reproduces the result for asymptotically free gluons (cf. the end of
appendix B).

In the IR limit one finds

ΨIR
0 = exp

[
− N

8πm2

∫
x

[Ba(x)]2
]

= exp

[
− 1

4g2m

∫
x

Ba(x)2

]
. (4.23)

As argued by KKN in [9] and explained below, this vacuum wave functional can be used
to deduce an area law behaviour of a Wilson loop, corresponding to a confining theory,
with a string tension

σ = g4N
2 − 1

8π
, (4.24)

which agrees very well (∼ 3%) with lattice simulation data [21].
This result can be derived by means of dimensional reduction ([3], [22]): The vacuum

expectation value of a Wilson loop [2] WC = TrP exp[−
∮
C

dxiAi] along a curve C is
given by the path-integral of WC weighted with the modulus squared of the vacuum wave

functional. Using (4.23) as an approximation will give a factor of exp
[
− 1

2g2m

∫
x
Ba(x)2

]
,

which is the same as the exponential of the euclidean action of pure Yang-Mills theory in
1 + 1 dimensions with coupling g2 = mg2. So the calculation reduces to that in a 1 + 1
dimensional Yang-Mills theory, which can be done exactly: Choosing the gauge A2 = 0
leads to

〈WC〉 =

∫
[dA] TrP exp

[
−
∮
C

dx1A1

]
exp

[
− 1

2g2m

∫
x

∂2A1∂2A1

]
(4.25a)

= TrP exp

[
mg2

2

∮
dx1

∮
dy1D(x,y)tata

]
(4.25b)

where D is the Green’s function of ∂2
2 :

∂2
2D(x,y) = δ(2)(x− y) (4.26a)

⇒ D(x,y) =
1

2
|x2 − y2| δ(1)(x1 − y1) (4.26b)
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4.2. Glueball Spectrum

We take the integration contour C to be an rectangle with sides T and R in 1- and
2-direction, respectively. The double line integral in (4.25b) can now easily be computed:∮

dx1

∮
dy1

1

2
|x2 − y2| δ(1)(x1 − y1) = −RT. (4.27)

The factor tata is just the Casimir operator in fundamental representation, which in our
conventions equals N2−1

2N
and so the Wilson loop has an area law behaviour

〈WC〉 = N exp

[
−mg

2(N2 − 1)

4N
RT

]
= N exp [−σRT ] (4.28)

with the string tension σ given by equation (4.24) as was to be shown.
Since the vacuum expectation value of a Wilson loop along this rectangular curve in the

limit T � R goes to e−E(R)T , where E(R) denotes the energy of two (static, i.e. infinitely
heavy) point sources separated by a distance R (see for example [23, pp. 110 - 111]), the
area law shows that such sources feel a confining, linear potential E(R) = σR.

Fourier Transform

As explained in [12], one can use standard Bessel function identities to rewrite the inverse
kernel as

K−1(L) = 1 + 8L
∞∑
n=1

1

16L− (γ2,n)2
(4.29)

where γ2,n denote the ordered zeros of J2. Inserting L ≈ ∂∂̄/m2 = −p2/4m2 the inverse
kernel as a function of momentum p then becomes

K−1(p) = 1 +
1

2

∞∑
n=1

p2

p2 +M2
n

, Mn :=
mγ2,n

2
. (4.30)

The Fourier transform of this is

K−1(|x− y|) = δ(x− y) +
1

2

∞∑
n=1

(
δ(x− y)− (Mn)2

2π
K0(Mn|x− y|)

)
. (4.31)

and at asymptotically large spatial separation |x− y| → ∞ this becomes

K−1(|x− y|) ≈ − 1

4
√

2π|x− y|

∞∑
n=1

(Mn)3/2e−Mn|x−y|. (4.32)

4.2. Glueball Spectrum

Using Ψ0 as motivated in section 4.1 as the vacuum wave functional, the glueball spec-
trum of the theory can in principle be probed by evaluating vacuum expectation values of
operators with the desired quantum numbers JPC. But the actual evaluation of the corre-
sponding path integral with the WZW measure factor would be very difficult. To simplify
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things, LMY argue that ∂̄J can be regarded as a free field and so their corresponding two
point function should approximately be given by

〈∂̄Ja(x)∂̄J b(y)〉 ≈ δab
m2π

2N
K−1(x− y). (4.33)

To justify this assertion one should actually make another change of variables in the path
integral from H to ∂̄J and show that in doing so the factor e2NSWZW disappears. This
argument was indeed brought forward by Leigh et al. in a more recent review article [24]:

As we saw in section 3.6, the change of variables from (A, Ā) to H gives rise to a factor
of det(∇∇). If we now consider ∂̄J as the variable of integration in the path integral we
will get another Jacobian. A calculation analogous to (3.56) yields

dJ = [D̂, dHH−1] (4.34)

and consequently

dµ[H] =
[
det( ˆ̄∂D̂)

]−1

dµ[∂̄J ]. (4.35)

Furthermore, recalling ˆ̄∂ = M †∇̂M †−1
from equation (3.63b) as well as D̂ = M †∇̂M †−1

(which can be shown in the same way), we see that this Jacobian cancels the one we
obtained first, as was to be shown. So the correlator can be written as

〈∂̄Ja(x)∂̄J b(y)〉 =

∫
dµ[∂̄J ] ∂̄Ja(x)∂̄J b(y) |Ψ0|2 (4.36)

which leads to the claimed equality (4.33) in the approximation that interactions coming
from the J-terms in K are neglected, i.e. when K(L) is replaced by K(p).

4.2.1. Spin 0 States

According to the discussion of quantum numbers in section 3.5, an operator with JPC =
0++ is given by Tr(∂̄J∂̄J). Using (4.33), the corresponding correlator can be approximated
by

〈Tr(∂̄J∂̄J)x Tr(∂̄J∂̄J)y〉 ≈ (const.)
(
K−1(|x− y|)

)2
. (4.37)

The approximation neglects interactions encoded in the J dependence of the kernel, but
its nonlocal spatial properties are kept. Using (4.32) then gives

〈Tr(∂̄J∂̄J)x Tr(∂̄J∂̄J)y〉 ∼
1

|x− y|

∞∑
m,n=1

(MmMn)3/2 e−(Mm+Mn)|x−y| (4.38)

and the glueball masses can now be inferred from the coefficient in the exponent to be
(the ∗ denotes excited states)

M(0++(∗···∗)) = Mm +Mn (m,n ∈ N). (4.39)

It should be mentioned that Leigh et al. write these masses in a slightly different way, viz.

M(0++(∗···∗)) = M1 +Mn (n ∈ N), (4.40)
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without any justification. Of course, this makes no difference for the lowest lying states,
but they claim the mass of the fourth excited state to be M(0++∗∗∗∗) = M1+M5 = 11.55m,
even though M2+M3 = 10.02m would be smaller than this and perfectly allowed according
to the correlator (4.38).

The mass parameter m can be related to the string tension by (4.24) and so all masses
can be expressed in units of

√
σ. These predictions can then be compared to results from

lattice simulations, without adjusting any further parameters. This is a nice feature of
LMY’s approach to the glueball spectrum, as opposed for example to the supergravity
approach [25], which only gives ratios of different glueball masses that need to be fitted
to the lattice data.

LMY find excellent agreement (0.8%) of their lowest 0++ mass M(0++)LMY = 4.098
√
σ

with the lattice value6 M(0++)lattice = (4.065± 0.055)
√
σ. The excited 0++ masses differ

from the lattice values by 12 − 15%, which is a significant deviation since it is about 6
times larger than the given error bars would allow. LMY argue that this discrepancy
could arise because the first two excited states might not have been properly resolved
in the lattice simulations. If one shifts the labelling of the lattice values for all higher
states accordingly, the agreement becomes much better: 0.5%7 for M(0++∗∗∗) and 2.4%
for M(0++∗∗∗∗), which would be inside the given error bars. But this ad hoc assumption
is rather arbitrary, and is not justified by other means than observing that it improves
the agreement between their predictions and lattice results.

It should be noted that LMY also give their predictions for 0−− states, which they probe
with the operator Tr(∂̄J∂̄J∂̄J). Here the agreement with lattice data is good (2 − 4%,
which is within the lattice error bars) without relabelling anything.

4.2.2. Spin 2 States

An operator which is suitable for probing 2++ states is given by Tr(∂̄2J∂̄2J), and the
corresponding correlator is

〈Tr(∂̄2J∂̄2J)x Tr(∂̄2J∂̄2J)y〉 ∼
(
∂̄x∂̄yK

−1(|x− y|)
)2

∼ |x− y|3

(x̄− ȳ)4

∞∑
m,n=1

(MmMn)7/2 e−(Mm+Mn)|x−y|.
(4.41)

The problem is that the 2++ masses are thus the same as the ones of 0++ states as given
in equation (4.39). To resolve this paradox, LMY suggest that the 2++ masses should
actually be given by

M(2++(∗···∗)) = M2 +M1+n (n ∈ N), (4.42)

in contrast to (4.40). But again, this assertion is just put in by hand and there is no
justification for its validity.

6The lattice values are taken from [26]. The comparisons by LMY are made for the masses in the limit
N → ∞; it should be noted, however, that the agreement for M(0++) is in fact very good for any
value of N given in [26].

7LMY claim it to be 0.05%, but this percentage arises from a wrong number they list in table III in
[12], viz. 7.994 instead of the correct value 7.951. Also the value for the third excited mass should
actually be 6.685 instead of 6.716. These errors already occur there in table II.
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As in the 0++ case the agreement with lattice data for the lowest state is good (2.4%),
viz. M(2++)LMY = 6.72

√
σ compared to M(2++)lattice = (6.88 ± 0.16)

√
σ, whereas the

first two excited masses differ from lattice calculations by 7.6% and 13%. Again, LMY
suspect the lattice masses to be labelled in a wrong way, and after relabelling they get
much better agreement (< 1%) for M(2++∗∗) and M(2++∗∗∗), the deviation of M(2++∗)
remains unchanged at 7.6%. But as before, there is no real justification for relabelling the
lattice masses in this peculiar way.

LMY also discuss spin two states with different C and P quantum numbers. Here they
also find agreement with lattice values of about 1 − 10%, but with the same caveats as
before. For instance, they assume that 0−− masses are given by M1 + M1 + Mn (n ∈ N)
and 2−− masses by M1 +M2 +M1+n (n ∈ N), even though in both cases their correlators
only predict Mm +Mn +Mk (m,n, k ∈ N).

4.2.3. Summary

To summarise, one can say that the only predicted glueball mass that i) comes out of
the calculation without further speculative assumptions about identification and labelling
of states, and that ii) is in excellent agreement (0.8%) with lattice computations, is the
lightest 0++ mass. The excited 0++ masses as well as the 0−− masses also fulfil requirement
i), but they differ from the (unrelabelled) lattice predictions by 10 − 15% and 2 − 4%,
respectively.

In view of these qualifications, the claim of Leigh et al. in their abstract that “the
agreement [of the mass spectrum] with available lattice data is excellent” [12, p. 1], seems
somewhat exaggerated. Since this “excellent” agreement is one of the justifications for
their key conjecture (4.13), its validity becomes more questionable.
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Since the conjecture (4.13) made by LMY is the crucial ingredient for the deviation of
the approximation to the vacuum wave functional found in section 4.1, it is worthwhile to
check it by direct calculation. Since those computations become quite involved for higher
n, only the cases n = 0, 1, 2 will be considered. Let us for convenience first write down
the conjecture (4.13) once again:

T :On:
?
= (2 + n)m :On: +O(J3) (5.1a)

On =

∫
∂̄Ja(∆n)ab∂̄J b (5.1b)

The kinetic energy operator consists of parts:

T = T1 + T2 (5.2a)

T1 = m

∫
z

Jaz
δ

δJaz
(5.2b)

T2 = m
π

N

∫
z,z′

Ωab
z,z′

δ

δJaz

δ

δJ bz′
(5.2c)

with the compact notation Jaz ≡ Ja(z) etc. The action of T1 on On up to second order
in J is easily evaluated for general n:

δOn
δJaz

= −2∂̄
[
(∆n)ab∂̄J bz

]
+

∫
∂̄J bz′

δ(∆n)bcz′

δJaz
∂̄J cz′ (5.3)

and therefore

T1O0 = 2mO0 (5.4a)

T1On = 2mOn +O(J3) (n > 0). (5.4b)

The action of T2 is more involved because one has to keep the second term in (5.3) (for
n > 0), and there are divergent expressions arising which make it necessary to use a
regulated version of Ω and to introduce normal ordering. Recall from the end of section
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3.7.3 that the carefully regulated form of Ω was found by Karabali et al. in [10] to be

Ωab(z, z′) = Dbc
z′Λ

ca(z′, z) (5.5a)

Λca(z′, z) =

∫
x

Ḡdc(x, z′)G(x, z)e−|x−z|
2/ε

[
x̄− z̄
ε

H(x, x̄)H−1(z, x̄)

+H(x)∂z
(
H−1(z, x̄)H(z)

)
H−1(z)

]da
(5.5b)

=
1

π(z − z′)

[
1− e−|z−z

′|2/2εH(z′)H−1(u, z̄′)H(u)H−1(z, ū)
]ca

(5.5c)

+
ε

π
e−|z−z

′|2/2ε[...]ca

+O(ε2)

= Ḡ(z, z′)
(
δca − e−|z−z′|2/2ε

[
H(z′)H−1(z, z̄′)

]ca)
+ . . . (5.5d)

For the following calculations, i.e. when T acts on products of ∂̄J at the same point,
one should actually use the exact form of Λ displayed in (5.5b). Karabali et al. even
explicitly state in their paper that there may be contributions for such calculations from
the . . . terms in (5.5d) [10, p. 681]. But the approximate form of Λ displayed in (5.5d)
is the one LMY choose for their calculations, which we will repeat here first because this
demonstrates the subtle dependence of the eigenvalues of On on the exact regularisation.

5.1. First Approximation

In this section we will follow LMY’s lead and use as a first approximation

Ωab(z, z′) = Dbc
z′Λ

ca
(1)(z

′, z), (5.6a)

Λca
(1)(z, z

′) :=
1

π(z − z′)
(
δca − e−α

[
H(z′)H−1(z, z̄′)

]ca)
, (5.6b)

α :=
|z − z′|2

2ε
. (5.6c)

5.1.1. n = 0

This is the easiest case, in which the second term in (5.3) is absent and there is only
one divergent term. This calculation will also show how those divergent normal ordering
terms arise in general which will prove helpful for the n > 0 cases.

The second functional derivative of O0 is

δ2O0

δJaz δJ
b
z′

= −2δab∂̄2δ(z − z′) (5.7)

and thus

T2O0 = −2m
π

N

∫
z

[
∂̄2
zΩ

aa(z, z′)
]
z′→z

. (5.8)

To evaluate the coincidence limit of ∂̄2Ω just expand Ω in powers of z− z′ and note that
the dangerous 1/(z − z′) term is effectively absent in the sense that the lowest power of
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5.1. First Approximation

z−z′ appearing in the expansion of Λ is not −1 but 0. Therefore there is no delta function
arising when acting with ∂̄ on Ω and so ∂̄ only acts on e−α, giving

∂̄2
zΩ

ab(z, z′) = Dbc
z′

{
−1

π(z − z′)
(z − z′)2

(2ε)2
e−α

[
H(z′)H−1(z, z̄′)

]ca}
= (δbc∂z′ − J bcz′ )

{
−1

π

e−α

(2ε)2

∞∑
n=0

(z − z′)n+1

n!
(H∂nH−1)ca(z′)

}
= +

1

4πε2
δba +O(z − z′)

(5.9)

and therefore [
∂̄2
zΩ

aa(z, z′)
]
z′→z

=
N2 − 1

4πε2
(5.10a)

⇒ T2O0 = −2m
π

N

∫
N2 − 1

4πε2
= −2m

∫ [
N2 − 1

4Nε2

]
. (5.10b)

This divergent term can now be dealt with by defining the normal ordered form of O0 as

:O0: =

∫ (
∂̄Ja∂̄Ja − N2 − 1

4Nε2

)
(5.11)

which now satisfies
T :O0: = 2m :O0: (5.12)

in agreement with the conjecture for n = 0.
For the following calculations, note that the coincident limit of an expressions in which

∂̄z acts n times on Ω(z, z′) (possibly with further partial derivatives with respect to the
other variables) always results in a term of order 1/εn because, as explained above, ∂̄z
only acts on e−α contained in Ω and thus pulls out a factor of 1/ε. (This is not true
for ∂̄z′ because this also acts on the H∂nH−1 part.) Therefore these terms will dictate
the normal ordering procedure, but as long as we are not interested in how this looks
explicitly, we do not have to calculate them and will only keep the finite terms.

