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Abstract

In this master thesis some aspects of the behavior of bosonic strings in the presence of
background fields are studied. The main focus will be the implications on the geometry
of the target space manifold and the structure of the associated conformal field theory
(CFT). At first we review the consequences of quantum consistency of the theory in
a geometric manner, explaining the equations which govern viable string backgrounds.
We discuss Wess-Zumino-Witten (WZW) models and the underlying two dimensional
CFT. The effect of T -duality transformations on background fields will be explained
and the resulting geometries illustrated. Then we review open bosonic string theory
in the presence of a constant Kalb-Ramond field and elaborate on the emerging non-
commutative geometry on D-branes by discussing the so-called Moyal star-product and
CFT correlations functions. The main part of the thesis will be the discussion of closed
bosonic strings with a constant H-flux at O(H) respectively R-flux, which is the back-
ground suggested after performing three formal T -dualities. We develop the CFT by
determining the algebra of holomorphic currents using conformal perturbation theory
and compute tachyon correlation functions. The crucial observation is that whereas the
H-flux has a rather weak impact on the theory, the R-flux gives rise to a noncommuta-
tive and nonassociative target space geometry. We conclude by identifying the origin of
the nonassociativity in the CFT and by constructing an N -ary product for functions on
the spacetime associated to the R-flux capturing the structure of the CFT correlation
functions.
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Chapter 1

Introduction

The appearance of geometries which are not ”point-like“ is well-known since quantum
mechanics. The Heisenberg uncertainty relation ∆x∆p ≥ ~

2
introduces cells instead

of points on the phase space for which x and p are coordinates and thus makes the
conception of a space as consisting of points obsolete in quantum theory. Furthermore,
quantum field theory suffers from not being finite in the ultraviolet regime in most
instances and it was suggested already very early that a noncommutative structure of
the spacetime at small length scales could provide an effective ultraviolet cut-off [1].
Although the different path taken by renormalization proved to be very useful to cope
with these difficulties for gauge theories, gravity still eludes this description and may
necessitates reconsidering cut-offs due to a noncommutative geometry. From a physical
point of view, this motivates concerning with noncommutative geometry [2, 3] in the
context of quantum field theory [4].

Studying noncommutative geometry amounts also to study the functions on the cor-
responding manifold since in certain cases, the topology of the manifold can be recovered
completely from the algebra of functions on the space [2].

String theories provide a unified framework to address these questions as it contains
quantum gauge theories as well as a consistent quantum gravity. Usually, string theories
are described by two-dimensional nonlinear sigma models where a background spacetime
geometry is specified whose features are probed by the string moving in it. Gauge theories
arise from open string theories – the end-points of open strings are restricted to hyper-
surfaces in spacetime called D-branes on which the gauge theories are realized – while
gravity is due to closed strings. Consistently quantizing string theory imposes constraints
on the backgrounds like an extension of Einstein’s equations and the requirement for the
spacetime to be usually more than four-dimensional. The admissible backgrounds can
be described as parallelizable manifolds in Riemann-Cartan geometry [5]. If all these
constraints are satisfied, the sigma model describes a quantum conformal field theory
(CFT) whose properties are crucial for studying string theory. In particular, it turns
out that the string is a very different probe for the spacetime than a point-particle.
For instance, the surplus spacetime dimensions are condensed in tiny compact spaces
which is known in field theory as Kaluza-Klein reduction. However, in string theory the
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compactification behaves differently since the string can, as opposed to a point particle,
also wind around compact directions. One of the most interesting phenomena which can
be traced back to this property is the so-called T-duality (reviewed in [6]). It states that
a string cannot distinguish certain types of geometries, i.e. although one obtains very
different spacetime geometries, the quantum theories remain the same [7].

Very intriguingly, the geometry on D-branes in open string theory was found to be
noncommutative in the presence of a constant B-field [8, 9]. This was reformulated as
noncommutative gauge theory on D-branes [10] with the usual product for fields replaced
by the noncommutative Moyal star-product. Thus the before mentioned interesting ge-
ometries are realized in string theory, at least for gauge theories. In this context it is
natural to ask about the analogous situation for closed strings, i.e. gravity which will be
addressed in this thesis.

Conformal field theories describing the closed string in background fields are given by
so-called Wess-Zumino-Witten (WZW) models [11]. In the context of these, [12] found
the spacetime coordinates to be not only noncommutative but also nonassociative. This
was simultaneously also confirmed in [13] by taking a different approach and emphasizing
the significance of T-dual geometries involved. However, the origin of nonassociativity
remained largely unclear.

T-duality provides a fertile tool for studying the properties of string theory. In par-
ticular, it showed the significance of D-branes [14] to mention a famous example. It
also gives rise to very interesting geometries which can for instance be found by apply-
ing T-duality to a flat space with non-vanishing three-form flux H = dB [15, 16, 17].
This in particular reveals the appearance of so-called non-geometries as string back-
grounds. They are non-geometric in that they cannot be described as usual manifolds.
One example is the T-fold [18] which is obtained after performing two T-dualities and is
only geometric locally. A third T-duality can only be applied formally and is suspected
to yield a background which is not geometric even locally, called R-flux. Instead it is
supposed to give rise to nonassociative geometry [19], hinting towards a source of the
structure found more explicitly in [12, 13].

The purpose of this thesis is to study some of these non-geometric aspects in closed
bosonic string theory and in particular to gain some new insights on the poorly under-
stood R-flux as the origin of nonassociative geometry. This is in order to complete the
picture we already have for the open string to the bulk, i.e. to the closed string.

The thesis is organized as follows.

• In the second chapter we review the basic notions and conceptions of bosonic
strings moving in background fields. First we describe the requirements for a
consistent quantum theory introducing the notion of parallelizable manifolds. Then
we consider WZWmodels with a particular focus on the CFT they describe in order
to have a tool for dealing with background fields in closed string theory. At last
we show how T-duality acts on the background by introducing the Buscher rules
and illustrate its effects on a flat three-torus endowed with a constant H-flux.
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• The third chapter is devoted to the emergence of noncommutative geometry in
open string theory. In particular, we review how to deduce a product on the
algebra of functions on D-branes by studying CFT N -point correlation functions
and emphasize the properties of such a product.

• In the fourth chapter we would like to generalize this to the closed string in a
background given by a constant H-flux and a flat three-torus. This background
is admissible, i.e. allows for a CFT description only up to linear order in H. We
first describe some classical aspects. Then we develop a CFT for this theory in
linear order in the flux, called CFTH . We will follow the principles we reviewed for
WZW models to deduce in particular chiral currents and the energy-momentum
tensor. We also determine the current algebra using conformal perturbation theory.
We identify the tachyon vertex operator as a physical state in the theory and
calculate correlation functions thereof. This is done in the constant H- as well as
in the constant R-flux background and it turns out that nonassociative geometry
emerges only for the R-flux. The structure of the correlators will allow us to deduce
a product on the algebra of functions on the spacetime associated to the R-flux
analogously to the open string case and we finally discuss its properties.

The fourth chapter is written on the basis of the recent publication [20].
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Chapter 2

Strings in Background Fields

So far there is no background independent formulation of string theory; in the sigma-
model description strings can rather be considered as “probing” a given background
configuration. The viable backgrounds for the bosonic string are given by the massless
states found in the spectrum corresponding to the spacetime metric Gµν , the antisym-
metric Kalb-Ramond field Bµν and the dilaton φ. The massive states would contribute
terms incompatible with the desired symmetries of the theory and are therefore not
considered.

To approach this problem more systematically we use the symmetries as guiding
principle. The starting point for bosonic string theory is a two-dimensional nonlinear
sigma model given by the Polyakov action

SP =
1

4πα′

∫

Σ

Gµν(X) dXµ ∧ ⋆ dXν

=
1

4πα′

∫

Σ

d2σ
√
hhαβ Gµν(X) ∂αX

µ ∂βX
ν ,

(2.0.1)

where Σ is a two-dimensional manifold called worldsheet which is un-/bounded depending
on whether we consider open or closed strings respectively. X denotes an embedding X :
Σ→M with M the D-dimensional spacetime or target-space manifold and the bosonic

fields Xµ are given by the pullback of a choice of local coordinates xµ : M → R, µ, ν ∈
{0, . . . , D− 1} on M , i.e. Xµ = X∗xµ : Σ→ R are coordinates of the submanifold given
by the embedding of the worldsheet into the spacetime. The worldsheet is parametrized
by σα = τ, σ, α, β ∈ {1, 2} and equipped with an Euclidean metric hαβ. The action
(2.0.1) admits the following classical symmetries:

• Two-dimensional diffeomorphism invariance

• Two-dimensional Weyl invariance: hαβ(τ, σ) 7→ exp[2ω(τ, σ)]hαβ(τ, σ)

It also admits two-dimensional conformal invariance which is a combination of diffeo-
morphism- and Weyl invariance1.