5.1.2. n = 1

For this case it is convenient to simplify the expression for the h-covariant Laplacian
acting on ∂̄J as

∆ab∂̄J b = δab∂∂̄J b − ifacb
(

1

2
∂̄J c∂̄J b + J c∂̄2J b

)
= δab∂∂̄J b − ifacbJ c∂̄2J b

= Dab∂̄2J b,

(5.13)

the first term in brackets dropping out because of the antisymmetry of facb. So for n = 1
equation (5.3) becomes

δO1

δJ bz′
= −2∂̄

(
Dbc∂̄2J cz′

)
+

∫
∂̄J cz

δDcd
z

δJ bz′
∂̄2Jdz

= −2∂̄
(
Dbc∂̄2J cz′

)
− if cbd∂̄J cz′ ∂̄2Jdz′

(5.14)
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5. Testing the LMY Conjecture

and taking another functional derivative then yields

δ2O1

δJaz δJ
b
z′

= 2if bac∂̄z′
(
δz,z′ ∂̄

2J cz′
)
− 2∂̄z′

(
Dba
z′ ∂̄

2
z′δz,z′

)
− ifabc

(
∂̄z′δz,z′ ∂̄

2J cz′ − ∂̄J cz′ ∂̄2
z′δz,z′

)
= 2δz,z′ ∂̄

3Jabz′ + (∂̄zδ-terms)

(5.15)

where δz,z′ ≡ δ(z − z′) and “∂̄zδ-terms” refers to terms in which at least one ∂̄z acts on a
delta function. (Although all derivatives in the first line are with respect to z′, one can
bring it to the form in the second line by using ∂z′δz′,z = −∂zδz′,z.) When computing
TO1 all those ∂̄z’s can be integrated by parts and in the end give the coincident limit of
Ω(z − z′) with at least one ∂̄z acting on it. As argued at the end of section 5.1.1 these
expressions will only give normal ordering contributions which we will denote by [...]NO

and so we find:

T2O1 = m
2π

N

∫
z

[
Ωab(z, z′)

]
z′→z

∂̄3Jabz + [...]NO. (5.16)

The coincident limit can again be evaluated by expanding Ω as

Ωab(z, z′) = Dbc
z′

{
1

π(z − z′)

(
δca −

∞∑
n=0

(z − z′)n

n!
(H∂nH−1)ca(z′)

∞∑
m=0

(−α)m

m!

)}

= − 1

π
(δbc∂z′ − J bcz′ )

{
∞∑
n=1

(z − z′)n−1

n!
(H∂nH−1)caz′ e

−α +
∞∑
m=1

(z − z′)m−1(z̄ − z̄′)m

m!(−2ε)m

}

= − 1

π

{
−1

2

(
H∂2H−1

)ba
+Dbc

(
H∂H−1

)ca}
z′

+ . . .

(5.17)

where the ellipsis refers to terms of higher order in (z−z′) or (z̄− z̄′). Using the identities

H∂H−1 = −∂HH−1 = −J (5.18a)

H∂2H−1 = ∂(H∂H−1)− ∂H(H−1H)∂H−1 = −∂J + JJ = −DJ (5.18b)

we obtain

Ωab(z, z′)z→z′ =
1

2π

(
DJ
)ba

=
1

2π
(∂J ba − J bcJ ca). (5.19)

The JJ term is symmetric in a and b and will hence drop out when plugging this result
into (5.16):

T2O1 = m
2π

N

∫
1

2π
∂J ba∂̄3Jab + [...]NO

= m

∫
∂̄J c(∂∂̄)∂̄J c + [...]NO = mO1 +O(J3) + [...]NO

(5.20)

where the trace identity JabJ ba = ifacbif bdaJ cJd = fabcfabd︸ ︷︷ ︸
=Nδcd

J cJd = NJ cJ c was used. So

the final result for the kinetic energy operator acting on the normal ordered operator :O1:
is

T :O1: = 3m :O1: +O(J3), (5.21)

which again agrees with the conjecture.

42



5.1. First Approximation

5.1.3. n = 2

Finally, consider the operator

O2 =

∫
∂̄J c(∆2)cd∂̄Jd

p.i.
=

∫
∆cd∂̄Jd∆ce∂̄Je

5.13
=

∫
Dcd∂̄2JdDce∂̄2Je (5.22)

for which
δO2

δJ bz′
= −2∂̄2

[
Dbc

(
Dcd∂̄2Jdz′

)]
− 2if cbd∂̄2Jdz′D

ce∂̄2Jez′ (5.23)

and consequently

δ2O2

δJaz δJ
b
z′

= −2
{
−if bacδz,z′ ∂̄2

(
Dcd∂̄2Jdz′

)
− if cad∂̄2

[
Dbc

(
δz,z′ ∂̄

2Jdz′
)]

+ f cbdf caeδz,z′ ∂̄
2Jdz′ ∂̄

2Jez′
}

+ (∂̄zδ-terms) (5.24a)

= δz,z′2
{
if bac∂̄2

(
Dcd∂̄2Jdz′

)
+ if cad∂̄2

(
Dbc∂̄2Jdz′

)
− ∂̄2J bcz′ ∂̄

2J caz′
}

+ 2if bac∂z′δz,z′ ∂̄
2J cz′ + (∂̄zδ-terms) (5.24b)

= δz,z′2
{

2∂∂̄4Jabz′ +O(J2)
}

+ 2∂z′δz,z′ ∂̄
4Jabz′ + (∂̄zδ-terms). (5.24c)

Since Ωz′→z is of order J , the terms in braces which are quadratic in J will only give
O(J3) contributions to TO2. Repeating the argument from the n = 1 case one then finds

T2O2 = 2m
2π

N

∫ [
Ωab

z,z′

]
z′→z

∂∂̄4Jab+m
2π

N

∫ [
∂zΩ

ab
z,z′

]
z′→z

∂̄4Jab+O(J3)+[...]NO (5.25)

The first coincidence term was already computed above, and the second term can be
calculated analogously:

∂zΩ
ab(z, z′) = − 1

π
(δbc∂z′ − J bcz′ )

{
∞∑
n=2

(n− 1)
(z − z′)n−2

n!
(H∂nH−1)caz′

}
+ . . .

= − 1

π

{
− 2

3!

(
H∂3H−1

)
+

1

2
D
(
H∂2H−1

)}ba
z′

+ . . .

(5.26)

where the ellipsis again refers to terms of higher order in (z−z′) or (z̄−z̄′). Using equation
(5.18b) as well as

H∂3H−1 = ∂(H∂2H−1)− ∂H(H−1H)∂2H−1 = −∂(DJ) + J(DJ) = −D2J (5.27)

it follows that[
∂zΩ

ab(z, z′)
]
z′→z

= − 1

π

{
1

3

(
D2J

)
+

1

2
D (−DJ)

}ba
=

1

2π

1

3

(
D2J

)ba
(5.28)

and so we obtain

T2O2 = 2m

∫
∂Ja∂∂̄4Ja +m

∫
1

3
∂2Ja∂̄4Ja +O(J3) + [...]NO

= 2m

∫
∂̄Ja

(
∂∂̄
)2
∂̄Ja − 1

3
m

∫
∂̄Ja

(
∂∂̄
)2
∂̄Ja +O(J3) + [...]NO.

(5.29)
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5. Testing the LMY Conjecture

This gives the final result

TO2 =

(
4− 1

3

)
O2 +O(J3) + [...]NO (5.30)

and so this time the conjecture is violated.

5.2. Second Approximation

As already mentioned, using the simplified Λ(1) instead of Λ is not allowed when T2 acts
on local operators like On. So LMY repeat the calculations for n = 0, 1 using what they
call the “exact regulator” [12, p. 19], which is the one displayed in equation (5.5c):

Ωab(z, z′) = Dbc
z′Λ

ca
(2)(z

′, z) (5.31a)

Λca
(2)(z

′, z) =
1

π(z − z′)

[
1− e−|z−z

′|2/2εH(z′)H−1(u, z̄′)H(u)H−1(z, ū)
]ca

. (5.31b)

We will not repeat these calculations here, but the result is that the eigenvalues for
n = 0, 1 using Λ2 become

TO0 = 2

(
1− 1

16

)
O0 (5.32a)

TO1 = 3

(
1− 3

32

)
O1, (5.32b)

so the conjecture is in fact violated for all three cases that were investigated by LMY by
direct calculation.

5.3. Exact Regulator

Taking a closer look at equation (5.5c) shows that there might be contributions to terms
like ∂̄2

zΩ(z, z′)z′→z (which appears in the n = 0 calculation) from the second summand
proportional to ε e−|z−z

′|2/2ε, because a derivative acting on the exponent will bring down
a factor of ε−1 and thus give a contribution of order ε0. The same holds true for the O(ε2)
terms because there are two derivatives acting on Ω, and so a consistent way to calculate
T2O0 is to take the exact form of Λ, i.e.

Ωab(z, z′) = Dbc
z′Λ

ca(z′, z) (5.33a)

Λca(z′, z) =

∫
x

Ḡdc(x, z′)G(x, z)e−|x−z|
2/ε

[
x̄− z̄
ε

H(x, x̄)H−1(z, x̄)

+H(x)∂z
(
H−1(z, x̄)H(z)

)
H−1(z)

]da
, (5.33b)

Ḡdc(x, z′) =
1

π(x− z′)

[
1− e−|x−z

′|2/εH(x, z̄′)H−1(z′, z̄′)
]dc

. (5.33c)
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5.3. Exact Regulator

Because of the complicated form of Λ the calculations become quite involved, so we will
only consider the n = 0 case1. The detailed calculations can be found in appendix C.1
and the result is

T :O0: = 2m

(
1− 3

16

)
:O0:. (5.34)

So once again the conjecture is falsified, this time using — according to KKN — the most
accurate (and strictly speaking in this context the only legitimate) regulator.

All the different results show that the result is very sensitive to the exact form of the
regulator that is used. As LMY put it: “There are certainly very subtle effects coming
from the point-splitting regulator. We have not been able to arrive at a consistent method
for dealing with these effects.” [12, p. 19]

It would therefore be very desirable to have an independent, maybe more robust way
to calculate the kinetic energy eigenvalues of On in order to justify the proposed vacuum
wave functional found by LMY. One possible approach will be presented here in section
6.2.

1In fact, the calculation for n = 0 also reveals that the verification of the conjecture for higher n by
direct calculation using the exact KKN regulator will become an almost insurmountable task.
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6. Back to The Original Variables

The approximation to the vacuum wave functional, Ψ0, was constructed in section 4.1 as a
functional of the gauge-invariant variable J . It is now an interesting question if Ψ0 can be
re-expressed in terms of the original Yang Mills connection A, and if so, what it looks like.
If one assumes that the use of the new variables was somehow an essential ingredient, one
could expect that Ψ0 as a functional of A takes a rather complicated form. In contrast,
it is easy to see that it has exactly the same form, just with ∂̄J replaced by (i/2 times1)
the colour-magnetic field B, and the holomorphic covariant Laplacian2 ∆(J) ≡ 1

2
{∂̄, D}

replaced by (1/4 times1) its gauge-covariant counterpart ∆(A) ≡ ∇2
i ≡ (∂i + Ai)

2:

Ψ0[J ] = exp

[
− N

πm2

∫
Tr

(
∂̄J K

(
∆(J)

m2

)
∂̄J

)]
(6.1a)

= exp

[
+

N

4πm2

∫
Tr

(
BK

(
∆(A)

4m2

)
B

)]
= Ψ0[A] (6.1b)

(Regarding the + sign, recall that in our conventions B = −iBata whereas J = Jata.)

Because of the similarity of ∂̄J and B shown in (3.64), viz. ∂̄J = i
2
M †BM †−1

, it is enough
to show an analogous similarity between ∆(J) and ∆(A) in order to verify the assertion
(6.1b). To this end, first note that ∆(A) can be expressed in terms of the complex covariant
derivatives as follows:

∇∇ =
1

4
(∇1 + i∇2)(∇1 − i∇2) =

1

4

(
∇2
i − i[∇1,∇2]

)
=

1

4

(
∇2
i − iB

)
(6.2a)

∇∇ =
1

4

(
∇2
i + iB

)
(6.2b)

⇒ {∇,∇} =
1

2
∇2
i =

1

2
∆(A). (6.2c)

Furthermore, it was already shown that ∂̄ = M †∇M †−1
and D = M †∇M †−1

, and so we
have

∆(J) ≡ 1

2
{∂̄, D} =

1

4
M †∆(A)M †−1

(6.3)

which shows that (6.1b) is correct.

1These factors could have been avoided if the complex coordinates had been introduced in a normalised
way, viz. z = (x1 − ix2)/

√
2. We followed the KKN convention z = x1 − ix2 to avoid too much

confusion when comparing the results.
2As a technical remark, note that we will from now on adopt the convention that derivative operators

act on everything to their right, not only the first object to their right, without using hats.
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6. Back to The Original Variables

The fact that Ψ0 has exactly the same simple quasi-Gaussian form when expressed
in terms of Ai immediately raises the question: Why not, instead of going through the
painful derivation of the Hamiltonian as a function of J , stick to the original variables
and solve the Schrödinger equation there? In other words, why is the transformation to
the KKN variables in this context necessary or helpful at all?

The equality of (6.1a) and (6.1b) implies that using the ansatz (6.1b) to solve the
Schrödinger equation for the vacuum state in the original variables must lead to the same
Kernel equation as before — assuming the LMY conjecture holds. Since this conjecture
is vital for the derivation but could not be proven in the J-variables, the hope is now that
the calculation in the A-variables provides a verification of it, or at least some independent
support for its validity.

6.1. Schrödinger Equation

The Schrödinger equation in the Yang-Mills connection Ai basis reads

H[A]Ψ0[A] = E0Ψ0[A], (6.4a)

H[A] =

∫
x

(
−g

2

2

δ2

δAai (x)2
+

1

2g2
Ba(x)2

)
≡ T[A] + V[A]. (6.4b)

Using the ansatz Ψ0 = eP leads to

HΨ0 =

(
TP − g2

2

∫
x

δP

δAai (x)

δP

δAai (x)
+

1

2g2

∫
x

Ba(x)2

)
Ψ0. (6.5)

Since the calculation in J-variables was carried out only up to second order in J , we will
do the same here and only keep terms up to second order in B. The functional derivative
of Bb = ∂1A

b
2 − ∂2A

b
1 + f bacAa1A

c
2 is

δBb(y)

δAai (x)
= δba (δi2∂1y − δi1∂2y) δ(y − x) + f bac

(
δi1A

c
2 − δi2Ac1

)
δ(y − x) (6.6a)

= −εij∇ba
jyδ(y − x), (6.6b)

and using the exponent P = − N
8πm2

∫
BaKabBb as given in equation (6.1b) then gives

δP

δAai (x)
= − N

8πm2
2εij∇ab

j K
bcBc(x) +O(B2) (6.7a)

⇒ −g
2

2

∫
x

δP

δAai (x)

δP

δAai (x)
= − 1

8g2m2

∫
x

[
∇ab
i K

bcBc(x)
] [
∇ad
i K

deBe(x)
]

+O(B3)

=
1

8g2m2

∫
x

Bc(x)Kcb∆bdKdeBe(x) +O(B3)

=
1

2g2

∫
x

Ba(x)
[
LK2(L)

]ab
Bb(x) +O(B3) (6.7b)
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6.2. The LMY Conjecture

where now L ≡ ∆(A)/(4m2). Note that this is the exact analogue of equation (4.10).
Equation (6.5) thus becomes (O(B3) terms are suppressed)

HΨ0 =

(
TP +

1

2g2

∫
x

Ba(x)
[
LK2(L) + 1

]ab
Bb(x)

)
Ψ0 (6.8a)

=
1

2g2

(
− 1

2m

∞∑
n=0

cn
(4m2)n

TOn +

∫
x

Ba(x)
[
LK2(L) + 1

]ab
Bb(x)

)
Ψ0 (6.8b)

where the Kernel was again expanded in a power series as

K(L) =
∞∑
n=0

cnL
n =

∞∑
n=0

cn
(4m2)n

∆(A)n (6.9)

and3

On[A] =

∫
Ba(∆(A)n)abBb. (6.10)

Now it is clear that the Kernel equation (4.16) (and thus the vacuum wave functional
and the glueball spectrum as discussed in sections 4.1.3 and 4.2) will follow if the key
conjecture (4.13) holds.

6.2. The LMY Conjecture

So far the calculation was completely analogous to the one using the KKN variables,
but now there is a major difference. In the KKN variables, the kinetic energy operator
contained the linear term T1 ∼ Jδ/δJ which basically counts the number of J ’s and thus
made the conjecture (4.13) a more or less natural guess. (This naive argument of course
neglects contributions from the quadratic term T2, which can nevertheless be important
as we saw in chapter 5.) But recall that this term only emerged during the non-trivial
regularisation procedure that was needed to express T in terms of J .

Here it is a priori far from obvious that the relation (6.11a) could possibly hold. But T
as written in (6.11b) contains two functional derivatives evaluated at the same point which
will produce divergent expressions when acting on the local operators On. Therefore, some
regularisation will have to be introduced here as well, and it becomes evident that the
careful regularisation of the kinetic energy operator is the key ingredient to the verification
(or falsification) of the conjecture.

In any case, as already discussed, the result must in the end of course be independent
of the choice of variables and so here we will have an independent test for the validity of
the conjecture, which in terms of the original Yang-Mills variables reads

T :On:
?
= (2 + n)m :On: +O(B3) (6.11a)

T = −g
2

2

∫
x

δ2

δAai (x)2
, (6.11b)

3Note that (6.10) differs from the original definition of On in terms of J by a constant factor of 4n+1.
Since this factor would drop out in equation (6.11a) anyway, it is not necessary to keep it in what
follows.
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6. Back to The Original Variables

where now On as given in (6.10) is a functional of A. Just like in the KKN variable
approach we will consider the cases n = 0, 1, 2.

6.2.1. n=0

The first and simplest operator reads

O0 =

∫
y

Bb(y)2, (6.12)

which is (up to a constant) nothing but the potential energy operator V. Using (6.6) one
finds

δO0

δAai (x)
= 2εij∇ab

j B
b(x) (6.13a)

⇒ TO0 = −g
2

2

∫
x

δ2O0

δAai (x)2
= g2

∫
x

∇ab
i ∇ba

i δ(x− x). (6.13b)

As expected, this result is divergent and therefore needs to be regularised. Letting tr
denote the trace in adjoint representation and using a boldface notation for the spatial
2-vector ∇ = ∇i, the result (6.13b) can be written as

TO0 = g2

∫
x

tr
[
∇2

xδ(x− y)
]
y→x

. (6.14)

The delta function now has to be regularised in a gauge-covariant way, which can be done
using a method first introduced by Fujikawa for the calculation of the axial anomaly [13]4.

To smear out the delta function one could naively use a properly normalised Gaussian,
which can be written as a Fourier integral:

M2

4π
e−M

2(x−y)2/4 =

∫
d2p

(2π)2
e−p

2/M2

eip·(x−y) =

∫
d2p

(2π)2
exp

(
∂2
x/M

2
)

eip·(x−y). (6.15)

The parameter M has mass dimension one and should be taken to infinity at the end of
a calculation. The problem with (6.15) is that this naive regularisation will not preserve
gauge invariance, as can be seen from the appearance of an ordinary derivative. But in
order to get a gauge-covariant regulator, one can simply replace the ordinary by a gauge-
covariant derivative. (For the axial anomaly calculation, where quarks are present, one
would take /∇. Since we are considering pure Yang-Mills theory without fermions, it is
sufficient to take ∇.) The regulated delta function thus becomes:

δM(x− y) =

∫
d2p

(2π)2
exp

(
∇2

x/M
2
)

eip·(x−y). (6.16)

In the limit M → ∞ this still becomes a delta function as required, but it also has the
appropriate gauge transformation properties and is thus a valid regulator.

4The way this calculation is presented here follows [16], chapter 77.
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6.2. The LMY Conjecture

Now equation (6.14) becomes

TO0 = lim
M→∞

g2

∫
x

tr

{∫
d2p

(2π)2
∇2

x exp
[
∇2

x/M
2
]

eip·(x−y)

}
y→x

(6.17a)

= m lim
M→∞

∫
x

1

N
tr

{∫
d2p

2π
(∇ + ip)2 exp

[
(∇ + ip)2/M2

]}
x

(6.17b)

where a derivative on the very right now gives a vanishing contribution. Here we used

∇xe
ip·(x−y) = (∂x+A(x))eip·(x−y) = eip·(x−y)(∂x+A(x)+ip) = eip·(x−y)(∇x+ip) (6.18)

for every covariant derivative in the series expansion, to commute eip·(x−y) to the very left
where it becomes 1 after performing the coincident limit.

The integration variable p can be rescaled to the dimensionless variable p/M (which
we will call p again) and then the integrand can be expanded in powers of M . When
expanding the exponential and collecting terms one should of course not change the order
of individual terms since they do not necessarily commute. But p commutes with every-
thing and so e−p

2
can be factored out; also note that any term of odd order in M will

also be odd in p and so the integral from −∞ to ∞ will be zero. Using this, the term in
braces becomes

{. . .} = M2

∫
d2p

2π

(
∇2 + 2iMp ·∇−M2p2

)
exp

[
∇2/M2 + 2ip ·∇/M − p2

]
(6.19a)

=

∫
d2p

2π
e−p

2 (
I4M

4 + I2M
2 + I0

)
+O(1/M), (6.19b)

with

I4 := −p2 = −pipjδij (6.20a)

I2 := ∇2 + (2i)2(p ·∇)2 − p2

[
∇2 +

(2i)2

2!
(p ·∇)2

]
= ∇2 − pipj

[
δij∇2 + 4∇i∇j

]
+ pipjpkpl [2δij∇k∇l] (6.20b)

I0 := ∇2

[
∇2 +

(2i)2

2!
(p ·∇)2

]
+ 2ip ·∇

[
2i

2!

(
∇2(p ·∇) + (p ·∇)∇2

)
+

(2i)3

3!
(p ·∇)3

]
− p2

[
1

2!
∇4 +

(2i)2

3!

(
∇2(p ·∇)2 + (p ·∇)∇2(p ·∇) + (p ·∇)2∇2

)
+

(2i)4

4!
(p ·∇)4

]
=
(
1− p2/2

)
∇4 − 2

(
1− p2/3

) [
∇2(p ·∇)2 + (p ·∇)∇2(p ·∇) + (p ·∇)2∇2

]
+

8

3

(
1− p2/4

)
(p ·∇)4
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= ∇4 − pipj
[

1

2
δij∇4 + 2

(
∇2∇i∇j +∇i∇2∇j +∇i∇j∇2

)]
+ pipjpkpl

[
2

3
δij
(
∇2∇k∇l +∇k∇2∇l +∇k∇l∇2

)
+

8

3
∇i∇j∇k∇l

]
− pipjpkplpmpn

[
2

3
δij∇k∇l∇n∇m

]
(6.20c)

All the integrals in (6.19b) are generalised Gaussian integrals which can be computed
using the formulas5 ∫

d2p e−p
2

= π (6.21a)∫
d2p e−p

2

pipj =
π

2
δij (6.21b)∫

d2p e−p
2

pipjpkpl =
π

4
(δijδkl + δikδjl + δilδjk) (6.21c)∫

d2p e−p
2

pipjpkplpmpn =
π

8
(δijδklδmn + permutations). (6.21d)

This yields∫
d2p

2π
e−p

2

I4 = −1

2
(6.22a)∫

d2p

2π
e−p

2

I2 =
1

2
(1− 3 + 2)∇2 = 0 (6.22b)∫

d2p

2π
e−p

2

I0 =
1

2

[(
1− 5

2
+

4

3
+

2

3
− 1

2

)
∇4

+

(
−1 +

2

3
+

2

3
− 1

2

)
∇i∇2∇i +

(
2

3
− 1

2

)
∇i∇j∇i∇j

]
=

1

12
(−∇i∇j∇j∇i +∇i∇j∇i∇j) =

1

12
∇i∇j[∇i,∇j]

=
1

24
(Fij)

2 =
1

12
B2 (6.22c)

and thus

TO0 =
1

12
m

1

N

∫
x

BabBba −m
∫
x

N2 − 1

2N
M4. (6.23)

Using the relations

Bab = facbBc (6.24a)

fabcfabd = Nδcd, (6.24b)

the final result becomes

TO0 = − 1

12
mO0 −m

∫
x

N2 − 1

2N
M4. (6.25)

5The index structure is dictated by symmetry and the prefactors can be found by calculating one
particular example.
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It is quite remarkable that in the end all ∇’s in (6.22c) conspire to form exactly a B2

so that the M independent term indeed reproduces O0. Also the divergent term is the
same as the one found by Leigh et al. (see equation (5.10a) and recall that the regulator ε
there has mass dimension −2) and can be absorbed by defining the normal ordered form
of O0 to be

:O0: =

∫
x

(
BaBa +

6(N2 − 1)

N
M4

)
(6.26)

which then satisfies

T :O0: = − 1

12
m :O0:. (6.27)

So the main qualitative feature of the conjecture, namely that O0 is an eigenvector of
T is indeed reproduced in this approach. But unfortunately the quantitative eigenvalue
found here is different — not only by magnitude but also by sign. Note however, that this
negative eigenvalue is a priori not an unphysical result, since O0 is not an allowed wave
functional because it is not normalisable and so its eigenvalue −m/12 cannot be regarded
as the energy of a physical state.

6.2.2. n=1

The next operator is

O1 =

∫
y

Bb(y)∆bcBc(y) =

∫
y

Bb(y)∇bd
i ∇dc

i B
c(y). (6.28)

Taking the first functional derivative then yields

δO1

δAai (x)
= 2εij∇ab

j ∆bcBc(x) +

∫
y

Bb(y)
[
f badδ(y − x)∇dc

i +∇bd
i f

dacδ(y − x)
]
Bc(y)

(6.29a)

= 2εij∇ab
j ∆bcBc(x)− 2Bb(x)fabd∇dc

i B
c(x) (6.29b)

and taking another one gives

δ2O1

δAai (x)2
= −2εijεik∇ab

j ∆bc∇ca
k δ(0) + 2εij∇ab

j

[
δ(0)f bad∇dc

i +∇bd
i δ(0)fdac

]
Bc(x)

+ 2εij

[
∇ba
j δ(0)

]
fabd∇dc

i B
c(x)− 2δiiB

ab(x)δ(0)f bacBc(x)

+ 2εijB
ab(x)∇bc

i ∇ca
j δ(0) (6.30a)

= −2
[
∇i∆∇iδ(0)

]aa
+ 4εij

[
∇jδ(0)

]ab
f bad∇dc

i B
c(x)

+ 6
[
B(x)δ(0)B(x)

]aa
+ 2
[
B(x)B(x)δ(0)

]aa
(6.30b)

where the following identity was used:

εij∇ab
i ∇bc

j = F ac
12 = Bac. (6.31)
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(This can be seen directly from F adj
12 = [∇adj

1 ,∇adj
2 ], or alternatively by explicitly evaluating

the left hand side

εij∇ab
i ∇bc

j = εij
(
δab∂i + Aabi

) (
δbc∂j + Abcj

)
(6.32a)

= εij
[
δac∂i∂j +

(
∂iA

ac
j

)
+ Aacj ∂i + Aaci ∂j + Aabi A

bc
j

]
(6.32b)

= εij
[(
∂iA

ac
j

)
+ Aabi A

bc
j

]
(6.32c)

= (∂1A
ac
2 )− (∂2A

ac
1 ) +

(
fadbf bec − faebf bdc

)
Ad1A

e
2 (6.32d)

= (∂1A
ac
2 )− (∂2A

ac
1 ) + fabcf bdeAd1A

e
2 (6.32e)

= fabc
[(
∂1A

b
2

)
−
(
∂2A

b
1

)
+ f bdeAd1A

e
2

]
(6.32f)

which agrees with the right hand side; (6.32e) follows from the Jacobi identity

fadbf bec + fdebf bac + f eabf bdc = 0.) (6.33)

Note that in the last step (6.30b) the delta-functions were pulled inside the adjoint
matrix component structure (just like in (6.14)), which is necessary because they become
matrices after regularisation. This procedure is again in complete analogy to the calcula-
tion of the axial anomaly, where the delta function is also pulled inside the trace to get a
non-zero result (see also the remark in [23, p. 53]).

The regularisation can now be performed just like in the n = 0 case; the detailed
calculation can be found in appendix C.2 and the results are (only the finite, i.e. O(M0)
terms are shown)

∇i∆∇iδ(0)→ 1

π

1

60

(
B[∇i, [∇i, B]] + [∇i, [∇i, B]]B + 4[∇i, B][∇i, B]

)
(6.34a)

∇jδ(0)→ 1

π

1

24
εjk[∇k, B] (6.34b)

δ(0)→ 0. (6.34c)

Using (6.24) and the relations

[∇i, B]ab = facb∇cd
i B

d (6.35a)

[∇i, [∇i, B]]ab = facb∆cdBd, (6.35b)

which can be proved in the sam way as (6.31), one arrives at

TO1 =
Ng2

2π

∫ {
− 2

60

[
Ba∆abBb +

(
∆abBb

)
Ba + 4

(
∇ab
i B

b
)

(∇ac
i B

c)
]

+
4

24

(
∇ab
i B

b
)

(∇ac
i B

c)

}
(6.36a)

= − 1

10
m

∫
Ba∆abBb. (6.36b)

The divergent terms (which are not shown here explicitly) can be absorbed into the
definition of the normal ordered form of O1 similar to (6.26), which then satisfies

T :O1: = − 1

10
m :O1:. (6.37)
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Again it is (a priori) very surprising that O1 in this calculation turned out to be an
eigenvector of T, since this required a very subtle interplay between all the terms arising
from the regularisation procedure (cf. appendix C.2), that could not possibly have been
guessed. But just like in the n = 0 case, the precise eigenvalue found here is negative and
contradicts the conjecture (6.11a) also in magnitude.

6.2.3. n=2

Finally, consider the operator

O2 =

∫
y

Bb(y)∆bc∆cdBd(y). (6.38)

The first functional derivative is

δO2

δAai (x)
= 2εij∇ab

j ∆bc∆cdBd(x)

+

∫
y

Bb(y)
[(
f baeδ(y − x)∇ec

i +∇be
i f

eacδ(y − x)
)

∆cd

+ ∆bc
(
f caeδ(y − x)∇ed

i +∇ce
i f

eadδ(y − x)
)]
Bd(y) (6.39a)

= 2εij∇ab
j ∆bc∆cdBd(x)

− 2Bae∇ec
i ∆cdBd(x)− 2

(
∇eb
i B

b(x)
)
f eac∆cdBd(x) (6.39b)

and so the second one gives

δ2O2

δAai (x)2
= −2

{
∇ab
i ∆bc∆cd∇da

i δ(0)− εij∇ab
j

[(
f baeδ(0)∇ec

i +∇be
i f

eacδ(0)
)

∆cd

+ ∆bc
(
f caeδ(0)∇ed

i +∇ce
i f

eadδ(0)
)]
Bd

}
− 2

{
−εijfabe

(
∇ba
j δ(0)

)
∇ec
i ∆cdBd +Baef eacδiiδ(0)∆cdBd

+Bae∇ec
i

[
f cafδ(0)∇fd

i +∇cf
i f

fadδ(0)
]
Bd − εijBae∇ec

i ∆cd∇da
j δ(0)

}
− 2

{
f eabδiiδ(0)Bbf eac∆cdBd −

(
εij∇eb

i ∇ba
j δ(0)

)
f eac∆cdBd

+
(
∇eb
i B

b
)
f eac

[
f cafδ(0)∇fd

i +∇cf
i f

fadδ(0)
]
Bd

− εij
(
∇eb
i B

b
)
f eac∆cd∇da

j δ(0)

}
(6.40a)
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= −2
[
∇i∆∆∇iδ(0)

]aa
+ 2εij

{
2
[
∇jδ(0)

]ab
f bae∇ec

i ∆cdBd +
[
∇j∆δ(0)

]ac
f cae∇ed

i B
d

− 2
[
∇j∆∇iδ(0)

]ae
Bea +

(
∇eb
i B

b
)
f eac

[
∆∇jδ(0)

]ca}
− 4NBcδ(0)∆cdBd − 2Bae

[
∇iδ(0)

]ec
f caf∇fd

i B
d + 2Bae

[
∆δ(0)

]ef
Bfa

− 8Nδ(0)Bb∆bdBd + 2N
(
∇eb
i B

b
)
δ(0)∇ed

i B
d + 2

(
∇eb
i B

b
)
f eac

[
∇iδ(0)

]cf
Bfa.