1An automorphism f of Σ is a conformal map if the pulled-back metric is conformally equivalent to
the original one, i.e. f∗g = exp(2ω) g.
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The most general action incorporating all the symmetries mentioned above can be
obtained by adding the term

SB =
1

4πα′

∫

Σ

d2σ
√
h iǫαβ Bµν(X) ∂αX

µ ∂βX
ν (2.0.2)

to (2.0.1). Bµν is antisymmetric and can be considered as arising from a gauge field on
the spacetime, i.e. the integrand of (2.0.2) is given by X∗B with B ∈ Ω2(M). Hence this
term reflects a background given by the Kalb-Ramond field. This interpretation reveals
another obvious symmetry given by

B → B + dω (2.0.3)

for ω ∈ Ω1(M) if ∂Σ = ∅, i.e. for the closed string.
Although customarily added, for the moment we will not comment on the dilaton

since the corresponding contribution to the action would break the desired Weyl in-
variance already classically and can be considered as a higher order correction to be
addressed later.

In the following we are interested in string tree-level, i.e. we assume Σ to have genus
0. For the open string this means that Σ has the topology of a disc D2 and for the closed
string it has the topology of a sphere S2. Thus we are mainly interested in

S =
1

4πα′

∫

Σ

d2σ
(
hαβ Gµν(X) + iǫαβ Bµν(X)

)
∂αX

µ ∂βX
ν

=
1

2πα′

∫

Σ

d2z (Gµν(X) + Bµν(X)) ∂Xµ ∂Xν ,

(2.0.4)

where we have chosen conformal gauge, i.e. h = diag(±1, 1)2. We also gave the action
rewritten in complex coordinates z = exp(τ − iσ) with ∂ = 1/(2z)(∂τ + i∂σ) and the
respective complex conjugates3. This conformally maps the disc to the lower half plane
H

− and the sphere to the compactified complex plane C∪{∞}. In particular the measure
is given by d2z = dzdz = 2zz dτdσ.

However, quantum consistency forces us to put some constraints on the choice of
background fields which will be discussed in the next section. Then we review a model
describing a large class of admissible backgrounds and illustrate the effects of so-called
T-Duality on the background fields.

2.1 Background consistency equations

It is a well-accepted maxim that the symmetries apparent in a classical theory should
pass on to the quantized theory; when some of them get lost we have to find a way to
restore them. It turns out that by quantizing the bosonic string via the path integral,

2Depending on whether an Euclidean or Lorentzian signature is suitable.
3Note that in (z, z)-coordinates time ordering becomes radial ordering.
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manifest Weyl invariance disappears (cf. [21]) which can be characterized as follows.
Suppose we perform an infinitesimal Weyl rescaling δhαβ = ǫhαβ on the metric. Varying
the action and using the definition of the energy-momentum tensor T gives

δS =

∫

Σ

d2σ
∂S

∂hαβ

δhαβ ∼
∫

Σ

d2σ
√
hǫ T α

α , (2.1.1)

i.e. Weyl invariance of the action requires the trace of T to vanish;

Tr (T ) = 0 . (2.1.2)

Unfortunately, it turns out that in quantum theory we obtain

〈Tr (T )〉 6= 0 (2.1.3)

and thus the Weyl invariance is broken. In other words, the conformal invariance is lost
and thus, by renormalization, quantization introduces a scale dependence to the couplings
– here G and B – described by the corresponding β-function(al)s. We will elaborate
on the specific form of the right-hand-side of (2.1.3) respectively the β-functionals in
the following. Requiring the the right-hand-side to vanish then gives the equations for
consistent string backgrounds.

2.1.1 Strings on parallelizable manifolds

To calculate the β-functionals encoding the Weyl anomaly it is convenient to use a
background field expansion [22]. The basic idea is to expand all the fields in Riemann
normal coordinates; then all the terms in this expansion will be manifestly covariant and
computations simplify significantly as geodesics appear as straight lines and thus the
Levi-Civita connection is just given by the usual derivative. For the expanded action
a perturbative expansion in α′ can be performed to obtain the renormalized couplings
– the metric and Kalb-Ramond field. Computing the renormalized energy-momentum
tensor then reveals the Weyl anomaly. For the details of this calculation one may consult
[5, 23].

In [5] general nonlinear sigma models of the form (2.0.4) with M given by a group
manifold were studied. They describe the renormalization group evolution in a very nice
geometric setting on which we want to elaborate in the following. What we denoted B
was termed a torsion potential for the following reason. Computing the equations of
motion for the bosonic fields X of (2.0.4)

0 = ∇α ∂
αXµ

=

(
δµν ∂α + Γµ

ρν ∂αX
ρ − i

2
Gµσ Hσνρ ǫαβ ∂

βXρ

)
∂αXν

=

(
∇α −

i

2
Gµσ Hσνρ ǫαβ ∂

βXρ

)
∂αXν ,

(2.1.4)
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where Γµ
νρ are the Christoffel symbols for the Levi-Civita connection on the target space

M and

H = dB , i.e. Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ . (2.1.5)

For M a group manifold Hµνρ are proportional to the structure constants of Lie(M) and
here they appear as torsion on the target space. Indeed, what was suggested in (2.1.4)
as a connection on the worldsheet can be seen as the pullback of a metric-compatible
connection on the target space M considered as a Riemann-Cartan manifold. These are
Riemannian manifolds endowed with a torsion tensor T ∈ Γ(M,Λ2T ∗M ⊗ TM). In our
case the torsion tensor happened to be4 the three-form H and the relevant geometric
notions are as follows.

• A metric-compatible connection on (M,G,H) can be defined by

Γ
µ
νσ := Γµ

νσ −
1

2
Gµρ Hρνσ

∇µVν = ∇µVν −
1

2
Hνµ

σVσ

∇µV
ν = ∇µV

ν +
1

2
HνµσV

σ

(2.1.6)

for an arbitrary tensor V of rank one.

• Acting on a tensor V of rank one we obtain the algebra of the covariant derivatives

[
∇µ,∇ν

]
Vσ = R

ρ
σµν Vρ +Hρ

µν ∇ρVσ (2.1.7)

which indeed has the form expected for a general connection.

• The curvature tensor appearing in the above algebra reads

Rµνσρ = Rµνσρ +
1

2
∇σHµνρ −

1

2
∇ρHµνσ +

1

4
HµρλH

λ
νσ −

1

4
HµσλH

λ
νρ , (2.1.8)

where R denotes the Riemannian curvature tensor.

• The Ricci tensor obtained by contracting the first and third index of the curvature
reads

Rµν = Rµν +
1

2
∇σHσµν −

1

4
HµσρH

σρ
ν (2.1.9)

upon using the antisymmetry of H.

Coming back to our original goal of studying the β-functionals encoding the Weyl
anomaly, Braaten, Curtright and Zachos stated a conjecture in [5] which allows for a
more systematic approach to this problem.

4Recall that a metric can also be considered as a map TM → T ∗M , i.e. raising and lowering an
index “dualizes” a tensor in that direction.
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Proposition 1. To all orders in α′, the β-functionals of the nonlinear sigma model

(2.0.4) only depend on the generalized curvature tensors Rµνσρ given in (2.1.8) and pos-

sibly covariant derivatives thereof.

This is a generalization of the analogous statement for sigma models (2.0.1) involving
the Riemann curvature tensor and has be approved up to second order in α′ [5]. Thus
upon vanishing of the generalized curvature tensor R the Weyl invariance is restored as
the β-functionals vanish. To be more precise, at first order in α′ the β-functionals for the
metric respectively the Kalb-Ramond field are given in terms of the Ricci tensor (2.1.9)
as [5]

βG
µν = α′ R(µν) = α′ Rµν −

α′

4
HµσρH

σρ
ν

βB
µν = α′ R[µν] =

α′

2
∇σHσµν

(2.1.10)

which seems reasonable just by considering the index structure. This observations can
be phrased more geometrically.