(6.40b)

The regularisation procedure is again the same as above. The detailed calculation can be
found in appendix C.2 and the results with up to four derivatives acting on δ(0) are (only
O(M0) terms are shown):

∇j∆δ(0)→ 1

π

1

240

(
εjk[∇k,∆B]− 2B[∇j, B] + 6[∇j, B

2]
)

(6.41a)

∆∇jδ(0)→ 1

π

1

240

(
εjk[∇k,∆B] + 18B[∇j, B] + 6[∇j, B

2]
)

(6.41b)

εij∇j∆∇iδ(0)→ 1

π

1

8
εij

(
∇iB

2∇j −∇iB∇jB −B∇iB∇j

)
. (6.41c)

The most complicated term is the one in the first line in (6.40b) with six derivatives
acting on δ(0). As shown in appendix C.2, it gets quite difficult to extract a useful result
in terms of B and its derivatives from it and therefore it remains unclear at this point
whether O2 is again an eigenvector of T (up to terms O(B3)). But one can show that if
O2 is an eigenvector, then the contribution to TO2 is:

∇i∆∆∇iδ(0)→ − 1

π

11

1680
B[∇i, [∇i, [∇j, [∇j, B]]]] +O(B3). (6.42)

Plugging (6.41), (6.42) as well as (6.34) into (6.40b) and integrating by parts then gives
(the divergent normal ordering terms are not shown explicitly)

TO2 = −Ng
2

2π

∫
x

[
− 11

840
+ 2

(
2

24
+

1

240
+

1

240

)]
Ba∆ab∆bcBc +O(B3) (6.43a)

= −143

840
mO2 +O(B3). (6.43b)

So either O2 is not an eigenvector of T (cf. the hypothesis discussed in appendix C.2),
or its eigenvalue is −143/840. Again this (possible) eigenvalue is negative and disagrees
with the conjecture. Moreover, together with the first two eigenvalues −1/12 and −1/10
it contradicts a linear spectrum, which would be crucial for the derivation of a kernel
ODE similar to (4.16). The concrete consequences of the eigenvalues found here for the
vacuum wave functional will be analysed in 6.4.

6.3. Further Regularisation Issues

The quantitative discrepancy with the LMY results for T acting on the operatorsOn found
in section 6.2 is very disturbing. The main difference between the two approaches lies in
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the choice of a regularisation scheme, and as we learned in chapter 5 this can have an
important impact on the exact eigenvalues. Therefore it is worthwhile to discuss possible
issues regarding the regularisation procedure chosen in section 6.2 in a more careful way.

6.3.1. Choosing Different Regulators

The action of T on On generally leads to expressions involving the coincidence limit of
covariant derivatives acting on a delta function, as seen in section 6.2. To give a meaning
to these divergent results, the delta functions were replaced by a covariantised narrow
Gaussian, with a width given by the inverse regularisation scale 1/M :

δ(x− y)→
∫

d2p

(2π)2
exp

(
∇2

x/M
2
)

eip·(x−y) = exp
(
∇2

x/M
2
)
δ(x− y) (6.44)

But to smear out the delta function one could also use other functions with appropriate fall
off and normalisation conditions instead of a Gaussian. The corresponding generalisation
of (6.44) is

δ(x− y)→ R
(
−∇2

x/M
2
)
δ(x− y), (6.45)

where R(s) is some function that satisfies R(0) = 1 and that smoothly goes to 0 as
s→∞.6

Now we want to show that the regulated, finite results do not depend on this otherwise
arbitrary function R(s). As a definite example, consider the coincidence limit[

∇2
xδ(x− y)

]
y→x

(6.46)

which appeared in the evaluation of TO0 in section 6.2.1. Using the general regulator
(6.45) this can again be evaluated in momentum space:

(6.46)→
[
∇2

xR
(
−∇2

x/M
2
)
δ(x− y)

]
y→x

(6.47a)

=

∫
d2p

(2π)2
(∇ + ip)2R

[
−(∇ + ip)2/M2

]
(6.47b)

=

∫
d2p

(2π)2
M2

(
−M2p2 + 2iMp ·∇ + ∇2

)
R

(
p2 − 2i

p ·∇
M
− ∇2

M2

)
. (6.47c)

Now the function R can be expanded in inverse powers of M as

R
(
p2 − (. . .)

)
= R(p2)−R′(p2)(. . .) +

1

2
R′′(p2)(. . .)2 +

1

3!
R′′′(p2)(. . .)3

+
1

4!
R′′′′(p2)(. . .)4 +O(1/M5),

(. . .) := 2i
p ·∇
M

+
∇2

M2
.

(6.48)

6These asymptotic values also have to be approached fast enough as will be seen below, cf. (6.52).
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Plugging this into (6.47c) and keeping only finite, i.e. O(M0) terms gives, after some
rearranging

(6.46)→ −
∫

d2p

(2π)2

{
1

2

(
p2R′′ + 2R′

)
∇4

+
2

3

(
p2R′′′ + 3R′′

)
pipj

(
∇2∇i∇j +∇i∇2∇j +∇i∇j∇2

)
+

2

3

(
p2R′′′′ + 4R′′′

)
pipjpkpl∇i∇j∇k∇l

} (6.49)

where the argument p2 of R was omitted for brevity. The momentum integrals can be
carried out using repeated integration by parts:∫

d2p
(
p2R′′ + 2R′

)
= π

∫ ∞
0

ds (sR′′(s) + 2R′(s))

= π

∫ ∞
0

dsR′(s) = −π (6.50a)∫
d2p

(
p2R′′′ + 3R′′

)
pipj = π

∫ ∞
0

ds (sR′′′(s) + 3R′′(s))
δij
2
s2

=
π

2
δij

∫ ∞
0

dsR′′(s)s =
π

2
δij (6.50b)∫

d2p
(
p2R′′′′ + 4R′′′

)
pipjpkpl = π

∫ ∞
0

ds (sR′′′′(s) + 4R′′′(s))
δijδkl + δikδjl + δilδjk

8
s2

=
π

8
(δijδkl + δikδjl + δilδjk)

∫ ∞
0

dsR′′′(s)s2

= −π
4

(δijδkl + δikδjl + δilδjk) , (6.50c)

where the index structure and the combinatorial factors follow from symmetry consider-
ations. This leads to the result

(6.46)→ − 1

4π

[(
−1

2
+

2

3
− 1

6

)
∇4 +

(
1

3
− 1

6

)
∇i∇2∇i −

1

6
∇i∇j∇i∇j

]
(6.51a)

=
1

2π

1

12
B2, (6.51b)

which indeed agrees with the result found in section 6.2.1.
Note that for the integrations by parts in (6.50) it was implicitly assumed that the

regulator function R fulfils the following conditions:

smR(m)(s)
∣∣
s=0,∞ = 0 (m = 1, 2, 3). (6.52)

Those are not only met by the original (Fujikawa) regulator function R(s) = e−s, but also
by many other examples including e−s

2
, 1/(1+sα) for α > 0, 1/ ln(e+s) or 1− 2

π
arctan(s).

If, on the other hand those conditions are not fulfilled, then the integrals in (6.50) would
typically diverge and R would not be an admissible regulator. So in conclusion any
regulator that can be used to extract a finite result for TO0 will give the same result.
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Even though this was only checked for O0 here, one can expect that the calculations for
On with n > 0 will go analogously, with the only difference that the condition (6.52) would
have to be fulfilled also for higher values of m, according to the number of derivatives
acting on the delta function. But this is not a problem since the examples above show
that they are typically fulfilled for any m ∈ N.

6.3.2. A More Careful Analysis

So far the regularisation procedure was to replace the delta function by a covariant regu-
lator whenever its coincidence limit appeared during a calculation. As mentioned earlier,
this is essentially the same as the standard textbook method that is used to calculate the
axial anomaly7, where it is widely believed to give the correct result. The main difference
is that instead of /∇ here ∇ was used in the argument of the regulating function, since
there are no fermions in the theory. Nevertheless, it is not quite obvious that this method
really provides a consistent regularisation scheme in this context, and in this section this
issue will be reviewed in a bit more rigorous way.

One possible consistency problem with the regularisation as described above might be
the following: When T acts on On, the first functional derivative already produces a delta
function. But since its argument is not identically zero, there was no need to use the
regulator at this point. It was only introduced when the second functional derivative
yielded a δ(0). So in other words, the limit M → ∞ was performed for one regulator
before it was done for the other one. It would certainly be more consistent to treat all delta
functions on an equal footing right from the beginning and take M →∞ simultaneously
at the end.

One can also view this regularisation scheme in the following way: The origin of the
delta function clearly lies in the fundamental quantum commutation relations (2.21)

[Aai (x), Eb
j (y)] = −iδabδijδ(x− y). (6.53)

In order to avoid UV divergences, the right hand side can be smeared out in a gauge-
covariant way:

[Aai (x), Eb
j (y)] = −iδijRab(−∇2

x/M
2)δ(x− y), (6.54)

where R is some regulator function as discussed in section 6.3.1 and ab denote the adjoint
indices of this operator valued function. The asymptotic R(0) = 1, or Rab(0) = δab,
ensures that the original local canonical commutation relations (6.53) are reproduced in
the limit M →∞. Under a gauge transformation

Aai (x) 7→ gab(x)Abi(x) +
(
g(x)∂jg

−1(x)
)b
, (6.55)

where gab = 2 Tr
(
tag tbg−1

)
are the adjoint components of the SU(N) matrix g, the left

hand side of (6.54) transforms as

[Aai (x), Eb
j (y)] 7→ gac(x)gbd(y)[Aci(x), Ed

j (y)]. (6.56)

7See, for instance [15, chapter 22], [16, chapter 77], [23, chpater 3] or [27, chapter 19.2].

59



6. Back to The Original Variables

The gauge-covariant derivative in the argument of R also transforms homogeneously and
thus makes sure that the right hand side has the same transformation property, so that
gauge invariance of the theory is preserved in this regularisation scheme. (Note that on
the other hand, the axiom of locality is violated, which is an inevitable consequence of
any point splitting regularisation.)

In A-representation, the regularised commutation relation (6.54) implies that the colour-
electric field operator becomes

Eb
j (y) = i

∫
z

Rbc(y, z)
δ

δAcj(z)
(6.57)

where the short hand notation

Rbc(y, z) := Rbc(−∇2
y/M

2)δ(y − z) (6.58a)

=

∫
d2p

(2π)2
Rbc(−∇2

y/M
2)eip·(y−z) (6.58b)

was introduced. (The momentum space representation will be most convenient for doing
actual calculations.) Equation (6.57) can easily be verified by acting with it on Aai (x) and
observing that this reproduces minus the right hand side of (6.54).

Next, we need to work out the regularised version of the kinetic energy operator. Using
(6.57) to replace the E’s in T = g2

2

∫
x
Ea
i (x)2 would lead to

T = −g
2

2

∫
x

∫
y

Rac(x,y)
δ

δAci(y)

∫
z

Rad(x, z)
δ

δAdi (z)
, (6.59)

but a potential problem is that in this form T is not manifestly self-adjoint. To make
sure that the regularised kinetic energy operator is still self-adjoint, one can proceed as
follows (cf. also the discussion in [7, p. 143]). The matrix element of T between two wave
functionals Ψ1 and Ψ2 can be written as ([dA] denotes the path-integral measure)

〈Ψ1|T|Ψ2〉 =
g2

2

∫
[dA] Ψ∗1

∫
x

Ea
i (x)2 Ψ2 (6.60a)

=
g2

2

∫
[dA]

∫
x

(Ea
i (x)Ψ1)∗ (Ea

i (x) Ψ2) (6.60b)

=
g2

2

∫
[dA]

∫
x

(∫
y

Rac(x,y)
δ

δAci(y)
Ψ1

)∗(∫
z

Rad(x, z)
δ

δAdi (z)
Ψ2

)
(6.60c)

= −g
2

2

∫
[dA] Ψ∗1

∫
x,y,z

δ

δAci(y)
Rac(x,y)Rad(x, z)

δ

δAdi (z)
Ψ2 (6.60d)

(6.60e)

and so T is given by

T = −g
2

2

∫
x,y,z

δ

δAci(y)
Rac(x,y)Rad(x, z)

δ

δAdi (z)
. (6.61)
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This construction makes sure that T remains manifestly self-adjoint upon regularisation.
To simplify things, note that the two regulators can be combined as∫

x

Rac(x,y)Rad(x, z) =

∫
x

[
Rac(−∇2

x/M
2)δ(x− y)

] [
Rad(−∇2

x/M
2)δ(x− z)

]
(6.62a)

=

∫
x

δ(x− y)Rca(−∇2
x/M

2)Rad(−∇2
x/M

2)δ(x− z) (6.62b)

=

∫
x

δ(x− y)
[
R2(−∇2

x/M
2)
]cd

δ(x− z) (6.62c)

=
[
R2
]cd

(y, z) (6.62d)

where the two R’s could be combined to one R2 because ∇2 commutes with itself. Now
if R is a valid regularisation function as discussed in section 6.3.1, then R2 will also have
this property. But as seen in section 6.3.1, the physical, i.e. M -independent results do not
depend on the choice of R, so the two R’s in (6.63a) can effectively be replaced by one,
and so the regularised kinetic energy operator is

T = −g
2

2

∫
x,y

δ

δAai (x)
Rab(x,y)

δ

δAbi(y)
(6.63a)

= −g
2

2

∫
x,y

δRab(x,y)

δAai (x)

δ

δAbi(y)
− g2

2

∫
x,y

Rab(x,y)
δ

δAbi(y)

δ

δAai (x)
. (6.63b)

Note that the first term, in which one of the functional derivatives hits the regulator,
would effectively be absent in the more naive regularisation procedure used in section 6.2.
Also, this term is reminiscent of the linear part T1[J ] of the KKN kinetic energy operator,
cf. equation (3.95). Recalling from equation (5.4) that this term was the one that gave
a contribution of 2m to the eigenvalues of On, one could imagine that the disagreement
with the LMY results found in section 6.2 stems from neglecting this term there. But
even without explicitly calculating the functional derivative of R, one can easily see that
this term must in fact vanish. To this end, one can write the first part of T as

T1 = −g
2

2

∫
y

Xb
i (y)

δ

δAbi(y)
, Xb

i (y) :=

∫
x

δRab(x,y)

δAai (x)
. (6.64)

Now without evaluating X, it is clear that for dimensional reasons X must have mass
dimension +1, and since the argument of the regulator is ∇2/M2, the only candidate
that survives the limit M →∞ is ∇. Furthermore, X has only one free colour index, and
so the covariant derivative, which carries two colour indices, has to be contracted with a
structure constant. So X has to be either of the form

Xb
i ∝ f cdd∇cb

i = 0 (6.65)

which vanishes due to the antisymmetry of the structure constants, or of the form

Xb
i ∝ f bcd∇dc

i = NAbi , (6.66)
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6. Back to The Original Variables

where only the gauge field part of ∇ is left. Since A does not transform homogeneously
under a gauge transformation, such a term would imply that T1 is not gauge-invariant8.
But the regularisation scheme certainly respects gauge invariance, and so the conclusion
is that the constant of proportionality in (6.66) must turn out to be zero, which means
that T1 vanishes altogether. So finally we are only left with

T = −g
2

2

∫
x,y

Rab(x,y)
δ

δAbi(y)

δ

δAai (x)
. (6.67)

Note that one could also have started directly from this expression by demanding a gauge-
invariantly point-split version of the kinetic energy operator, where R(x,y) would be any
regulator that also serves as a parallel transport from y to x. The argument in favour of
the vanishing of the linear term would also have applied in this case, implying that the
regularised kinetic energy operator is properly self-adjoint. In fact, this also shows that
T is self-adjoint for any ordering of R and the functional derivatives.

Now that the regularisation has been implemented at a more fundamental level, let us
check whether it reproduces the result from section 6.2. Using (6.6) and integrating by
parts leads to

T2O0 = g2

∫
x,y

Rab(x,y)
δ

δAbi(y)
εij∇ac

jxB
c(x) (6.68a)

= g2

∫
x,y

Rab(x,y)∇ac
ix∇cb

ixδ(x− y) (6.68b)

= g2

∫
x,y

δ(x− y)∇bc
ix∇ca

ixR
ab(x,y) (6.68c)

= g2

∫
x

[
∇2

xR(−∇2
x/M

2)δ(x− y)
]bb
y→x

, (6.68d)

which is indeed exactly the same expression that was used previously, i.e. the one in (6.17)
or (6.47a).

For the operators On with n > 0 it is sufficient to observe that the calculations in
section 6.2 will be reproduced with the only difference that instead of δ(0) the regulator
R(x,y) (with appropriate indices) will appear, of which the coincident limit has to be
taken in the end. This leads exactly to all the regulated expressions that were used in
section 6.2; in particular it gives a more rigorous justification for the rule that δ(0) has to
be pulled inside the adjoint index structure before regularising it.

So the more careful investigation of possible regularisation issues only confirmed the
results that were found in section 6.2, and it remains unclear why they disagree with the
ones obtained using the KKN variables.

8A potential loophole to this argument would be that it might be gauge-invariant only up to boundary
terms, like T1[J ], cf. the remark below equation (3.95). But there this was only possible because the
corresponding symmetry transformations were holomorphic functions h, for which ∂̄h = 0. Here the
gauge transformations do not have a similar property and so this possibility is ruled out.
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6.4. A Modified Kernel

6.4. A Modified Kernel

In section 6.2 it was argued that the negative kinetic energy eigenvalues found there for
the operators On are a priori not unphysical, because they do not correspond to observable
energies of physical states. But of course there remains the question of how they would
alter the result for the vacuum wave functional, which does have physical consequences.