Definition 1. A n-dimensional manifoldM is called parallelizable if and only if it admits
n global vector fields which are linearly independent everywhere. Equivalently, M is
parallelizable if the tangent bundle TM is trivial.

Since a trivial vector bundle admits a flat connection, i.e. one whose associated cur-
vature vanishes, the class of parallelizable manifolds offer consistent string backgrounds5.
This class consists of group manifolds6 and S7, which is the only exception [24] since it
is not a Lie group. In summary

Proposition 2. String backgrounds allowing for a consistent quantum theory in the sense

that all classical symmetries carry over during quantization are described by parallelizable

manifolds, in particular Lie groups. The equations describing these backgrounds read

α′ Rµν −
α′

4
HµσρH

σρ
ν = 0

α′

2
∇σHσµν = 0

(2.1.11)

up to first order in α′.

2.1.2 The dilaton and the critical dimension

We will now shortly comment on the dilaton, the remaining massless state in the spec-
trum. The contribution to the action (2.0.4) reads

SD =
1

4π

∫

Σ

d2σ
√
hR(2) φ(X) , (2.1.12)

5Recall that in this picture, the B-field is part of the data of the manifold.
6A basis for the associated Lie algebra, i.e. the tangent space at the identity can be made a global

basis by moving this local frame to any point of the tangent bundle using the group action. This requires
a connected Lie group.
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where R(2) denotes the Ricci scalar on the worldsheet. We observe that this term is
of higher order of α′ compared to (2.0.4) as φ has no units. Moreover, it breaks Weyl
invariance already classically since the contribution to the energy-momentum-tensor is
not traceless. However, due to the α′ dependencies the tree-level lack of Weyl invariance
can be compensated by a one-loop contribution of the other terms. We will just state the
lowest order result for the β-functionals. The complete string path integral also requires
the insertion of Faddeev-Popov ghosts by gauge-fixing the worldsheet metric which also
have to be considered in the complete calculations. One obtains [25]

βG
µν = α′ Rµν −

α′

4
HµσρH

σρ
ν + 2α′∇µ∇ν φ+O(α′2)

βB
µν =

α′

2
∇σHσµν + α′∇σφHσµν +O(α′2)

βφ
µν =

D − 26

6
− α′

2
∆φ+ α′∇σφ∇σφ− α′

24
Hµνσ H

µνσ +O(α′2) .

(2.1.13)

Hence for a flat, empty space with a constant dilaton we can read-off the critical dimen-
sion of the string as D = 26. By choosing the background fields appropriately one is also
able to obtain consistent strings on arbitrary dimensional manifolds. One may wonder
why the critical dimension of the string is not apparent in the analysis of (2.0.4). As the
dilaton is associated to the string coupling it actually has to be included in the complete
analysis.

2.2 Wess-Zumino-Witten models

The purpose of this section is to introduce a two-dimensional conformal field theory
providing a sigma model which describes consistent closed string backgrounds. Thus
we assume in the following that the target space is given by a Lie group G. We have
already encountered a special case of the model in (2.0.4); one can observe that for a
closed string, this action can roughly be rewritten as7

S =
1

4πα′

∫

Σ

d2σ Gµν(X) ∂αX
µ ∂αXν +

i

4πα′

∫

Σ

X∗B

=
1

4πα′

∫

Σ

d2σTr
[
(∂αg)(∂αg

−1)
]
+

i

4πα′

∫

B

ln(g)∗H ,

(2.2.1)

where H = dB and we have formally rewritten X = ln(g) for a g : Σ → G and
considered the expression as a matrix where the trace is obtained form contraction with
G. Moreover, we have introduced a compact three-dimensional manifold B with ∂B = Σ
which makes sense since ∂Σ = ∅ by assumption and exploited that the pullback commutes
with the exterior derivative. In the second term we also extended g to B.

One can imagine that the second term can be given more generally by considering
a closed but non-exact three-form as integrand. We will make this more precise in the
following.

7We choose the Euclidean signature hαβ = δαβ .
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2.2.1 The model

We now generalize (2.2.1) according to [11].

Definition 2. Given a compact, bounded three-dimensional manifold B with ∂B = Σ
and a group manifold G with maps g : B → G, the Wess-Zumino-Witten (WZW) model
is given by

SWZW[g] =− k

2π

∫

Σ

d2z Tr
(
∂ ln g ∂ ln g

)

− ik

12π

∫

B

Tr (d ln g ∧ d ln g ∧ d ln g) ,

(2.2.2)

where k is some constant. The second, topological term is called Wess-Zumino-term.
There g is extended to B and the exterior product has to be understood as combination
of the exterior product combined with the group structure.

The definitions allows for several remarks.

• To clarify the definitions, suppose ta , a ∈ {1, . . . , dim(g)} are generators of
Lie(G) = g. Then the trace is normalized such that Tr(ta tb) = 2δab and [ta, tb] =
ifabc t

c defines the structure constants for the Lie algebra.

• Although the integrand of the topological term looks exact, it is not. The definition
of the logarithm is given formally by d ln(g) = g−1dg, hence d2 ln(g) 6= 0 since
dg ∧ dg only vanishes for abelian groups. Therefore the topological term is exact
only if G is abelian.

• It can be seen that d ln g ∧ d ln g ∧ d ln g is closed. Thus, by the Poincaré-Lemma,
the topological term can be cast into into a form similar to (2.0.4) locally.

• Since the WZW model has a group manifold as target space it describes consistent
string backgrounds due to Prop. 2.

• The choice of B such that its boundary gives the worldsheet is of course not unique.

B

B′

Σ

Figure 2.1: The difference between two different choices of manifolds with boundary Σ.
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Calculating the difference between a WZ term with B and B′ as depicted in
Figure 2.1, taking into account the orientation and applying the map g, we ob-
tain a WZ term over a closed compact manifold topologically equivalent to S3. For
a well-defined quantum theory, the difference should not contribute in the path in-
tegral and thus has to be a multiple of 2π. By the correct choice of normalization8

of Tr, these integrals turn out to give ∼ 2πk. Thus, k has to be an integer.

• Given a closed χ ∈ Ω3(G), the WZ term can indeed be considered as
∫
B
g∗χ.

Let us determine the equations of motion for (2.2.2). It is convenient to use the following
statement.

Lemma 1. For χ ∈ Ω3(G), the variation satisfies

δ

∫

B

g∗χ =

∫

B

Lδg χ , (2.2.3)

where L denotes the Lie-derivative and δg the vector field tangent to the path of variation
at any point.

Proof. By definition of the variation

δ

∫

B

g∗χ =

∫

B

d

dǫ
(g + ǫδg)∗χ

∣∣∣∣
ǫ=0

=

∫

B

Lδg χ , (2.2.4)

since g + ǫδg can – by abuse of notation – be considered as the flow of the vector field
δg. Then the last step is just the general definition of the Lie-derivative.

Making use of this lemma, the variation of the WZ term reads

δgS
WZ
WZW = − ik

12π

∫

B

Lδg Tr (d ln g ∧ d ln g ∧ d ln g)

= − ik

12π

∫

B

(ιδg ◦ d+ d ◦ ιδg) Tr (d ln g ∧ d ln g ∧ d ln g)

= − ik

4π

∫

B

dTr (δg ln g d ln g ∧ d ln g)

= − ik

4π

∫

Σ

Tr (δg ln g d ln g ∧ d ln g) .

(2.2.5)

In the second step we used the usual identity for L on forms with ι the interior product,
the third exploited that χ is closed and the last step was performed by Stokes theorem.
It is remarkable that the variation of the topological term reduces to the worldsheet
generally. The variation of the kinetic term is straight-forward and yields

δgS
kin
WZW =

k

2π

∫

∂Σ

d2z Tr
[
δg ln g

(
∂∂ ln g + ∂∂ ln g

)]
(2.2.6)

8One may consult [26] for details.
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upon integration by parts. If we rewrite the variation of the WZ term in local complex
coordinates, both results combine to give

δgSWZW =
k

2π

∫

Σ

d2z Tr
(
−δg ln g ∂∂ ln g

)
(2.2.7)

and the equations of motion therefore read

∂∂ ln g = ∂
(
g−1 ∂g

)
= 0 . (2.2.8)

Now we will devote our attention to the conformal field theory formulated by the WZW
model.

2.2.2 Conserved currents

In order to have a genuine CFT the WZW model has to admit two separately conserved
holomorphic respectively anti-holomorphic currents. Indeed, following [27], by starting
with the usual nonlinear sigma model (2.0.1), the addition of the topological Wess-
Zumino term is required in order to obtain these currents. These currents arise as
the Noether currents associated to the symmetry of conjugating g with arbitrary group
elements. In order to show this we will utilize the following.

Lemma 2. The WZW model (2.2.2) satisfies

SWZW[g1g2] = SWZW[g1] + SWZW[g2]−
ik

π

∫

Σ

Tr
[
(g−1

1 ∂g1) (∂g2 g
−1
2 )
]
, (2.2.9)

called the Polyakov-Wiegmann property.

Proof. First we observe that d ln(g1g2) = g−1
2 d ln(g1) g2 + d ln(g2). Substituted into the

kinetic term yields after some algebraic manipulations

Skin
WZW[g1g2] =Skin

WZW[g1] + Skin
WZW[g2]−

k

2π

∫

Σ

dz Tr
[
(g−1

1 ∂g1) (∂g2 g
−1
2 )
]

− k

2π

∫

Σ

dz Tr
[
(g−1

1 ∂g1) (∂g2 g
−1
2 )
] (2.2.10)

and for the topological term we obtain

SWZ
WZW[g1g2] =SWZ

WZW[g1] + SWZ
WZW[g2]

− ik

4π

∫

B

Tr
[
d ln(g1) ∧ (d ln(g1) + dg2 g

−1
2 ) ∧ (dg2 g

−1
2 )
]

=SWZ
WZW[g1] + SWZ

WZW[g2] +
ik

4π

∫

B

dTr
[
d ln(g1) ∧ (dg2 g

−1
2 )
]

=SWZ
WZW[g1] + SWZ

WZW[g2]−
k

2π

∫

Σ

dz Tr
[
(g−1

1 ∂g1) (∂g2 g
−1
2 )
]

+
k

2π

∫

Σ

dzTr
[
(g−1

1 ∂g1) (∂g2 g
−1
2 )
]
.

(2.2.11)

The third step was evaluated using Stokes and local complex coordinates. Adding these
terms gives the desired result.
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Let ΩL(z, z),ΩR(z, z) ∈ C∞(Σ, G) arbitrary. Using (2.2.9) yields

SWZW[ΩLgΩR] =SWZW[g] + SWZW[ΩL] + SWZW[ΩR]

− k

π

∫

Σ

dzTr
(
g−1 ∂g ∂ΩR Ω−1

R

)

− k

π

∫

Σ

dzTr
[
Ω−1

L ∂ΩL

(
∂g g−1 + g ∂ΩR Ω−1

R g−1
)]

.

(2.2.12)

From this we observe that the WZW model (2.2.2) is invariant under

g(z, z)→ ΩL(z) g(z, z) ΩR(z) , (2.2.13)

that is, it admits a local G(z) × G(z) symmetry, thus a gauge symmetry. To compute
the associated conserved currents we introduce an infinitesimal parameter ǫ(z, z) such
that ΩL/R ≈ 1+ ǫ ωL/R with the respective dependencies. Upon an integration by parts
this gives

SWZW[ΩLgΩR] =SWZW[g] +O(ǫ2)

+
k

π

∫

Σ

dz ǫ(z, z) Tr
[
ωL(z) ∂(∂g g

−1) + ωR(z) ∂(g
−1 ∂g)

]
.

(2.2.14)

As ǫ is arbitrary, the conserved current is given by

ωL(z) ∂(∂g g
−1) + ωR(z) ∂(g

−1 ∂g) = 0 . (2.2.15)

By using the equations of motion (2.2.8) we see that both terms are conserved separately,
giving the desired chiral currents. To recapitulate:

Proposition 3. The WZW model (2.2.2) admits a G(z) × G(z) gauge symmetry with

associated holomorphic respectively anti-holomorphic currents

J(z) := k ∂g g−1 , J(z) := k g−1 ∂g , (2.2.16)

i.e. ∂J = 0 and ∂J = 0.

Remark 1. As one can see, the currents (2.2.16) could also have been directly extracted
separately from the equations of motion (2.2.8) since ∂(g−1 ∂g) = g−1∂(∂g g−1)g. How-
ever, the purpose of the preceding computations was to clarify to which symmetry they
correspond.

2.2.3 Current algebra and energy-momentum tensor

So far the discussion was only classical. We would like to elaborate on the CFT of the
WZW model by determining the operator product expansion (OPE) of the conserved
currents (2.2.16) and deducing the energy-momentum tensor [27]. The currents are
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associated to the symmetry (2.2.13) which can be written infinitesimally as δωL
g = ωLg

and δωR
g = ωRg. Varying the holomorphic current J(z) = Ja(z) ta yields9

δωL
J(z) = k

[
∂(δωL

g) g−1 + ∂g δωL
g−1
]

= [ωL, J ] + k ∂ωL

= ifabc ω
b
L J

c + k ∂ωL .

(2.2.17)

On the other hand we can compute δωL
J(z) by commuting with the conserved charge

QL associated to (2.2.13) which generates the symmetry transformations. It is given by

Qa
L =

1

2πi

∮
dz Ja(z)ωL(z) , (2.2.18)

and allows to compute

〈
δaωL

J b(w) . . .
〉
=
〈
[Qa, J b] . . .

〉

=
1

2πi

∮
dz
〈
[Ja(z)ωL(z), J

b(w)] . . .
〉

=
1

2πi

∮

C(w)

dz ωL(z)
〈
R
[
Ja(z) J b(w)

]
. . .
〉
.

(2.2.19)

In the last step we used radial ordering for the operators Ja and the contour deformation
in Figure 2.2 where C(w) denotes the contour around w. ”. . . “ inside the path integral

w w
w

− =

Figure 2.2: The contour deformation between the difference of the two paths.

denote arbitrary other operator insertions. Comparing (2.2.17) and (2.2.19) and using
Cauchy’s theorem, we derive

Lemma 3. The OPE of the holomorphic currents (2.2.16) of the WZW model (2.2.2)
read

〈
R
[
Ja(z) J b(w)

]
. . .
〉
=
〈 [ k δab

(z − w)2
+ ifab

c
J c(w)

(z − w)
+ reg.

]
. . .
〉
, (2.2.20)

where reg. denotes the regular, i.e. non-singular terms in the expansion.

9In the decomposition J(z) = Ja(z) ta, Ja(z) are mere functions/operators.
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The discussion of the anti-holomorphic currents J is completely analogous. The
OPE (2.2.20) will be called a current algebra. From now on we will adopt the common
notation of dropping the path integral and the radial ordering ; of course they have to
be understood any time products of operators appear. By expanding the holomorphic
currents in a Laurent expansion. i.e.

Ja(z) =
∑

n∈Z

z−n−1 jan ⇐⇒ jan =

∮
dz

2πi
zn Ja(z) (2.2.21)

we can derive

[jam, j
b
n] =

∮
dz

2πi

∮
dw

2πi
zm wn [Ja(z), J b(w)]

=

∮

C(0)

dw

2πi
wn

∮

C(w)

dz

2πi
zm Ja(z) J b(w)

=

∮

C(0)

dw

2πi
wn
[
kmwm−1 δab + wm ifab

c J
c(w)

]

= kmδab δm,−n + ifab
c j

c
m+n ,

(2.2.22)

at which the second step was performed using the contour deformation introduced above
for fixed w, the third step using (2.2.20) and the last using Cauchy’s theorem and (2.2.21).
This algebra is equivalent to (2.2.20).

Definition 3. The algebra

[jam, j
b
n] = ifab

c j
c
m+n + kmδab δm,−n (2.2.23)

is called the Kač-Moody algebra of level k, denoted ĝk.

The energy-momentum tensor

Motivated by calculating the classical energy momentum tensor of (2.2.2), the quantum
version can be determined by the ansatz

T (z) = γ

dim(g)∑

a=1

:Ja Ja : (z) . (2.2.24)

One is able to define a CFT via its energy momentum tensor since the form of the
TT -OPE,

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ reg. (2.2.25)

is determined merely by conformal invariance in a CFT with central charge c. The
route of constructing a CFT by starting with the energy momentum tensor is known
as Sugawara construction. We determine γ by requiring that Ja is a primary field of
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conformal weight h = 1. One has to be careful in performing the necessary contractions
since the WZW model (2.2.2) is in general an interacting QFT due to the topological
term. This necessitates amplification10 of the Wick theorem [27].