6.4.1. Linear Spectrum

To answer this question, let us first assume a linear spectrum taking into account only
the eigenvalues for the first two operators. In section 6.2 it was found that

T :O0: = − 1

12
m :O0: (6.69a)

T :O1: = − 1

10
m :O1:, (6.69b)

which suggests a modified conjecture

T :On: = −
(

1

12
+

n

60

)
m :On:. (6.70)

In doing so the result for O2, viz. −143
840
m, which is not compatible with a linear spectrum,

is disregarded. We will nevertheless use it as a first approximation, just to illustrate the
effect of negative eigenvalues on the form of the vacuum wave functional, in a scenario
where the kernel can be computed analytically. It is also instructive to see the comparison
to the LMY proposal, where agreement with the conjecture was also found only for the
first two eigenvalues, if at all.

So assuming for the moment that (6.70) is true, then (6.8b) becomes (O(B3) terms are
again suppressed)

HΨ0 =
1

2g2

(
1

2

∞∑
n=0

cn
(4m2)n

(
1

12
+

n

60

)
On +

∫
x

Ba(x)
[
LK2(L) + 1

]ab
Bb(x) + E0

)
Ψ0

(6.71a)

=
1

2g2

∫
x

Ba(x)

(
1

2

∞∑
n=0

cn

(
1

12
+

n

60

)
Ln + LK2(L) + 1

)ab

Bb(x)Ψ0 + E0Ψ0

(6.71b)

=
1

2g2

∫
x

Ba(x)

(
1

24
K(L) +

1

120
L

d

dL
K(L) + LK2(L) + 1

)ab
Bb(x)Ψ0 + E0Ψ0

(6.71c)

and so in order to solve the Schrödinger equation to quadratic order in B, the kernel has
to satisfy the ordinary differential equation

1

24
K(L) +

1

120
L

d

dL
K(L) + LK2(L) + 1 = 0. (6.72)
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This ODE has the same form as the one derived by LMY, because the On spectrum is
still assumed to be linear. Only the coefficients of the first two terms changed due to the
modified conjecture (6.70), in particular they now have the opposite sign.

The general solution of (6.72) can be found in the same way as before (see [12] for
details) and reads

K(L) = − 1√
L

CY5(240
√
L) + J5(240

√
L)

CY4(240
√
L) + J4(240

√
L)

(6.73)

where again C is a constant of integration and Jn and Yn are Bessel functions of the first
and second kind, respectively. So the modification of the conjecture changed the general
solution for the kernel in two ways: First, the order of the Bessel functions changed
from 2 and 1 to 5 and 4, according to the ratio of the numerical coefficients entering
the conjecture. And second, the overall sign changed owing to the negative sings of the
eigenvalues.

This overall minus sign might at first glance look disturbing, because in order to obtain
a normalisable wave functional, K has to be positive everywhere. But luckily there is
still the freedom to choose the constant of integration in a suitable way. To see how it
should be chosen, one can again proceed as in [12]. First note that in momentum space
L = −p2/4m2 is negative and so the solution should be rewritten in terms of modified
Bessel functions using the relations9

J4(ix) = I4(x) Y4(ix) = − 2

π
K4(x) + iI4(x) (6.74a)

J5(ix) = iI5(x) Y5(ix) =
2

π
iK5(x)− I5(x), (6.74b)

giving

K(−|L|) = +
1√
|L|

K5(240
√
|L|) + C ′I5(240

√
|L|)

K4(240
√
|L|)− C ′I4(240

√
|L|

(6.75)

with

C ′ :=
i− C
C

π

2i
. (6.76)

Now the only choice that leads to a kernel which is positive for all momenta is C ′ = 0 (or
equivalently C = i) and the corresponding kernel reads

K(−|L|) =
1√
|L|

K5(240
√
|L|)

K4(240
√
|L|)

. (6.77)

Even though the modified conjecture (6.70) on which this derivation relies, was not
proved (and even seems to be violated for n = 2 and presumably also for n > 2), this
result at least shows that negative eigenvalues for On can still lead to physical sensible
results and do not have to be discarded a priori because of potential inconsistencies.

Let us now investigate the asymptotic behaviour of this solution. In the high energy
limit we find

K(L) ∼ 1√
|L|

(|L| → ∞) (6.78)

9See, for example [28] and [29].
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which agrees with the LMY result and indeed leads to a wave functional corresponding to
asymptotically free gluons (see appendix B). But in the infra-red the asymptotic behaviour
of the kernel is

K(L) ∼ 1

30|L|
(|L| → 0) (6.79)

which is qualitatively different from the LMY kernel that approached a constant in this
limit. Recall from section 4.1.3 that a constant kernel can be used to derive an area law for
a Wilson loop, corresponding to a confining vacuum. So the solution (6.77) does not share
this important property, which is of course very unsatisfying. Also note that the limit
(6.79) shows that the expansion of the kernel implicitly changed from the Taylor series
K(L) =

∑∞
n=0 cnL

n to the more general ansatz of a Laurent series K(L) =
∑∞

n=−1 cnL
n.

This corresponds to the choice for the constant of integration made above, which was
necessary in order to obtain a normalisable wave functional.

6.4.2. General IR Behaviour

Since the derivation of the solution (6.77) relied on the conjecture (6.70) that presumably
does not hold for all n, one could imagine that a deviation from a linear spectrum for
higher n could alter the infra-red behaviour of the kernel. Unfortunately, this is not the
case and the IR limit is in fact independent of the eigenvalues for higher n. This can
be seen as follows: Instead of transforming (6.71b) to the ODE form (6.71c), one can
alternatively compute the cn in the expansion K(L) =

∑∞
n=0 cnL

n directly from (6.71b)
by comparing coefficients of equal powers of L. To order L0 this yields

1

24
c0 + 1 = 0 ⇒ c0 = −24 (6.80)

where only the n = 0 eigenvalue −1/12 was used. In the IR limit higher order con-
tributions in L can be neglected, and so the vacuum wave functional would approach
ΨIR

0 = exp
[
+ 3N
πm2

∫
(Ba)2

]
, which has to be rejected because it is not normalisable. The

only way out is to allow the series expansion of K to start with a negative power of L.
Note that since only the n = 0 eigenvalue was used in this argument, the inclusion of at
least one negative power of L in the kernel is an inevitable consequence of the negative
sign of the n = 0 eigenvalue.

Now using K =
∑∞

n=−1 cnL
n leads to the O(L−1) equation

− 1

2
c−1t−1 + (c−1)2 = 0

c0 6=0⇒ c−1 =
1

2
t−1 (6.81)

where t−1 denotes the eigenvalue of O−1, i.e.

T :O−1: = t−1m :O−1:. (6.82)

In order to obtain a normalisable vacuum wave functional this time, c−1 has to be negative
(since L itself is negative), which will be the case if and only if t−1 < 0. This was implicitly
assumed when the eigenvalues were linearly interpolated, so that t−1 = − 1

15
, but of course

(6.82) would have to be checked (it is not clear that O−1 is an eigenvector at all) and the
value of t−1 would have to be derived by direct calculation to make this argument sound.
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This is not an easy task because the covariant Laplacian can not simply be inverted, so
the IR limit K ∼ 1/|L| remains speculative at this point.

It should be mentioned that there is in principle still a possibility to obtain the desired
asymptotic form K ∼ const., even though the n = 0 eigenvalue is negative: The above
argument only showed that in this case the kernel expansion must include at least one
negative power of L, but it is a priori not clear that it cannot contain infinitely many of
them. In other words, if one allows the kernel to have an infinite principal part of the
Laurent series, it could still approach a constant as the argument goes to zero along the
negative real axis (as for example the function exp(1/L) ). Since the exact form of the
eigenvalues of On for general n is not known, it could as well be that such a function
would ultimately be the solution to the correct kernel ODE. But the technical difficulty
mentioned above to handle On with n < 0 makes it difficult to test this assertion.
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In this thesis an analytic approach to determine the glueball mass spectrum of pure Yang-
Mills theory in 2+1 dimensions, proposed by Leigh et al. [12] was carefully analysed. Their
proposal is based on a gauge-invariant reformulation of the theory in the Hamiltonian
framework, that was developed by Karabali et al. ([7], [8], [9], [10]) and which was also
reviewed here in detail.

The most important outcome of the KKN parametrisation for the calculations by LMY
is the form of the Hamiltonian, which, as was shown here, depends in a very subtle way
on the correct regularisation procedure. “Correct” in this case means in particular that it
must respect the new holomorphic symmetry that was obtained as a consequence of the
construction of the gauge-invariant variables.

LMY made an ansatz for the vacuum wave functional that is quasi Gaussian in the
KKN variable ∂̄J , but with a non-trivial kernel that is implicitly J-dependent in order to
respect the holomorphic symmetry. Then their strategy was to determine this kernel by
solving the Schrödinger equation explicitly up to second order in J . However, in order to
be able to solve the Schrödinger equation analytically they had to use a conjecture about
the kinetic energy spectrum of the operators On =

∫
∂̄Ja (∆n)ab ∂̄J b, which turned out to

be violated. As was discussed here, the only calculations that gave results in agreement
with the conjecture were done by LMY using an approximation to the KKN regulator
that is inadequate for the class of local operators which were investigated.

The specific form of the conjecture, in particular the linear increase of the eigenvalues
with n, is of vital importance for the derivation of the vacuum wave functional, and
thus for the determination of the glueball masses. But the linearity was violated in all
calculations, even when the simplified regulator was used which at least gave agreement
for n = 0, 1. Therefore, strictly speaking, LMY can not make any valid statement about
the glueball spectrum. Moreover, as was discussed here, even if the conjecture is assumed
to hold, the resulting glueball masses are not in such excellent agreement with lattice data
as claimed by the authors.

On the other hand, the low energy limit of the proposed vacuum wave functional,
which can be used to deduce an area law for a Wilson loop operator and thus implies
confinement, does not depend on the whole conjecture but only on the lowest eigenvalue.
So the quantitative result of confinement is a solid result of the LMY analysis. The
quantitative prediction for the string tension, however, is sensitive to the exact eigenvalue
for n = 0, and the good agreement with lattice data was only found assuming that it equals
2. As the careful calculation in section 5.3 showed, this value changes by 3/16 ≈ 20%
when the most accurate form of the KKN regulator is used. So the qualitative success of
this prediction is also partially lost.

Regarding the contradiction with their conjecture, Leigh et al. take the following point
of view: “We believe, however, that this result is not complete and the correct spectrum
should be equidistant [...]. Thus the calculation that we have outlined above needs to be
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reconsidered carefully. We do not at this time have a consistent understanding of all these
issues as the required calculations are tedious” [12, p. 19], but that “at least in principle,
it should be possible to prove (or disprove) it [the conjecture] by direct computation.” [12,
p. 2].

This was a major motivation to repeat the calculations using a different approach here
in chapter 6. It was shown there that the vacuum wave functional proposed by LMY
can easily be re-expressed in terms of the original Yang-Mills gauge field variables and
has exactly the same quasi-Gaussian form. Furthermore, the calculation to solve the
Schrödinger equation in the original variables is completely analogous to the one done by
LMY, and in particular the only key ingredient is again the same conjecture about the
kinetic energy spectrum. First of all, this means that the use of the KKN variables is
in fact of no relevance for the LMY proposal1, in sharp contrast to their attitude: “we
believe that our results demonstrate the importance of ‘corner variables’ [...] in the pure
Yang-Mills sector.” [12, p. 16] Second, this alternative approach can thus provide an
independent test of the LMY conjecture and is therefore very valuable.

The major difficulty to overcome is to find an appropriate regularisation for the kinetic
energy operator. In the KKN approach this was achieved by a point-splitting procedure
that respects the holomorphic invariance, and basically the same was done here, with the
corresponding symmetry that had to be preserved being gauge invariance. This regular-
isation scheme is essentially the same that is widely used in the calculation of the axial
anomaly, and it was also argued that here in the Hamiltonian formalism it leads to a
covariantly point-split kinetic energy operator that remains self-adjoint.

Even though the qualitative feature of the conjecture, namely that the On are eigenvec-
tors of the kinetic energy operator, was reproduced for n = 0, 1 (and possibly for n = 2),
the quantitative results, i.e. the concrete eigenvalues, were quite different. The most strik-
ing difference is that the eigenvalues turned out to be negative. It was shown that this is
a priori not a physical contradiction, since these negative eigenvalues are not observable,
and because they can still lead to a normalisable vacuum wave functional; but the effect
is that this change of sign alters the low energy limit, so that the vacuum wave functional
probably does not imply confinement in this regime.

The discrepancy with the LMY results is of course very disturbing. To be more precise,
the problem is not that the results disagree with the conjecture, because this was already
found to be violated in the LMY approach. The contradiction lies in the disagreement
with the actual values that were calculated using the KKN variables, even when using the
most accurate form of the regulator as proposed by KKN. It should be emphasised that
since the kinetic energy spectrum of the On directly affects the physical predictions (like
confinement and the glueball masses), it must be independent of the choice of variables
and regularisation scheme.

This implies that (at least) one of the two calculations/regularisation methods is wrong,
and as long as there are no fundamental reasons to prefer one of them (which would
certainly be the ultimate goal), one can only rely on the physical consequences that can
be drawn. Since an equally spaced kinetic energy spectrum is inconsistent with either of

1It should be noted that this does not apply to the KKN formalism in itself, since for example KKN
themselves pursued a different approximation scheme, where the vacuum wave functional can not be
re-expressed as a local functional of the original field strength. [9]
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them, no predictions about the glueball spectrum can be made so far, and so no physical
hints can be found this way. The most reliable prediction is the infra-red behaviour of
the vacuum wave functional, which in the LMY proposal leads to confinement, whereas
in the new approach it does not, or at least this cannot be shown for the time being.
This might be interpreted as a hint in favour of the LMY procedure, but it could as well
just indicate that the quasi-Gaussian approximation is simply insufficient to capture the
most important non-perturbative features of the theory. After all, the only justification
for using this quasi-Gaussian approximation by Leigh et al. was that in their approach it
leads to physical sensible predictions. When this feature is lost, the whole ansatz has to
be questioned.

To conclude, there are many questions that remain unanswered and that have to be left
for future research, which is not surprising in this challenging field of research. The most
urgent one regarding the LMY approach would be, how the discrepancies between the two
regularisation schemes can be resolved, and what solid statements can be made about the
form of the kinetic energy spectrum. One could also regard the numerous problems of the
LMY approach that became evident in this thesis as a reason to focus on other methods,
like for example the approximation scheme proposed by KKN ([9], [30]).
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A. Green’s Functions for ∂ and ∂̄

We want to calculate the Green’s function G for the operator ∂, i.e. the function satisfying

∂G(x) ≡ 1

2
(∂1 + i∂2)G(x)

!
= δ2(x). (A.1)

The Fourier transform G̃(k) =
∫

d2xG(x)eik·x then satisfies

1

2
(−ik1 + k2)G̃(k) = 1 ⇒ G̃(k) =

2

−ik1 + k2

(A.2)

and transforming back yields

G(x) =

∫
d2k

(2π)2

2

−ik1 + k2

e−ik·x (A.3a)

=

{∫ 0

−∞
dk1
2π
e−ik1x1

(
−2iek1x2

)
(x2 > 0)∫∞

0
dk1
2π
e−ik1x1

(
2iek1x2

)
(x2 < 0)

(A.3b)

=
−i
π

1

−ix1 + x2

=
1

π

1

x1 + ix2

=
1

πz̄
(A.3c)

where first the k2 integral was performed by applying the residue theorem to a contour
closing the real line with a semicircle in the lower or upper half-plane for x2 > 0 or x2 < 0
respectively. Using the translational invariance of ∂ we have the final result

G(x,x′) =
1

π(z̄ − z̄′)
. (A.4)

The calculation for Ḡ goes analogously giving

Ḡ(x,x′) =
1

π(z − z′)
. (A.5)
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B. Vacuum Wave Functional for Pure
QED in 2+1 Dimensions

Here we want to find the vacuum wave functional for pure QED, i.e. photons without any
matter fields, in 2+1 dimensions. Like in the Yang-Mills case we include the coupling
constant g in the field Aµ and adopt the temporal gauge A0 = 0. Then the Lagrangian
density for this theory is

L = − 1

4g2
FµνF

µν =
1

2g2

[
(∂0Ai)

2 −B2
]

(B.1)

with the magnetic field B = F12 = ∂1A2 − ∂2A1 = εij∂iAj. The canonical momenta are
(minus) the components of the electric field

Πi =
∂L

∂(∂0Ai)
=

1

g2
∂0Ai = −Ei (B.2)

and the Hamiltonian density is

H = Πi∂0Ai − L =
g2

2
E2
i +

1

2g2
B2. (B.3)

The commutation relation for A and E is

− [Ai(x), Ej(y)] = iδijδ
2(x− y), (B.4)

so in A-representation Ei = i δ
δAi

and

H(x) = −g
2

2

δ2

δAi(x)2 +
1

2g2
B(x)2. (B.5)

Like in the non-abelian case we have to impose the Gauss law constraint on physical states
Ψ:

∂iEi(x)Ψ = 0, (B.6)

which again is the same as requiring physical states to be invariant under residual (i.e. time
independent) gauge transformations. To solve the Schrödinger equation for the vacuum
wave functional Ψ0[A],

HΨ0 ≡
∫
H(x)Ψ0 d2x = E0Ψ0, (B.7)

where E0 denotes the vacuum energy, we make the ansatz

Ψ0[A] = exp

(
− 1

2g2

∫
y1,y2

B(y1)f(y1 − y2)B(y2)

)
(B.8)
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where f(x) = f(−x) is some symmetric kernel function we would like to determine. Note
that here in the abelian case this ansatz is manifestly gauge invariant (as it should be)
since B = F12 is gauge invariant, unlike in the non-abelian case1. The functional derivative
acting on B gives

δB(y)

δAi(x)
= −εij∂yj δ2(y − x) (B.9)

and therefore (∂i is with respect to x)

δΨ0

δAi(x)
= − 1

g2
εij

∫
y

∂jf(x− y)B(y)Ψ0 (B.10a)

δ2Ψ0

δAi(x)2
=

[
− 1

g2
εijεik∂j∂kf(0) +

1

g4

(
εij

∫
y

∂jf(x− y)B(y)

)2
]

Ψ0 (B.10b)

=

[
− 1

g2
∆f(0) +

1

g4

(∫
y

∂if(x− y)B(y)

)2
]

Ψ0. (B.10c)

Inserting this in (B.7) then yields∫
x

[
1

2
∆f(0)− 1

2g2

(∫
y

∂if(x− y)B(y)

)2

+
1

2g2
B(x)2

]
= E0. (B.11)

The first term gives the divergent vacuum energy and for the other two terms to cancel
we must have: ∫

x

∫
y

∂if(x− y)B(y)

∫
y′
∂if(x− y′)B(y′) =

∫
x

B(x)2 (B.12)

In Fourier space this becomes∫
p

(−ipi)(+ipi)f(p)f(−p)B(p)B(−p) =

∫
p

p2f(p)2B(p)B(−p)
!