Lemma 4 (Generalized Wick Theorem). For arbitrary chiral operators A(z), B(z), C(z)
we have

A(z) :B C : (w) =
1

2πi

∮

C(w)

dx

(x− w)

[
A(z)B(x)C(w) + B(x)A(z)C(w)

]
. (2.2.26)

Remark 2. Defining the normal ordered product of two operators in terms of modes by
putting all creation operators to the right is equivalent to considering the first regular
part in the OPE. Although this is done in the definition it is crucial to observe that the
integrand contains, as opposed to the free case full OPE’s of the contracted operators;
A(z)B(w) =:A(z)B(w) : +A(z)B(y).

Now we can compute

Ja(z) :JbJ
b : (w) =

1

2πi

∮

C(w)

dx

(x− w)

[
Ja(z)Jb(x) J

b(w) + Jb(x) J
a(z)J b(w)

]

=
1

2πi

∮

C(w)

dx

(x− w)

{[
k δab

(z − x)2
+ ifa

bc
J c(x)

(z − x)

]
J b(w)

+ J b(x)

[
k δab

(z − w)2
+ ifa

bc
J c(w)

(z − w)

]}
+ reg.

(2.2.27)

where the second step employed (2.2.20). Evaluating the remaining OPE’s and using
fa

bcδ
bc = 0, we obtain

Ja(z) :JbJ
b : (w) =

1

2πi

∮

C(w)

dx

(x− w)

{
k Ja(w)

(z − x)2
+

k Ja(w)

(z − w)2

+ ifa
bc
:J bJ c : (w)

(z − w)
+

ifa
bc

(z − x)

[
if cb

d
Jd(w)

(x− w)

+ :J cJ b : (w)

]}
+ reg.

= (2kδad − fa
bcf

cb
d)

Jd(w)

(z − w)2
+ ifa

bc
:J (bJ c) : (w)

(z − w)
+ reg.

= 2(k + Cg)
Ja(w)

(z − w)2
+ reg. .

(2.2.28)

10In a free theory the contraction is done with respect to the propagator since it accidentally coincides
with the OPE of the primaries. However, in an interacting theory the OPE of primaries in general still
contains operators (cf. (2.2.20)). Multiplication with these has also to be given sense by a normal
ordering prescription.
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For the second step we expanded the (z − x) in the last term to evaluate the integral.
The last step used the antisymmetry of the structure constant and substituted the dual
Coxeter number fa

bcf
cbd = −2Cgδ

ad. Thus, upon interchanging z and w we found

T (z)Ja(w) = 2γ(k + Cg)
Ja(z)

(z − w)2
+ reg.

= 2γ(k + Cg)

[
Ja(w)

(z − w)2
+

∂Ja(w)

(z − w)

]
+ reg. ,

(2.2.29)

i.e. Ja is a primary if we fix γ−1 = 2(k+Cg). By computing the TT -OPE similarly and
comparing with (2.2.25), the central charge of the WZW model can be determined as

c =
k dim(g)

k + Cg

. (2.2.30)

Remark 3. In respect of the following we would like to stress that writing out the
normal ordering in the Wick theorem (2.2.26) by the integral is crucial. Examining
the calculation (2.2.27) one can observe that upon just contracting the fields and using
the OPE without writing out the integral would yield the same result but without the
Cg-term. This term is a quadratic contribution from the structure constants. Thus by
just contracting O(f 2) contribution are neglected. This is precisely the regime for the
calculations in chapter 4 and hence a pleasing simplification.

2.3 T-duality and Buscher rules

T-duality is one reason for the common statement that string theory sees the spacetime
geometry very differently compared to point particles as it identifies a priory distinct
theories with different spacetimes. In this section we like to show how background fields
change upon performing T-duality transformations and illustrate it at an example which
will be important in chapter 4.

2.3.1 The Buscher rules

The rules describing the change of background fields under T-duality transformations
were first formulated by Buscher [28]. Our derivation will follow [7]. Consider the sigma
model (2.0.4)

S =
1

2πα′

∫

Σ

d2z (Gµν(X) + Bµν(X)) ∂Xµ ∂Xν

=
1

2πα′

∫

Σ

d2z Gµν(X) ∂Xµ ∂Xν +
i

4πα′

∫

B

X∗H

(2.3.1)

with H = dB ∈ Ω3(M) and ∂B = Σ subject to the observations made in the previous
section.
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Lemma 5. If the metric G admits an isometry, i.e. satisfies LkGµν = 0 for a killing
vector field k ∈ Γ(M,TM) which is also a symmetry of the action (2.3.1), then there exist
local coordinates Y µ = (θ, Y a), a ∈ {1, . . . , D − 1} such that G and B are independent
of θ.

Proof. If k is a killing vector for G, the kinetic term vanishes upon δXµ = kµ and
LkGµν = 0. For the Wess-Zumino term we employ (2.2.3),

δ

∫

B

X∗H =

∫

B

LδXH =

∫

B

LkH . (2.3.2)

This vanishes if

LkH = LkdB = dLkB = 0 , (2.3.3)

where d ◦L = L◦ d was used which easily follows from writing L in terms of the interior
and exterior product. Thus the action is invariant under the isometry if LkB = dω
locally for some one-form ω. The Lie derivative can be written locally as

LkTµν = kσ∂σTµν + (∂µk
σ)Tσν + (∂νk

σ)Tµσ (2.3.4)

for a rank two tensor T and k = kµ ∂/∂xµ. Upon (2.0.3) B → B + dA and d ◦ L = L ◦ d
we observe that ω → ω +LkA is a symmetry. Now we can choose coordinates such that
k = ∂/∂θ; as this is a Killing vector G does not depend on θ. Then (2.3.4) simplifies such
that in particular LkAµ = ∂θAµ. Since the coefficients Aµ and ωµ are smooth functions,
the Picard-Lindelöf theorem allows for a solution to ∂θAµ = −ωµ. Thus we can find a
gauge with ω = 0, hence LkB = ∂θB = 0.

One can obtain an action equivalent to (2.3.1) by “gauging” the isometry, i.e. intro-
ducing an action where the isometry appears as a gauge symmetry11. The consistency
condition is that the gauged action coincides with (2.3.1) when the gauge field is “pure
gauge12”. This can be achieved by the sigma model

S =
1

2πα′

∫

Σ

d2z
[
G00 AA+ (G0a + B0a)A∂Y a + (Ga0 + Ba0) ∂Y

aA

+ (Gab + Bab) ∂Y
a ∂Y b + θ̃ (∂A− ∂A)

]
,

(2.3.5)

with (Y 0 = θ, Y a) the adapted coordinates, A = A(z)dz+A(z)dz a gauge field and θ̃(z, z)
a Lagrange multiplier. Now we like to check consistency. The equations of motion for θ̃
can easily be computed as

∂A− ∂A = 0 , (2.3.6)

11For a detailed description one may consult [29].
12For a (non-abelian) gauge symmetry we generally have A → A′ = g−1Ag + g−1dg and pure gauge

would be A′ = d ln(g). In our case of an abelian gauge invariance (2.0.3), pure gauge means that B′ is
exact, B′ = dω.
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which is solved by setting A = ∂θ, A = ∂θ (pure gauge). Plugging this back into (2.3.5),
renaming θ = Y 0 we indeed recover (2.3.1). We can also compute the equations of motion
for the gauge fields and find

A = −Ga0 + Ba0

G00

∂Y a +
1

G00

∂θ̃

A = −G0a + B0a

G00

∂Y a − 1

G00

∂θ̃ .

(2.3.7)

If we substitute these back into (2.3.5), some algebraic manipulations, sorting terms by
symmetry and denoting θ̃ = Y 0 yields the dual action

S̃ =
1

2πα′

∫

Σ

d2z
(
G̃µν(Y ) + B̃µν(Y )

)
∂Y µ ∂Y ν , (2.3.8)

where G̃ and B̃ are related to the old ones by the

Buscher Rules.

G̃00 =
1

G00

, G̃0a =
B0a

G00

, G̃ab = Gab −
Ga0G0b + Ba0B0b

G00

B̃0a =
G0a

G00

, B̃ab = Bab +
Ga0B0b + Ba0G0b

G00

,

(2.3.9)

where the isometry acts in the 0-direction,

We remark the following.

• Already in the argument claiming equivalence of (2.3.5) and (2.3.1) we omitted
some subtleties. However, Roček and Verlinde [7] showed that the duality is a true
symmetry of CFT and thus (2.3.1) and (2.3.8) have to be considered equivalent.