=

∫
p

B(p)B(−p)

(B.13)
so we find

f(p) =
1

|p|
, (B.14a)

Ψ0 = exp

(
− 1

2g2

∫
d2p

(2π)2
B(p)

1

|p|
B(−p)

)
. (B.14b)

Now the difference in the Yang-Mills case is the interaction part in the magnetic field

Ba = ∂1A
a
2 − ∂2A

a
1 + fabcAb1A

c
2. (B.15)

But in the UV limit this term vanishes due to asymptotic freedom, so we expect the same
asymptotic form for the vacuum wave functional there (except for an additional sum over
group indices, of course).

1Even though in the non-abelian case B transforms homogeneously, the analogue of (B.8) would not
be gauge invariant because the two B-fields are taken at different space points. To restore gauge
invariance one would have to include for example two Wilson lines serving as parallel transport between
the B’s. This approach can be found in [31].
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C. Regulated Calculations

C.1. In KKN Variables

In this section TO0 will be evaluated using the the exact KKN regulator. Recall from
chapter 5 that

T1O0 = 2mO0, (C.1.1a)

T2O0 = −2m
π

N

∫
z

[
∂̄2
zΩ(z, z′)

]aa
z′→z

. (C.1.1b)

The coincidence limit

∂̄2
zΩ

T(z, z′)z′→z = ∂̄2
z∂z′Λ(z′, z)z′→z − J(z′)∂̄2

zΛ(z′, z)z′→z (C.1.2)

will be performed using (5.33):

Λ(z′, z) =

∫
x

ḠT(x, z′)G(x, z)e−|x−z|
2/ε

[
x̄− z̄
ε

H(x)H−1(z, x̄)

+H(x)∂z
(
H−1(z, x̄)H(z)

)
H−1(z)

]
(C.1.3a)

=

∫
x

1

π2(x− z′)

[
1− e−|x−z

′|2/εH(x, z̄′)H−1(z′)
]T

e−|x−z|
2/ε

·
[

1

ε
H(x)H−1(z, x̄) +

1

x̄− z̄

(
H(x)∂zH

−1(z, x̄) +H(x)H−1(z, x̄)J(z)
)]
.

(C.1.3b)

Here the adjoint indices were dropped in favour of an implicit matrix notation where ()T

denotes the transposed matrix.
First consider the term with two derivatives acting on Λ:

∂̄2
zΛ(z′, z) =

∫
x

1

π2(x− z′)

[
1− e−|x−z

′|2/εH(x, z̄′)H−1(z′)
]T

e−|x−z|
2/ε

·

{(
x− z
ε

)2 [
1

ε
H(x)H−1(z, x̄) +

1

x̄− z̄
(. . .)

]
+ 2

x− z
ε

[
1

(x̄− z̄)2
(. . .) +

1

x̄− z̄
H(x)H−1(z, x̄)∂̄J(z)

]
+

2

(x̄− z̄)3
(. . .) +

2

(x̄− z̄)2
H(x)H−1(z, x̄)∂̄J(z)

+
1

x̄− z̄
H(x)H−1(z, x̄)∂̄2J(z)

}
(C.1.4)
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where (. . .) = H(x)∂zH
−1(z, x̄) +H(x)H−1(z, x̄)J(z). Now the coincidence limit z′ → z

can be performed and after shifting and rescaling the integration variable to x→ z+
√
εx

one gets (note that the integration measure gets an additional factor of ε):

∂̄2
zΛ(z′, z)z′→z =

∫
x

e−x
2

π2

√
ε

x

[
1− e−x

2

I0

]T

·

{
x2

ε2
I2 +

(
x2

x̄
+

2x

x̄2
+

2

x̄3

)
1

ε3/2
I1

+

(
2x

x̄
+

2

x̄2

)
1

ε
I2 ∂̄J(z) +

1

x̄

1

ε1/2
I2 ∂̄

2J(z)

} (C.1.5)

with

I0 := H(z +
√
εx, z̄)H−1(z) (C.1.6a)

I1 := (. . .)|x→z+
√
εx

= H(z +
√
εx)∂zH

−1(z, z̄ +
√
εx̄) +H(z +

√
εx)H−1(z, z̄ +

√
εx̄)J(z) (C.1.6b)

I2 := H(z +
√
εx)H−1(z, z̄ +

√
εx̄). (C.1.6c)

To find the finite, i.e. O(ε0) terms in (C.1.5), all expressions appearing there have to be
expanded in powers of

√
ε. Rewriting all terms involving ∂’s and ∂̄’s acting on H’s and

H−1’s in terms of J = ∂HH−1 and its derivatives, one arrives at (all arguments are z and
are being suppressed):

I0 = 1 + ε1/2xJ + ε
x2

2
(∂J + J2) + . . . (C.1.7a)

I1 = 0− ε1/2x̄∂̄J − ε
[
xx̄J∂̄J +

x̄2

2
∂̄2J

]
− ε3/2

[
x2x̄

2
(∂J∂̄J + J2∂̄J) +

xx̄2

2
(2∂̄J∂̄J + J∂̄2J) +

x̄3

6
∂̄3J

]
+ . . . (C.1.7b)

I2 = 1 + ε1/2xJ + ε

[
x2

2
(∂J + J2) + xx̄∂̄J

]
+ ε3/2

[
x3

6
(∂2J + 2∂JJ + J∂J + J3) +

x2x̄

2
∂̄(∂J + J2) +

xx̄2

2
∂̄2J

]
+ . . . (C.1.7c)

Inserting this into (C.1.5), using that JT = −J in adjoint representation, multiplying out
and keeping only terms up to O(ε0) then leads to:

∂̄2
zΛ(z′, z)z′→z =

∫
x

e−x
2

π2

{(
1− e−x

2
)[x2x̄2

2
∂̄2J

−
(
x

x̄
+

2

x̄2
+

2

xx̄3

)(
xx̄J∂̄J +

x̄2

2
∂̄2J

)
+

2

x̄2
J +

1

xx̄
∂̄2J

]
+ e−x

2

xJ

[
− 2

xx̄2
∂̄J +

2

xx̄2
∂̄J

]}
(C.1.8a)
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=

∫
x

e−x
2

π2

(
1− e−x

2
)[x4

2
− x2

2
− 1

]
∂̄2J (C.1.8b)

=
1

π

[
7

8
− 3

8
− 1

2

]
∂̄2J = 0. (C.1.8c)

Note that only terms involving equal powers of x and x̄ were kept, since only those give
a non-vanishing contribution after performing the integration. (In addition, terms with
at least two negative powers of x and x̄ were kept as a consistency check, because those
are potentially dangerous terms for which the integral would diverge. But all those terms
cancel each other, so the final result is finite — as required for a regulated calculation.)

So there is no contribution from the second term in (C.1.2). The first term can be
calculated in the same way:

∂̄2
z∂z′Λ(z′, z) =

∫
x

1

π2

{
1

(x− z′)2

[
1− e−|x−z

′|2/εH(x, z̄′)H−1(z′)
]T

− e−|x−z
′|2/ε

x− z′

[
x̄− z̄′

ε
H(x, z̄′)H−1(z′) +H(x, z̄′)∂H−1(z′)

]T
}

· e−|x−z|2/ε
{(

x− z
ε

)2 [
1

ε
H(x)H−1(z, x̄) +

1

x̄− z̄
(. . .)

]
+ 2

x− z
ε

[
1

(x̄− z̄)2
(. . .) +

1

x̄− z̄
H(x)H−1(z, x̄)∂̄J(z)

]
+

2

(x̄− z̄)3
(. . .) +

2

(x̄− z̄)2
H(x)H−1(z, x̄)∂̄J(z)

+
1

x̄− z̄
H(x)H−1(z, x̄)∂̄2J(z)

}

(C.1.9)

Proceeding as before, one then finds

∂̄2
z∂z′Λ(z′, z)z′→z =

∫
x

1

π2

{
1

x2

[
1− e−x

2

I0

]T

− e−x
2

x

[
x̄I0 + ε1/2I ′0

]T}

· e−x2

{
x2

ε2
I2 +

(
x2

x̄
+

2x

x̄2
+

2

x̄3

)
1

ε3/2
I1

+

(
2x

x̄
+

2

x̄2

)
1

ε
I2∂̄J +

1

x̄

1

ε1/2
I2∂̄

2J

} (C.1.10)

where

I ′0 := H(z +
√
εx, z̄)∂H−1(z) (C.1.11a)

= −J − ε1/2xJ2 − εx
2

2
(∂J + J2)J + . . . (C.1.11b)
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Inserting this as well as the expansions (C.1.7) and collecting terms O(ε0) finally yields

∂̄2
z∂z′Λ(z′, z)z′→z =

∫
x

e−x
2

π2

{[
1− (1 + x2)e−x

2
]

·
[
x4

4
∂̄2(∂J + J2)− x2

2
(2∂̄J∂̄J + J∂̄2J)− J∂̄2J

]
+ e−x

2

[
x6

2
− x4

2
− x2

]
J∂̄2J

}
(C.1.12a)

=̂

∫
x

e−x
2

π2

{[
1− (1 + x2)e−x

2
](
−x2

2
+ 1

)

− e−x
2

[
x6

2
− x4

2
− x2

]}
∂̄J∂̄J (C.1.12b)

=
1

π

3

16
∂̄J∂̄J. (C.1.12c)

The =̂ means that this is an equality up to total derivatives with respect to z̄, which do
not contribute in (C.1.1b):

T2O0 = −2m
π

N

1

π

3

16

∫
z

∂̄Jab∂̄J ba = −2m
3

16
O0 (C.1.13)

and thus

TO0 = 2m

(
1− 3

16

)
O0 (C.1.14)

where divergent terms O(ε−1) are not shown explicitly. We only want to note here,
without showing the explicit calculation, that the only divergent term contributing is
indeed 1/4πε2, confirming the result from section 5.1.1.

C.2. In Original Variables

Here we show the regularised evaluations of the terms that appear during the calculation
of TO1[A] in equation (6.30b):

(I) := δ(0) (C.2.1a)

(II) := ∇jδ(0) (C.2.1b)

(III) := ∇i∆∇iδ(0) (C.2.1c)

The regularisation procedure was explained in section 6.2.1 and leads to

(I) =
1

π

∫
d2p

4π
e−p

2

M2 exp
[
∇2/M2 + 2ip ·∇/M

]
(C.2.2a)

(II) =
1

π

∫
d2p

4π
e−p

2

M2(∇j + iMpj) exp
[
∇2/M2 + 2ip ·∇/M

]
(C.2.2b)

(III) =
1

π

∫
d2p

4π
e−p

2

M2(∇i + iMpi)(∇ + iMp)2(∇i + iMpi) exp
[
∇2/M2 + 2ip ·∇/M

]
(C.2.2c)
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with a mass parameter M that should be sent to ∞ in the end. The integrands can now
be expanded in powers of M and the integrations can be performed. The easiest one is
(I), which gives

(I) =
1

π

∫
d2p

4π
e−p

2

[
M2 + ∇2 +

1

2
(2i)2(p ·∇)2 +O(1/M2)

]
(C.2.3a)

=
1

π

1

4

[
M2 + ∇2 −∇2 +O(1/M2)

]
(C.2.3b)

=
1

4π
M2 +O(1/M2) (C.2.3c)

where the formulas (6.21) were used to evaluate the Gaussian integrals. Also note that
odd powers of M always vanish because each such term also has an odd number of p’s
and thus gives zero when integrated from −∞ to ∞.

The next more complicated term is

(II) =
1

π

∫
d2p

4π
e−p

2

[
M2 (∇j − 2pj p ·∇)

+∇j(∇2 − 2(p ·∇)2)− pj
(

(p ·∇)∇2 + ∇2(p ·∇)− 8

6
(p ·∇)3

)]
(C.2.4a)

=
1

π

1

4

[
M2(∇j −∇j)

+∇j(∇2 −∇2)− 1

2
(∇j∇2 + ∇2∇j) +

1

3
(∇j∇2 +∇i∇j∇i + ∇2∇j)

]
(C.2.4b)

=
1

π

1

24

(
−∇j∇2 −∇2∇j + 2∇k∇j∇k

)
(C.2.4c)

=
1

π

1

24

(
−[∇j,∇k]∇k −∇k[∇k,∇j]

)
(C.2.4d)

=
1

π

1

24
εjk

(
−[∇1,∇2]∇k −∇k[∇2,∇1]

)
(C.2.4e)

=
1

π

1

24
εjk[∇k, B] (C.2.4f)

where (6.21) was used again, and O(1/M2) terms are not shown explicitly.
One could in principle proceed with the last term (III) in the same way. But since

there are four derivatives acting on the delta-function, one has to expand the exponent
to sixth order and the integrand becomes quite complicated which makes the calculation
very tedious. Moreover, in the case n = 2 which we will also investigate, the situation
becomes even worse. Therefore it will prove helpful to continue doing the calculations
using a computer algebra system like Maple.

In Maple there is a package called Physics which provides the possibility to intro-
duce non-commuting variables by setting them up as quantumoperators. In this way
the covariant derivative operators ∇1 → n1 and ∇2 → n2 can be handled. The finite
contribution to the integral in (III) (excluding the factor of 1/π for convenience) can then
be computed as follows:
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|\^/| Maple 14 (X86 64 LINUX)

._|\| |/|_. Copyright (c) Maplesoft , a division of Waterloo Maple Inc. 2010

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____ > Waterloo Maple Inc.

| Type ? for help.

>

> with(Physics):

> exp6 := x -> 1 + x + x^2/2 + x^3/3! + x^4/4! + x^5/5! + x^6/6!:

> Setup(quantumoperators ={n1, n2, B}):

> nn := n1^2 + n2^2:

> m1 := n1 + I*M*p1:

> m2 := n2 + I*M*p2:

> mm := m1^2 + m2^2:

> pn := p1*n1 + p2*n2:

> pp :=p1^2 + p2^2:

> integrand := M^2*(m1*mm*m1 + m2*mm*m2)*exp6(nn/M^2 + 2*I*pn/M)*exp(-pp):

> integrand0 := limit(convert(series(integrand , M=infinity , 7), polynom), M=0):

> integral := value(Intc(integrand0 /(4*Pi), p1, p2));

Maple Code C.1: Calculation of (III)

Since there are four derivatives, each containing one M , and one additional factor of
M2 from the momentum integral measure, the exponential has to be expanded to sixth
order to get all terms contributing to the M0 result. The corresponding function exp6 is
defined after starting the Physics environment, and therefore it uses the non-commutative
multiplication operator, which is essential for the calculation. The terms of order M0 are
extracted from the integrand by expanding it to seventh order at M = ∞, i.e. down to
order M0 and then sending M to zero to remove the divergent normal ordering terms.

The result is (a common factor of 60 is pulled out for convenience):

> 60* integral;

3 2 2 3 3 2 2

n1 n2 n1 n2 + n1 n2 n1 n2 - 4 n1 n2 n1 n2 + n1 n2 n1 n2 + n1 n2 n1 n2

2 2 3 2 2 3

+ n2 n1 n2 n1 - 4 n2 n1 n2 n1 + n2 n1 n2 n1 + n2 n1 n2 n1

3 3 3 2 3 2 4

- 4 n2 n1 n2 n1 + n2 n1 n2 n1 - n2 n1 n2 - n1 n2 n1 + 2 n1 n2 n1

2 2 2 2 2 2 2 3 4 2 3

+ 4 n1 n2 n1 + 4 n2 n1 n2 - n1 n2 n1 + 2 n2 n1 n2 - n2 n1 n2

3 2 2

- 4 n1 n2 n1 n2 - 5 n1 n2 n1 n2 n1 + 10 n1 n2 n1 n2 n1

2 2 2

- 5 n1 n2 n1 n2 n1 - 5 n2 n1 n2 n1 n2 - 5 n2 n1 n2 n1 n2

2

+ 10 n2 n1 n2 n1 n2

Maple Code C.2: Result for (III)

Written in this way, the result is obviously not very useful and one needs a strategy to
extract from it the terms that are supposed to be contained. According to the conjecture,
it should contain B∆B = B[∇i, [∇i, B]] where B = [∇2,∇1]. But since for the final result
of TO1 one has to take the spatial integral and the trace (in adjoint representation) of
this expression, there are two other terms possible which will be proportional to B∆B
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after an integration by parts: [∇i, B][∇i, B] and [∇i, [∇i, B]]B.

Now each of these three terms, when written down entirely in terms of ∇’s, contains
some particular sequences of ∇’s which are characteristic of it, i.e. which are not contained
in any of the other two, for example:

B[∇i, [∇i, B]] ⊃ ∇2∇1∇2∇1∇1∇1 (C.2.5a)

[∇i, [∇i, B]]B ⊃ ∇1∇1∇1∇2∇1∇2 (C.2.5b)

[∇i, B][∇i, B] ⊃ ∇1∇1∇2∇2∇1∇1 (C.2.5c)

By looking at the result obtained above one can now conclude that if those three terms
are contained, then they will come with the prefactors 1, 1 and 4, respectively.

Now one can subtract those terms from the result and see what is left over:

> B := n1*n2 - n2*n1:

> n1B := n1*B - B*n1:

> n2B := n2*B - B*n2:

> LB := n1*n1B - n1B*n1 + n2*n2B - n2B*n2:

> simplify (60* integral - B*LB - LB*B);

2 2 2 2 4 3

4 n1 n2 n1 n2 + 4 n2 n1 n2 n1 + 4 n1 n2 n1 - 8 n1 n2 n1 n2

2 3 2

- 8 n1 n2 n1 n2 n1 - 8 n1 n2 n1 n2 + 16 n1 n2 n1 n2 n1

2 2 2 2 2 2

+ 4 n2 n1 n2 - 8 n2 n1 n2 n1 n2 + 4 n2 n1 n2 n1

4 3 2

+ 4 n2 n1 n2 - 8 n2 n1 n2 n1 - 8 n2 n1 n2 n1 n2

2 3 2 2

+ 16 n2 n1 n2 n1 n2 - 8 n2 n1 n2 n1 + 4 n1 n2 n1 n2

2 2 2 2

- 8 n1 n2 n1 n2 n1 + 4 n1 n2 n1

> simplify (% - 4*(n1B^2 + n2B^2));

0

Maple Code C.3: Subtractions from the result for (III)

As the 0 at the bottom shows there is nothing left, meaning that the last result is indeed

(III) =
1

π

1

60

(
B[∇i, [∇i, B]] + [∇i, [∇i, B]]B + 4[∇i, B][∇i, B]

)
(C.2.6)

apart from divergent O(M2) terms which are not of interest here.

For the TO2[A] evaluation one also needs (see equation (6.40b))

(IV) := ∇j∆δ(0) (C.2.7a)

(V) := ∆∇jδ(0) (C.2.7b)

(VI) := εij∇j∆∇iδ(0) (C.2.7c)

(VII) := ∇i∆∆∇iδ(0). (C.2.7d)
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Proceeding as before leads to

(IV) =
1

π

∫
d2p

4π
e−p

2

M2(∇j + iMpj)(∇ + iMp)2 exp
[
∇2/M2 + 2ip ·∇/M

]
(C.2.8a)

(V) =
1

π

∫
d2p

4π
e−p

2

M2(∇ + iMp)2(∇j + iMpj) exp
[
∇2/M2 + 2ip ·∇/M

]
(C.2.8b)

(VI) =
1

π

∫
d2p

4π
e−p

2

M2εij(∇j + iMpj)(∇ + iMp)2(∇i + iMpi)

· exp
[
∇2/M2 + 2ip ·∇/M

]
. (C.2.8c)

(VII) =
1

π

∫
d2p

4π
e−p

2

M2(∇i + iMpi)(∇ + iMp)2(∇ + iMp)2(∇i + iMpi)

· exp
[
∇2/M2 + 2ip ·∇/M

]
. (C.2.8d)

The integrals can again be carried out using Maple. First consider the computation of
(IV) (excluding the factor of 1/π) for j = 1:

> exp5 := x -> 1 + x + x^2/2 + x^3/3! + x^4/4! + x^5/5!:

> integrand := M^2*(m1*mm)*exp5(nn/M^2 + 2*I*pn/M)*exp(-pp):

> integrand0 := limit(convert(series(integrand , M=infinity , 6), polynom), M=0):

> integral := value(Intc(integrand0 /(4*Pi), p1, p2)):

> 240* integral;

2 4 3 2 3 2 2

-n2 n1 n2 n1 - n2 n1 + 4 n2 n1 n2 - n2 n1 + 4 n1 n2 n1 + 4 n1 n2 n1 n2 n1

2 3 2 3 4 3 2

- n2 n1 n2 n1 + 4 n2 n1 n2 + 9 n1 n2 n1 n2 + 4 n2 n1 n2 - n1 n2 - n1 n2

2 2 2 2 2

- 6 n1 n2 n1 - 11 n1 n2 n1 n2 - 6 n2 n1 n2

Maple Code C.4: Calculation of (IV)

This time the integrand contains at most M5 and so it suffices to expand the exponential
to fifth order. In the result a common factor of 240 was pulled out to make it look nicer.
It is now again possible to figure out what terms can be contained in this result. To be
brief, let us just subtract the terms shown in (6.41a) (for j = 1),

+[∇2, [∇i, [∇i, B]]]→ (n2n1n1B + n2n2n2B) (C.2.9a)

−2B[∇1, B]→ - 2*B*n1B (C.2.9b)

+6[∇1, B
2]→ + 6*(n1*B*B - B*B*n1) (C.2.9c)

to prove the assertion:
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> B := n1*n2 - n2*n1:

> n1B := n1*B - B*n1:

> n2B := n2*B - B*n2:

> n1n1B := n1*n1B - n1B*n1:

> n2n2B := n2*n2B - n2B*n2:

> n1n1n1B := n1*n1n1B - n1n1B*n1:

> n2n1n1B := n2*n1n1B - n1n1B*n2:

> n1n2n2B := n1*n2n2B - n2n2B*n1:

> n2n2n2B := n2*n2n2B - n2n2B*n2:

>

> simplify (240* integral - n2n1n1B - n2n2n2B);

3 2 2 2 2 2

2 n2 n1 n2 + 2 n2 n1 n2 n1 + 4 n1 n2 n1 - 6 n1 n2 n1

2 2 2

+ 4 n1 n2 n1 n2 n1 + 6 n1 n2 n1 n2 - 8 n1 n2 n1 n2 - 4 n2 n1 n2 n1

> simplify (% + 2*B*n1B);

2 2 2 2 2 2

6 n2 n1 n2 n1 + 6 n1 n2 n1 - 6 n1 n2 n1 + 6 n1 n2 n1 n2

2 2

- 6 n1 n2 n1 n2 - 6 n2 n1 n2 n1

> simplify (% - 6*(n1*B*B - B*B*n1));

0

Maple Code C.5: Subtractions from the result of (IV)

The same calculation can be done for j = 2 and gives the same result, thus confirming
(6.41a).

The computation for (V) is almost identical, so there is no need to show it here. The
only difference is that in the result the term B[∇j, B]→ B*n1B comes with a factor of 18
instead of −2.

For (VI) the analogous computation that proves (6.41c) is:

> integrand := M^2*(m2*mm*m1 - m1*mm*m2)*exp6(nn/M^2 + 2*I*pn/M)*exp(-pp):

> integrand0 := limit(convert(series(integrand , M=infinity , 7), polynom), M=0):

> integral := value(Intc(integrand0 /(4*Pi), p1, p2)):

> 8* integral;

3 2 3 2 2 2 3 2 2

n2 n1 n2 - n1 n2 n1 - n2 n1 n2 n1 n2 - n2 n1 n2 - n2 n1 n2 n1

2 2 2 3 2 2 2

+ 2 n2 n1 n2 n1 + n1 n2 n1 + n1 n2 n1 n2 + n1 n2 n1 n2 n1

2 2 2 2

- 2 n1 n2 n1 n2 - 3 n2 n1 n2 n1 n2 n1 + 2 n2 n1 n2 n1

2 2 2

+ 3 n1 n2 n1 n2 n1 n2 - 2 n1 n2 n1 n2 + n2 n1 n2 n1 n2

2

- n1 n2 n1 n2 n1

>

> simplify (% - (n1*B*B*n2 - n2*B*B*n1 + n2*B*n1*B - n1*B*n2*B - B*n1*B*n2 + B*n2*B*n1) );

0

Maple Code C.6: Calculation of (VI)

Now for the last term (VII), which contains six derivatives, the exponential has to be
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expanded to eighth order and the result gets quite messy:

> exp8 := x -> 1 + x + x^2/2 + x^3/3! + x^4/4! + x^5/5! + x^6/6! + x^7/7! + x^8/8!:

> integrand := M^2*(m1*mm*mm*m1 + m2*mm*mm*m2)*exp8(nn/M^2 + 2*I*pn/M)*exp(-pp):

> integrand0 := limit(convert(series(integrand , M=infinity , 9), polynom), M=0):

> 1680* integral;

4 2 3 3 3 2 4

35 n2 n1 n2 n1 n2 - 97 n1 n2 n1 n2 n1 - 221 n2 n1 n2 n1 - 5 n2 n1 n2 n1

3 3 2 2 2 2 4

- 249 n2 n1 n2 n1 - 368 n2 n1 n2 n1 + 35 n1 n2 n1 n2 n1

2 4 2 3 2 5 5

+ 205 n2 n1 n2 n1 + 129 n1 n2 n1 n2 - 89 n1 n2 n1 n2 + 23 n1 n2 n1 n2

3 2 5 2 3 2

+ 505 n2 n1 n2 n1 n2 + 9 n2 n1 n2 n1 + 619 n1 n2 n1 n2

2 2 2 3 3 2 4

- 475 n1 n2 n1 n2 n1 - 249 n1 n2 n1 n2 - 5 n1 n2 n1 n2

3 2 2 3 3 2 3 2 5

+ 255 n1 n2 n1 n2 + 37 n2 n1 n2 n1 + 619 n2 n1 n2 n1 + 9 n1 n2 n1 n2

3 3 3 3 5 4 2

- 333 n1 n2 n1 n2 - 53 n1 n2 n1 n2 + 9 n1 n2 n1 n2 - 75 n2 n1 n2 n1

3 3 2 3 2 5 3 3

+ 37 n1 n2 n1 n2 + 129 n2 n1 n2 n1 + 9 n2 n1 n2 n1 - 53 n2 n1 n2 n1

2 3 3 2 3 2

+ 161 n2 n1 n2 n1 n2 + 189 n1 n2 n1 n2 n1 + 357 n1 n2 n1 n2 n1

3 2 2 4 2 2 3

- 63 n1 n2 n1 n2 n1 - 184 n2 n1 n2 - 91 n2 n1 n2 n1 n2

4 2 2 2 2

- 35 n1 n2 n1 n2 n1 - 147 n1 n2 n1 n2 n1 - 1179 n1 n2 n1 n2 n1 n2 n1

2 2

- 1179 n2 n1 n2 n1 n2 n1 n2 + 249 n2 n1 n2 n1 n2 n1 n2

2 2 2 2 2 2

+ 249 n1 n2 n1 n2 n1 n2 n1 + 433 n2 n1 n2 n1 n2 n1 - 147 n2 n1 n2 n1 n2

3 2 2 2 2 2 3

- 63 n2 n1 n2 n1 n2 + 155 n2 n1 n2 n1 n2 - 97 n2 n1 n2 n1 n2

4 3 2 2 3

- 35 n2 n1 n2 n1 n2 - 335 n2 n1 n2 n1 n2 - 91 n1 n2 n1 n2 n1

3 2 2 3 3 2

- 335 n1 n2 n1 n2 n1 - 259 n2 n1 n2 n1 n2 - 307 n2 n1 n2 n1 n2

2 2 2 2 3 4

+ 155 n1 n2 n1 n2 n1 + 155 n1 n2 n1 n2 n1 - 147 n1 n2 n1 n2 n1

3 2 2 3 3 2

- 307 n1 n2 n1 n2 n1 + 155 n2 n1 n2 n1 n2 + 505 n1 n2 n1 n2 n1

2 2 2 2 3 3 2

- 475 n2 n1 n2 n1 n2 + 161 n1 n2 n1 n2 n1 + 189 n2 n1 n2 n1 n2

2 3 2 2 2 2 3

+ 295 n1 n2 n1 n2 n1 + 785 n2 n1 n2 n1 n2 + 295 n2 n1 n2 n1 n2

2 3 2 2 2 2 2

- 259 n1 n2 n1 n2 n1 + 785 n1 n2 n1 n2 n1 - 449 n2 n1 n2 n1 n2 n1
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2 2 2 2 2 2

- 197 n2 n1 n2 n1 n2 n1 - 827 n2 n1 n2 n1 n2 n1 + 433 n1 n2 n1 n2 n1 n2

2 2 2 2 2 2

+ 643 n1 n2 n1 n2 n1 n2 + 181 n2 n1 n2 n1 n2 n1 + 643 n2 n1 n2 n1 n2 n1

2 2 2 2 2 2

- 449 n1 n2 n1 n2 n1 n2 + 181 n1 n2 n1 n2 n1 n2 + 181 n1 n2 n1 n2 n1 n2

2 2 2 2 2 2

- 197 n1 n2 n1 n2 n1 n2 + 181 n2 n1 n2 n1 n2 n1 - 197 n2 n1 n2 n1 n2 n1

2 2 2 2 3 4

- 197 n1 n2 n1 n2 n1 n2 - 449 n1 n2 n1 n2 n1 n2 + 131 n2 n1 n2

4 3 2 4 2 2 4 2 2

+ 75 n1 n2 n1 + 249 n1 n2 n1 n2 n1 n2 n1 + 96 n1 n2 n1 + 96 n2 n1 n2

2 5 2 2 4 6 2 2 4 6

- 9 n1 n2 n1 + 40 n1 n2 n1 + 11 n2 n1 n2 + 40 n2 n1 n2 + 11 n1 n2 n1

3 4 2 3 2

+ 131 n1 n2 n1 + 249 n2 n1 n2 n1 n2 n1 n2 + 357 n2 n1 n2 n1 n2

3 3 3 3 4 2 4 2

- 187 n2 n1 n2 n1 - 187 n1 n2 n1 n2 + 51 n2 n1 n2 n1 + 51 n1 n2 n1 n2

5 4 2 3 2 2 2 2 3

- 89 n2 n1 n2 n1 - 75 n1 n2 n1 n2 + 255 n2 n1 n2 n1 + 199 n1 n2 n1 n2

2 4 2 3 2 3 4 2 5

- 184 n1 n2 n1 - 107 n2 n1 n2 - 147 n2 n1 n2 n1 n2 - 9 n2 n1 n2

2 2 3 3 3

+ 199 n2 n1 n2 n1 - 333 n2 n1 n2 n1 + 681 n2 n1 n2 n1 n2 n1 n2 n1

5 2 2 4

- 9 n2 n1 n2 + 681 n1 n2 n1 n2 n1 n2 n1 n2 + 205 n1 n2 n1 n2

3 2 3 3 3 2 2 2 2 5

- 107 n1 n2 n1 - 221 n1 n2 n1 n2 - 368 n1 n2 n1 n2 + 23 n2 n1 n2 n1

4 3 5 2 2 2

+ 75 n2 n1 n2 - 9 n1 n2 n1 - 449 n2 n1 n2 n1 n2 n1

2 2

- 827 n1 n2 n1 n2 n1 n2

Maple Code C.7: Calculation of (VII)