• Considering the easy example of a circle with radius R, the metric in spherical
coordinates is given by ds2 = (dR)2 +R2(dϕ)2 which has ϕ as isometric direction.
Thus applying the Busher rules yields ds2 = (dR)2 + R−2(dϕ)2, reproducing the
well-known result that T-duality inverts the radius of the circle.

• The Noether currents associated to the isometry are in general not chiral. In the
CFT analysis done in (2.3.1) mentioned above, a second isometry was introduced
in order to obtain left- and right-handed (i.e. holomorphic and anti-holomorphic)
currents. Along the way of showing equivalence, they revealed the connection
between the coordinate θ and θ̃: θ = θL + θR, θ̃R = θL − θR, i.e. from a CFT

perspective T-duality just interchanges XR → −XR along the T-dual direction.

• Performing a T-duality twice in the same direction gives back the original geometry.

• T-duality is a stringy symmetry which is not apparent in the usual Kaluza-Klein
reduction in field theory. Beside the momentum along the compactified directions,
the string can also wind around these, quantified by a winding mode. In fact,
T-duality interchanges momentum and winding modes [21].
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2.3.2 Application to T
3

Following [15, 16, 17] we like to illustrate the effect of T-Duality on the sigma model
(2.0.4) in a flat, rectangular three-torus T3 background with local coordinates (x1, x2, x3)
whose cycles are parametrized by the Radii R1, R2 and R3. The metric is given by the
line element

ds2 = R2
1 (dx

1)2 +R2
2 (dx

2)2 +R2
3 (dx

3)2 (2.3.10)

and we will also allow for a Kalb-Ramond field

B = c x1 dx2 ∧ dx3 ⇐⇒ B23 = c x1 (2.3.11)

for c 6= 0 any constant. In view of the background consistency equations, this is not an
admissible string background since (2.1.11) for the flat torus and H = dB, i.e. H123 = c
read

HµσρH
σρ

ν = (H123)
2 = c2 = 0 . (2.3.12)

However, up to linear order in H this equation is satisfied and thus in this regime we
deal with a consistent background which is also with regard to the analysis in chapter 4.

The metric (2.3.10) has three isometries; one in each direction of the cycles and we are
free to choose any of them to perform a T-duality by applying the Buscher rules (2.3.9).
The discussion is simplified by considering T

3 as a two-torus T2 in the (x2, x3)-direction
fibered over a circle S1 in the x1 direction. This background will be generally referred

S1

T
2

Figure 2.3: A cartoon of a two-torus T2 fibered over a circle S1.

to as H-flux background. Now we can apply the Buscher rules and study the resulting
geometries.

The twisted torus

Utilizing (2.3.9) we can perform a first T-duality in the, say, x3 direction to obtain

ds2 = R2
1 (dx

1)2 +R2
2 (dx

2)2 +
1

R2
3

(
dx3 + c x1 dx2

)2

B = 0 ,

(2.3.13)
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where we can observe that the radius of the third cycle has been inverted and the
x1-direction is not isometric anymore. Since x1 is the direction along the base space
S1, in order for the metric to be well-defined the line element must be invariant under
x1 → x1 + 2πR1, i.e. has to respect the periodicity. This can be restored by imposing
the identification

(x1, x2, x3) ∼ (x1 + 2π R1, x
2, x3 − 2π R1 c x

2) (2.3.14)

and defines the so-called twisted torus. In general we will refer to this background as the
geometric or ω-flux. This can be motivated as follows. If we introduce a dual basis of
globally defined one forms (Vielbeine)

η1 = dx1 , η2 = dx2 , η3 = dx3 + c x1 dx2 (2.3.15)

such that the metric (2.3.13) is diagonal, Cartan’s structure equation for a torsion-free
connection reads

dηa = ηb ∧ ωa
b , (2.3.16)

where ωa
b is the spin connection13. Using the basis defined above the only non-vanishing

component of ωa
b turns out to be

ω12
3 = −c . (2.3.17)

As in the previous case, we will name this background after the quantity related to c,
which justifies the above choice.

The T-fold

The second direction x2 of T2 is still isometric in (2.3.13), allowing for a T-duality which
gives

ds2 = R2
1 (dx

1)2 +
1

R2
2 R

2
3 + c2 (x1)2

(
R2

3 (dx
2)2 +R2

2 (dx
3)2
)

B23 = −
c x1

R2
2 R

2
3 + c2 (x1)2

.

(2.3.18)

Although the metric and the B-field are well-defined locally, i.e. with respect to the
represented patch, one is not able to “glue” the patches together in a consistent manner.
The reason is that the transition functions between local trivializations of the bundle
T

2 → S1 mix theB-field with the metric. This makes sense as in section 2.1 we discovered
that the H-field can be considered a geometric datum of the manifold. Including this
mixing in the transition functions lead to the notion of T-folds [18].

In this case the quantity related to c is denoted Q23
1 and can be computed in the

context of generalized geometry14. Thus we call this background non-geometric or Q-

flux background.

13The spin connection enters here since introducing vielbeine, roughly speaking, maps the tangent
bundle to the vector bundle associated to the frame bundle whose natural connection is the spin con-
nection.

14For this particular example, see e.g. [30] and references therein.
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The R-flux

Finally we can also consider a T-duality along the base direction x1 which is not captured
by the Buscher rules as (2.3.18) doesn’t admit an isometry in this direction. In [16, 17]
it is argued that although the background obtained by performing another T-duality
seems to elude a geometric description even locally, it has to be included in a background
independent formulation of string theory. We formally characterize this background by
a new type of flux, denoted by R123 = N .

To recapitulate, we have described a chain of T-dualities

H123
T3←−→ ω12

3 T2←−→ Q1
23 T1←−→ R123 (2.3.19)

in which the first and the last background will be of the main interest in the following
chapters.
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Chapter 3

Open strings and noncommutative

geometry

This chapter is devoted to the emergence of noncommutative geometry on D-branes and
we will mainly follow [8, 10, 31].

3.1 Open strings on D-branes with B-field

The starting point will be the sigma model of an open string on a Dp-brane with a
constant B-field in a flat background. Due to (2.1.11) this is an admissible background
since H = 0. We will describe this configuration classically in the following. Because it
simplifies the discussion as we want to consider this problem in terms of mode expansions,
in this chapter we want the worldsheet to have Lorentzian signature and choose conformal
gauge hαβ = diag(−1, 1). The action is given by

So =
1

4πα′

∫

Σo

d2σ
(
hαβ ηµν + ǫαβ Fij(X)

)
∂αX

µ ∂βX
ν , (3.1.1)

where we chose a flat background Gµν = ηµν = diag(−1, 1, . . . , 1) and

F = B + dA . (3.1.2)

A is a U(1) gauge field on the spacetime which has to be added to the action in order
for (2.0.3) to hold since the worldsheet is bounded now: ∂Σo 6= ∅. The gauge symmetry
(2.0.3) is modified to

B → B + dω , A→ A− ω . (3.1.3)

Moreover, while µ, ν denote the coordinates on the whole target space, i, j ∈ {0, . . . , p}
denote the coordinates along the Dp-brane. Restricting B to the brane can always be
realized by the gauge transformations as the interior of the worldsheet is closed.
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For later purpose we are interested in the equations of motion of (3.1.1). By using
the antisymmetry of F , varying So yields

δSo ∼
∫

Σo

d2σ
[
− ∂α∂

αXµ δXµ +
1

2
ǫαβ (dF)ijk∂αX i ∂βX

j δXk

+ ∂α(δXµ ∂
αXµ) + ǫαβ Fij ∂α(δX

i ∂βX
j)
]
.

(3.1.4)

The second term in the first line vanishes and the second line collects the boundary
terms which vanish by imposing the respective boundary conditions on the brane and
transverse to it. Thus the equation of motions are

∂α∂
αXµ = 0 (3.1.5)

subject to the boundary conditions

(∂σX
i −F i

j∂τX
j)
∣∣
σ=0,π

= 0 , i, j = 0, . . . , p

Xa|σ=0,π = xa
0 , a = p+ 1, . . . , D ,

(3.1.6)

where we parametrized the worldsheet by σ ∈ [0, π] and a denotes the directions trans-
verse to the brane. Thus we are able to solve (3.1.5) by the usual mode expansion, which
reads

X i(τ, σ) = xi
0 +

(
pi0τ − pj0Fj

iσ
)
+
∑

n 6=0

e−inτ

n

(
iαi

n cos(nσ)− αj
nFj

i sin(nσ)
)

Xa(τ, σ) = xa
0 + baσ +

∑

n 6=0

e−inτ

n
αa
n sin(nσ)

(3.1.7)

with respect to the boundary conditions (3.1.6). Now we want to quantize this system.

3.1.1 Emergence of noncommutative geometry

The aim is to derive the symplectic form of the spacetime which defines the Poisson
structure; then the commutation relations can be read-off. Determining the phase space
of a system with constraints, which here are given by the boundary conditions (3.1.6)
can be done by the quantization procedure formulated by P. Dirac [32]. However, Chu
and Ho proposed a rather efficient method suitable for this problem [8] which was shown
to be equivalent to Dirac’s procedure in [33].

First we determine the canonical momenta for (3.1.1) as

2πα′ P i(τ, σ) = ∂τX
i + F i

j∂σX
j =

[
pk0 +

∑

n 6=0

e−inτ αk
n cos(nσ)

]
Mk

i

2πα′ P a(τ, σ) = ∂τX
a = −i

∑

n 6=0

e−inτ αa
n sin(nσ)

(3.1.8)
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with Mij = ηij −Fi
kFkj. For a symplectic form Chu and Ho propose to use

ω := lim
T→∞

1

2T

∫ T

−T

dτ

∫ π

0

dσ dPµ ∧ dXµ

=
1

2α′

[
Mij dp

i
0 ∧ (dxj

0 +
π

2
F j

kdp
k
0)− i

∑

n>0

1

n
(Mijdα

i
n ∧ dαi

−n + dαa
n ∧ dαa

−n)

] (3.1.9)

where (3.1.7) and (3.1.8) were already plugged-in. The novelty of (3.1.9) is that the fields
X and P were not used to determine their commutation relations directly but rather the
modes1 and to take a time average in order for the result to be independent of τ . This
is necessary for this to be a bona-fide spacetime object.

The Poisson structure is determined by the inverse of the components of the sym-
plectic form (3.1.9). The block related to x0 and p0 reads

ω =
1

2α′

(
0 −1

2
M

1
2
M π

2
MF

)
=⇒ ω−1 =

(
4πα′M−1F 4α′M−1

−4α′M−1 0

)
. (3.1.10)

The α-block is obvious and thus the commutation relations, as obtained by multiplying
with i (~ ≡ 1), read

[xi
0, x

j
0] = 4iπα′ (M−1F)ij

[xi
0, p

j
0] = 4iα′ (M−1)ij

[αi
m, α

j
n] = 2α′m (M−1)ij δm+n

[αa
m, α

b
n] = 2α′mδab δm+n

(3.1.11)

and the rest zero. Thus on the brane the commutation relations look unusual. Since
we like to find noncommutative geometry, we are particularly interested in the commu-
tator of the spacetime coordinates X. Using the mode expansion (3.1.7) and the above
relations yield an equal time commutator

[
X i(τ, σ), Xj(τ, σ′)

]
= −4iα′ (M−1F)ij

[
(σ + σ′ − π) +

∑

n 6=0

1

n
sin n(σ + σ′)

]
. (3.1.12)

The infinite sum can be evaluated to π− σ+ σ′ if (σ+ σ′) ∈ (0, 2π); for σ and σ′ both 0
or π the sum vanishes. Thus, the coordinates commute in the interior of the worldsheet
since the term in parentheses cancels. However, at the boundary we find

[
X i(τ, σ), Xj(τ, σ′)

]∣∣
σ=σ′=0/π

= ± 4πiα′ (M−1F)ij , (3.1.13)

that is, the coordinates on each of the D-branes are noncommutative. As also required
by consistency we observe that the right-hand-side of (3.1.13) is antisymmetric in i and
j.

1Thus this is somehow an extended phase space with infinitely many coordinates.
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3.2 The Moyal star-product

We would like to define a product capturing the noncommutativity of the coordinates X
(3.1.13) on the D-branes which we will denote as submanifold N ⊂ M in the following.
When the coordinates of a manifold are noncommutative, of course all functions f ∈
C∞(N,R) are and thus we seek a product on the algebra of functions on the spacetime.
For simplicity we will rewrite (3.1.13) as

[
xi, xj

]
= i θij , (3.2.1)

where we focus on one of the branes and θij is antisymmetric. We will consider the
following product [34],

Definition 4. Let f, g ∈ C∞(N,R). Then

(f ⋆ g)(x) := exp

(
i

2
θij

∂

∂xi

∂

∂yi

)
f(x) g(y)

∣∣∣∣
x=y

(3.2.2)

is called the Moyal star-product.

This allows for the following observations

• For the commutator of two coordinates (3.2.2) yields upon expansion of the expo-
nential

[
xi, xj

]
= xi ⋆ xj − xj ⋆ xi

=
(
xi xj + i

2
θij
)
−
(
xj xi + i

2
θji
)

= i θij .

(3.2.3)

Hence the definition captures (3.2.1).

• More generally, for two functions f , g the definition can be expanded as

(f ⋆ g)(x) = f(x) g(x) + i
2
θij ∂if(x) ∂jg(x)− 1

8
θij θkl ∂i∂kf(x) ∂j∂lg(x)

− 1
8
θij ∂jθ

kl (∂i∂kf(x) ∂lg(x)− ∂kf(x) ∂i∂lg(x)) +O(θ3) .
(3.2.4)

• Using the previous expansion one can show that the associator gives in quadratic
order in θ

(f ⋆ g) ⋆ h− f ⋆ (g ⋆ h) ∼
(
θil ∂lθ

jk + θjl ∂lθ
ki + θkl ∂lθ

ij
)
∂if ∂jg ∂kh

∼ θia θjb θkc
[
d
(
θ−1
)]

abc
∂if ∂jg ∂kh .

(3.2.5)

In the second line we assumed that θ is invertible which is motivated by (3.1.13).
Thus the Moyal product (3.2.2) is associative if θ−1 is closed, which is indeed the
case in the previous section. Otherwise the product is nonassociative as extensively
discussed in [31].
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3.3 The structure of CFT correlators

In this section we want to discuss how the noncommutativity manifests itself in the CFT
of the open string (3.1.1) as shown in [10]. We will also encounter a different way of
obtaining (3.1.13) and (3.2.2).

The setup will be the sigma model (3.1.1) on an Euclidean worldsheet hαβ = diag(1, 1)
with a constant B-field and now also with a constant A, i.e. the corresponding term is
absent; F = B. In complex coordinates introduced in chapter 2 the action (3.1.1)
restricted to the Dp-brane reads

So =
1

2πα′

∫

Σo

d2z (ηij(X) + Bij(X)) ∂X i ∂Xj . (3.3.1)

We will also assume Σo to have the topology of a disc which we considered mapped
to H

− as above. The integrand can be seen as kinetic term and the propagator, i.e.
the fundamental solution to (3.1.5) subject to the boundary conditions (3.1.6) can be
determined using the method of image charges. We will focus on open string vertex
operators which are inserted on the boundary of H

−. Then the propagator for H
−

restricted to R reads [10]

Gij(t, t′) :=
〈
X i(t)Xj(t′)

〉
= −α′ gij ln(t− t′)2 +

i

2
θij ǫ(t− t′) (3.3.2)

with t, t′ ∈ R and ǫ(t) is ±1 for t ≷ 0. g and θ are related to the metric and Kalb-Ramond
field by [31]

g−1 +
1

2πα′
θ := (η +B)−1 . (3.3.3)

Remark 4. In particular, θ is the antisymmetric part of the right-hand side of (3.3.3)
which coincides with the right-hand side of (3.1.13). Indeed, we can also extract the
commutation relations from the propagator. This can be done similar to the computation
(2.2.19). As the product of operators is just well-defined radially ordered, the equal-time,
equal-position commutator reads

〈
R
{[
X i(t), Xj(t)

]} 〉
= lim

δ→0

〈
X i(t)Xj(t− δ)−X i(t)Xj(t+ δ)

〉

= i θij
〈
1
〉 (3.3.4)

with the operator product evaluated using (3.3.2). For this observation the behavior of
the ǫ is crucial since it is sensitive to the ordering of the operators; in particular, it is
not continuous at 0 since it features a jump.