To extract a useful result, one can now proceed as in the evaluation of (III). First note
that the contribution to TO2 is proportional to

∫
tr(VII). Since the conjecture states

that this should again be proportional to O2, one may expect that the result contains the
following terms:

B[∇i, [∇i, [∇j, [∇j, B]]]]→ B*LLB (C.2.10a)

[∇i, B][∇i, [∇j, [∇j, B]]]→ nBnLB (C.2.10b)

[∇i, [∇i, B]][∇j, [∇j, B]]→ LB*LB (C.2.10c)

[∇j, [∇i, [∇i, B]]][∇j, B]→ nLBnB (C.2.10d)

[∇j, [∇j, [∇i, [∇i, B]]]]B → LLB*B (C.2.10e)

The first one is proportional to the integrand of O2 in matrix notation and the last four
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are equivalent to it (up to sign) upon integration by parts. Assuming that only those five
terms are contained in the result, it is again possible to find a characteristic sequence of
∇’s for three of them:

B[∇i, [∇i, [∇j, [∇j, B]]]] ⊃ ∇2∇1∇2∇1∇1∇1∇1∇1 (C.2.11a)

[∇i, [∇i, B]][∇j, [∇j, B]] ⊃ −∇1∇1∇1∇2∇2∇1∇1∇1 (C.2.11b)

[∇j, [∇j, [∇i, [∇i, B]]]]B ⊃ ∇1∇1∇1∇1∇1∇2∇1∇2 (C.2.11c)

Looking at the result above then reveals that they must come with the factors +9,+107
and +9, respectively. Therefore we can subtract them from the result:

> B := n1*n2 - n2*n1:

> n1B := n1*B - B*n1:

> n2B := n2*B - B*n2:

> LB := n1*n1B - n1B*n1 + n2*n2B - n2B*n2:

> n1LB := n1*LB - LB*n1:

> n2LB := n2*LB - LB*n2:

> LLB := n1*n1LB - n1LB*n1 + n2*n2LB - n2LB*n2:

> nBnLB := n1B*n1LB + n2B*n2LB:

> nLBnB := n1LB*n1B + n2LB*n2B:

>

> simplify (1680* integral - 9*B*LLB - 107*LB*LB - 9*LLB*B);

2 2 2 2 2 2 2

-1160 n2 n1 n2 n1 n2 n1 + 816 n2 n1 n2 n1 n2 - 503 n2 n1 n2 n1 n2 n1

2 2 2 2

- 836 n1 n2 n1 n2 n1 n2 - 476 n2 n1 n2 n1 n2 n1

2 2 2 2 2

- 503 n1 n2 n1 n2 n1 n2 + 812 n1 n2 n1 n2 n1

2 2 2 2

- 1160 n1 n2 n1 n2 n1 n2 + 820 n2 n1 n2 n1 n2 n1

2 2 2 2

- 881 n1 n2 n1 n2 n1 n2 + 820 n1 n2 n1 n2 n1 n2

3 2 4 2 2

- 710 n2 n1 n2 n1 n2 - 192 n1 n2 n1 n2 n1 - 881 n2 n1 n2 n1 n2 n1

2 2 2 2

- 476 n1 n2 n1 n2 n1 n2 - 836 n2 n1 n2 n1 n2 n1

2 2 2 2

+ 616 n2 n1 n2 n1 n2 n1 + 1198 n1 n2 n1 n2 n1 n2

2 2 2 2 5

+ 1198 n2 n1 n2 n1 n2 n1 + 541 n1 n2 n1 n2 n1 n2 - 352 n1 n2 n1 n2

2 2 2 4 3 2

- 448 n2 n1 n2 n1 n2 + 1088 n1 n2 n1 n2 n1 - 334 n2 n1 n2 n1 n2

3 3 3 2 2 4 2

- 160 n2 n1 n2 n1 + 576 n1 n2 n1 n2 + 336 n2 n1 n2 n1

2 3 3 2 2 3 2

- 1312 n1 n2 n1 n2 n1 - 334 n1 n2 n1 n2 n1 + 156 n1 n2 n1 n2

2 2

+ 681 n1 n2 n1 n2 n1 n2 n1 n2 + 616 n1 n2 n1 n2 n1 n2

2 3 3 2 3 2

+ 278 n1 n2 n1 n2 n1 - 384 n2 n1 n2 n1 n2 - 864 n1 n2 n1 n2 n1
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2 3 2 2 2 2 3

+ 320 n2 n1 n2 n1 n2 - 448 n1 n2 n1 n2 n1 + 268 n1 n2 n1 n2 n1

3 2 3 2 4

- 864 n2 n1 n2 n1 n2 + 880 n1 n2 n1 n2 n1 - 80 n2 n1 n2 n1 n2

2 3 2 3 2 2 2

- 220 n1 n2 n1 n2 n1 + 268 n2 n1 n2 n1 n2 + 816 n1 n2 n1 n2 n1

3 2 2

- 384 n1 n2 n1 n2 n1 + 357 n2 n1 n2 n1 n2 n1 n2

2 2

+ 195 n1 n2 n1 n2 n1 n2 n1 - 1233 n1 n2 n1 n2 n1 n2 n1

2 2

- 1233 n2 n1 n2 n1 n2 n1 n2 + 195 n2 n1 n2 n1 n2 n1 n2

2 2 3 4

+ 357 n1 n2 n1 n2 n1 n2 n1 + 320 n1 n2 n1 n2 n1 - 80 n1 n2 n1 n2 n1

2 3 3 2 2 2 2 2

- 160 n1 n2 n1 n2 n1 + 768 n1 n2 n1 n2 n1 - 368 n2 n1 n2 n1

2 2 3 2 4 2 3

+ 520 n2 n1 n2 n1 + 616 n2 n1 n2 n1 - 160 n2 n1 n2 n1 n2

2 4 2 2 2 2 3

+ 40 n1 n2 n1 n2 + 155 n1 n2 n1 n2 n1 + 278 n2 n1 n2 n1 n2

2 2 4 2 4 2 4 2 2 6

+ 40 n2 n1 n2 - 184 n2 n1 n2 + 96 n1 n2 n1 + 136 n1 n2 n1

3 4 4 3 2 2 4 2 4 2

+ 256 n2 n1 n2 + 200 n1 n2 n1 + 40 n1 n2 n1 - 184 n1 n2 n1

3 2 6 4 3

+ 768 n2 n1 n2 n1 n2 + 136 n2 n1 n2 + 200 n2 n1 n2

3 4 2 3 3 3

+ 256 n1 n2 n1 - 220 n2 n1 n2 n1 n2 - 160 n1 n2 n1 n2

3 3 5 3 3

- 410 n2 n1 n2 n1 - 464 n2 n1 n2 n1 - 672 n2 n1 n2 n1

5 3 3 2 3 2

- 352 n2 n1 n2 n1 - 160 n2 n1 n2 n1 + 646 n2 n1 n2 n1

2 4 4 2 4 2

+ 616 n1 n2 n1 n2 + 96 n1 n2 n1 n2 + 336 n1 n2 n1 n2

2 4 2 2 2 2

+ 40 n2 n1 n2 n1 + 681 n2 n1 n2 n1 n2 n1 n2 n1 - 368 n1 n2 n1 n2

3 3 4 2 3 3

- 160 n1 n2 n1 n2 + 96 n2 n1 n2 n1 - 560 n1 n2 n1 n2

3 3 5 2 3 2

- 672 n1 n2 n1 n2 - 464 n1 n2 n1 n2 + 646 n1 n2 n1 n2

3 3 4 2 2 3 3

- 410 n1 n2 n1 n2 + 96 n2 n1 n2 - 384 n2 n1 n2 n1

2 2 3 2 3 2 3 3

+ 520 n1 n2 n1 n2 + 156 n2 n1 n2 n1 - 560 n2 n1 n2 n1

3 2 2 2 2 2 2 2 2

+ 576 n2 n1 n2 n1 + 155 n2 n1 n2 n1 n2 + 812 n2 n1 n2 n1 n2
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3 3 4 3 2

- 384 n1 n2 n1 n2 + 1088 n2 n1 n2 n1 n2 - 710 n1 n2 n1 n2 n1

2 3 2 2

- 1312 n2 n1 n2 n1 n2 + 541 n2 n1 n2 n1 n2 n1

3 2 4

+ 880 n2 n1 n2 n1 n2 - 192 n2 n1 n2 n1 n2

Maple Code C.8: First subtractions from the result of (VII)

Note (as a consistency check) that the indicative terms shown in (C.2.11) are indeed
gone. The two other terms in (C.2.10) do not contain a distinguishing sequence of ∇’s.
For example they both contain

(i) := [∇i, B][∇i, [∇j, [∇j, B]]] ⊃ +∇2∇1∇1∇1∇1∇1∇1∇2 (C.2.12a)

(ii) := [∇j, [∇i, [∇i, B]]][∇j, B] ⊃ +∇2∇1∇1∇1∇1∇1∇1∇2, (C.2.12b)

which appears in the last result with a factor of +136. If it contains, say, a(i) + b(ii), then
one can only conclude that

a+ b = 136. (C.2.13)

To determine the ratio of a and b one has to be more clever and find a sequence which
comes in (i) and (ii) with a different factor. For instance,

[∇i, B][∇i, [∇j, [∇j, B]]] ⊃ +∇1∇1∇2∇1∇1∇1∇1∇2 (C.2.14a)

[∇j, [∇i, [∇i, B]]][∇j, B] ⊃ +6 · ∇1∇1∇2∇1∇1∇1∇1∇2, (C.2.14b)

because the ∇1∇2∇1 subsequence can only come from the constellation B∇1 in the first
case, whereas in the second case it can also stem from −∇1B (and both possibilities are
realised three times). So by looking at the last result one can conclude that

a+ 6b = 616. (C.2.15)

Note that this conclusion could not have been drawn before subtracting the first three
terms, because they also contain the sequences shown in (C.2.12) and (C.2.14). From
(C.2.13) and (C.2.15) it now follows that

a = 40 b = 96 (C.2.16)

and subtracting the corresponding terms from the last result then gives:

> remainder := simplify (% - (40* nBnLB + 96* nLBnB));

2 3 2 3 4 3

remainder := 148 n2 n1 n2 n1 n2 - 170 n1 n2 n1 n2 n1 + 160 n1 n2 n1

3 2 2 2 2 2

+ 376 n2 n1 n2 n1 n2 - 215 n1 n2 n1 n2 n1 n2 - 20 n1 n2 n1 n2 n1 n2

2 2 2 2 2 2

+ 124 n1 n2 n1 n2 n1 n2 + 616 n1 n2 n1 n2 n1 n2 - 761 n1 n2 n1 n2 n1 n2

2 2 2 2

- 761 n2 n1 n2 n1 n2 n1 + 133 n1 n2 n1 n2 n1 n2 + 681 n1 n2 n1 n2 n1 n2 n1 n2
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2 2 2 2 2 2

+ 670 n1 n2 n1 n2 n1 n2 + 670 n2 n1 n2 n1 n2 n1 - 476 n2 n1 n2 n1 n2 n1

2 2 2 2

- 459 n2 n1 n2 n1 n2 n1 n2 + 435 n2 n1 n2 n1 n2 n1 n2 - 752 n2 n1 n2 n1 n2 n1

2 2 2 2

- 752 n1 n2 n1 n2 n1 n2 - 476 n1 n2 n1 n2 n1 n2 + 681 n2 n1 n2 n1 n2 n1 n2 n1

2 2 4 2 3 3

+ 435 n1 n2 n1 n2 n1 n2 n1 - 320 n1 n2 n1 - 138 n2 n1 n2 n1

2 2 2 2 2

+ 616 n2 n1 n2 n1 n2 n1 - 459 n1 n2 n1 n2 n1 n2 n1 - 215 n2 n1 n2 n1 n2 n1

4 3 3 4 2 2

+ 160 n2 n1 n2 + 160 n1 n2 n1 - 20 n2 n1 n2 n1 n2 n1

2 2 2 2 2 3

+ 133 n2 n1 n2 n1 n2 n1 + 124 n2 n1 n2 n1 n2 n1 - 170 n2 n1 n2 n1 n2

2 3 2 2 2 2 4 2

+ 580 n2 n1 n2 n1 n2 + 524 n1 n2 n1 n2 n1 - 320 n2 n1 n2

2 2 2 2 3 3 2

- 568 n2 n1 n2 n1 n2 + 580 n1 n2 n1 n2 n1 - 398 n2 n1 n2 n1 n2

3 2 3 2 3 2

+ 376 n1 n2 n1 n2 n1 + 34 n2 n1 n2 n1 n2 - 398 n1 n2 n1 n2 n1

2 2 2 2 2 2 2 3

- 568 n1 n2 n1 n2 n1 + 155 n2 n1 n2 n1 n2 + 148 n1 n2 n1 n2 n1

2 2 2 3 2 2 2 2

+ 155 n1 n2 n1 n2 n1 + 34 n1 n2 n1 n2 n1 + 524 n2 n1 n2 n1 n2

3 4 2 2

+ 160 n2 n1 n2 - 657 n1 n2 n1 n2 n1 n2 n1 - 657 n2 n1 n2 n1 n2 n1 n2

2 3 2 3 3 3 3 3 3

+ 60 n1 n2 n1 n2 - 138 n1 n2 n1 n2 - 480 n1 n2 n1 n2 - 160 n1 n2 n1 n2

3 3 2 2 2 2 2 3 2

- 160 n2 n1 n2 n1 - 368 n2 n1 n2 n1 + 606 n2 n1 n2 n1

3 2 2 2 3 2 3 3

+ 480 n1 n2 n1 n2 + 606 n1 n2 n1 n2 - 480 n1 n2 n1 n2

2 2 2 2 2 2 3 3 3 3 3

- 368 n1 n2 n1 n2 + 480 n1 n2 n1 n2 - 480 n2 n1 n2 n1 - 480 n2 n1 n2 n1

2 3 2 2 2 3 3 2 2

+ 60 n2 n1 n2 n1 + 480 n2 n1 n2 n1 + 480 n2 n1 n2 n1

Maple Code C.9: Second subtractions from the result of (VII)

Note that again the sequences that were used to identify the last two terms are gone,
which means that the values obtained for a and b were correct. But unfortunately the
remainder is not zero, and so the assumption that the result for (VII) contains only the
five terms in (C.2.10) is certainly wrong.

But recall that the eigenvalue relation was only conjectured to hold apart from O(B3)
terms, and so it could still be satisfied if the remainder only contained terms that are cubic
inB. In particular, the indicator sequences that were chosen are all at most quadratic inB,
so the reasoning above would not be spoiled by potential cubic terms and the coefficients
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for the five terms (C.2.10) that were found would still be correct. But unfortunately the
remainder contains terms like∇1∇2∇2∇2∇2∇1∇1∇1, which also can be at most quadratic
in B and so this possibility is again ruled out.

Now the last loophole is that the remainder could contain (apart from O(B3) terms)
total derivative terms like

[∇i, B[∇i, [∇j, [∇j, B]]]] (C.2.17a)

[∇i, [∇i, [∇j, [∇j, B
2]]]] etc., (C.2.17b)

which would not contribute to the final result for TO2. But then there are two problems:
First, the sequences used to extract the coefficients of the expected terms would no longer
be characteristic for them, so it is not sufficient to investigate the remainder (i.e. the
result shown in Maple Code C.9), but one has to start from the first result (Maple Code
C.7). And second, there are a lot of possible total derivative terms like those shown in
(C.2.17), and it is not clear with which coefficients each of them should come. These
problems make it very difficult to show that the result only contains the five terms shown
in (C.2.10) plus higher order and total derivative terms (*), and so it remains unclear at
this point whether the contributions from (VII) to TO2 are indeed proportional to O2. It
might still be true, however.

Even though the attempt to verify the aforementioned hypothesis (*) was not successful,
it is at least possible to show what the contribution to the eigenvalue of O2 would be,
assuming the hypothesis is true. To this end, note that there is a particular sequence of
∇’s, viz.

∇2∇1∇1∇1∇1∇1∇1∇2, (C.2.18)

which must come from the sequence −B∇1∇1∇1∇1B. This sequence, on the other hand,
cannot come from a total derivative since those must all have at least one ∇ at the very
left or at the very right. Now observe that the five terms in (C.2.10) contain the sequence
(C.2.18) with factors of −1,+1,−1,+1 and −1, respectively. But they contribute to the
eigenvalue of O2 with factors of +1,−1,+1,−1 and +1, respectively. This means that
no matter what higher order and total derivative terms might be contained in the result
for (VII), its contribution to the eigenvalue will be given by minus the factor of the term
(C.2.18) in the result shown in Maple Code C.7. In other words, under the hypothesis
(*), the contribution from (VII) to TO2 is

− 1

π

11

1680
B[∇i, [∇i, [∇j, [∇j, B]]]] +O(B3). (C.2.19)
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