Now we would like to compute CFT correlators in the theory. A generic vertex
operator in the boundary CFT underlying the open string is of the form

P
[
(∂ + ∂)X, (∂ + ∂)2X, . . .

]
(t) exp(ip ·X(t)) (3.3.5)
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with P an arbitrary polynomial of the boundary derivatives2 of X and p the momentum
of the state3. In particular, the exponential is the operator corresponding to the tachyon.
Our aim is to study the general N -point correlator

CN
g,θ :=

〈
N∏

n=1

:Pn[. . . ](tn) e
ipn·X(tn) :

〉

g,θ

(3.3.6)

of N arbitrary vertex operators (3.3.5) inserted at boundary points tn. The subscript g, θ
indicates that the path integral is with respect to the action (3.3.1). Since we are dealing
with a free theory, the contractions are made with respect to the propagator (3.3.2) as
it coincides with the OPE. The combinatorics necessary especially for contracting the
exponential functions is generally captured in the functional operator [21]

:F(X) ::G(X) := exp

[∫
d2z d2wGij(z, w)

δ

δX i
F (z, z)

δ

δXj
G(w,w)

]
:F G : , (3.3.7)

where F and G are operators composed of X and the subscripts in the functional deriva-
tives indicates on which of the operators they act. In our case we restrict to real values
and can compute

N∏

n=1

:eip
n·X(tn) : = exp

[∫
dt dt′Gij(t, t′)

δ

δX i
F (t)

δ

δXj
G(t

′)

]
:

N∏

n=1

eip
n·X(tn) :

= e−
∑

n<m Gij(tn,tm) pni pmj :
N∏

n=1

eip
n·X(tn) :

= e
−

∑

n<m

(

−α′gij ln(tn−tm)2+
i
2
θijǫ(tn−tm)

)

pni p
m
j
:

N∏

n=1

eip
n·X(tn) :

= e−
i
2

∑

n<m θij pni pmj ǫ(tn−tm)

[
∏

n<m

(tn − tm)
2α′gijpni p

m
j

]
:e

∑N
n=1 ip

n·X(tn) :

(3.3.8)

The ordered sum respectively product ensures that we don’t count any contributions
twice. With this we are also able to compute (3.3.6). However, since θ is constant the
contributions from contractions including θ solely come from contracting the tachyon
vertex operators. Thus the correlator can be written very generally as

CN
g,θ = e−

i
2

∑

n<m θij pni pmj ǫ(tn−tm) CN
g,θ=0 . (3.3.9)

That is, the θ dependence can be completely decoupled from the rest of the correlator.
We will make the following remarks.

2Parametrized by (τ, σ), the boundary ∂Σo is along τ . In complex coordinates the τ -derivative is
given by ∂ + ∂.

3Which can be verified via the operator-state correspondence.
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• Independent of the form of the polynomial P , after we have performed all possible
contractions we will be in any case left with something proportional to

〈
:e

∑N
n=1 ip

n·X(tn) :
〉
= δ

(
N∑

n=1

pn

)
, (3.3.10)

which can be directly seen from (3.3.7). When the momenta do not sum-up to zero
we are left with a one-pint correlator which vanishes very generally due to confor-
mal invariance. This then yields the δ-distribution and hence implies momentum
conservation.

• The conformal Killing group of the disc is the Möbius group with real coefficients
PSL(2,R) and thus (3.3.9) has to be invariant under the action of the group which
amounts to cyclically permute the operators inserted. But by using momentum
conservation we can see that the θ factor is indeed invariant under cyclic permu-
tations as the remaining part is very generally. Hence (3.3.9) is indeed a genuine
CFT correlator.

• Assuming that the operators were inserted at tn > tm ∀n < m and identifying
pn = i∂Xn the prefactor of (3.3.9) can be seen to coincide with the Moyal product
(3.2.2) for N = 2. More generally, this can be considered a definition of an N -ary
product

(f1 ⋆ f2 ⋆ · · · ⋆ fN)(x) := exp

(
i
2

N∑

n<m

θij ∂
∂xi

n

∂

∂xj
m

)
f1(x1) . . . fN(xN)

∣∣∣∣∣
xn=x

. (3.3.11)

Since here θ is constant and thus the Moyal product associative this definition is
indeed just the successive application of the binary product. Applied to fi(x) =
exp(ipi · x) it also gives back the phase.

To summarize, we showed how noncommutative geometry arises in open bosonic string
theory. Moreover, from a relative phase apparent by comparing the CFT correlation
functions for the theory with B-field we were able to derive the well-known noncommu-
tative Moyal star-product of the algebra of functions. The following main part of the
thesis is to some extend dedicated to the detection of such a phase in a closed string
analogue of the theory considered here.
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Chapter 4

Closed strings and nonassociative

geometry

In chapter 3 we have seen how noncommutative geometry arises in open bosonic string
theory in the presence of a constant B-field. In this chapter we want to proceed anal-
ogously for the closed string. However, a constant B-field appears as a boundary term
and hence can be “gauged away” since the worldsheet is closed. Thus the simplest
configuration we can consider is a constant H-flux. This chapter mainly follows [20].

4.1 Closed strings with constant H-flux at O(H)

We consider the action (2.0.4) with a constant H-flux. That is, the B-field can be
expanded in normal coordinates as [31]

Bµν(X) = Bµν +
1

3
HµνσX

σ + . . . (4.1.1)

with Hµνσ constant and totally anti-symmetric. We will neglect higher orders and thus
H = dB as in (2.1.5); the constant B-term does not contribute by Stokes’ theorem.
Moreover we will assume three directions of the target spaceM , say with local coordinates
(Xa), a ∈ {1, 2, 3}, to be compactified on a flat, rectangular three-torus T3 with metric

ds2 = (dX1)2 + (dX2)2 + (dX3)2 =⇒ Gab = δab (4.1.2)

andXa ∼ Xa+2π. We also assumeH to be nontrivial just on the torus, i.e. Hµνσ = Habc.
As already mentioned in subsection 2.3.2 this is not an admissible string background due
to (2.1.11). Hence we will just work up to linear order in H.

In conformal gauge the action restricted to the torus reads

S =
1

2πα′

∫

Σ

d2z

(
δab +

1

3
HabcX

c

)
∂Xa ∂Xb (4.1.3)

which is a bona-fide CFT up to linear order in H. The equations of motions for (4.1.3)
are readily found to be

∂∂Xa =
1

2
Ha

bc ∂X
b ∂Xc . (4.1.4)



34 4. Closed strings and nonassociative geometry

Since we restricted to O(H) the fields on the right-hand side of (4.1.4) are given by the
free field. These are denoted X0(z, z) = X0,L(z) + X0,R(z) as this is the most general
solution to the free wave equation (4.1.4) for H = 0. A classical solution to (4.1.4) up
to linear order in H can be found in terms of the free field as

Xa(z, z) = Xa
0 (z, z) +

1
2
Ha

bcX
b
0,L(z)X

c
0,R(z) . (4.1.5)

From now on we will work up to linear order in H, hence omitting ”· · ·+O(H2)“ in all
the calculations.

4.1.1 Canonical and physical momentum

In a free theory the canonical and physical momentum coincide. However, in the inter-
acting theory (4.1.3) the situation is more subtle and we will explain the difference in
the following.

The canonical momentum can be computed from (4.1.3) by writing it in (τ, σ)-
coordinates (cf. (2.0.4)). We find

πa(τ, σ) =
1

2πα′

(
∂τX

a(τ, σ) + i
3
Ha

bcX
c(τ, σ) ∂σX

b(τ, σ)
)

=
1

2πα′

(
∂Xa(z, z)− 1

3
Ha

bc ∂X
b(z, z)Xc(z, z)

)

+
1

2πα′

(
∂Xa(z, z)− 1

3
Ha

bcX
b(z, z) ∂Xc(z, z)

)
,

(4.1.6)

where we employed ∂τ = ∂+∂ and ∂σ = i(∂−∂) for the last line. This has the usual term
involving the ”magnetic“ field H. In an attempt to canonically quantize this system,
(X, π) would be the right choice of canonical coordinates to describe the phase space of
the system. However, the physical momentum is the quantity related to a force F via
ṗ = F which means ”p = mv“1. Thus the physical momentum differs from the canonical
momentum and is given by

pa(z, z) =
1

2πα′
∂τX

a(τ, σ) =
i

2πα′

(
∂Xa(z, z) + ∂Xa(z, z)

)
. (4.1.7)

To determine the total momentum it is useful to look at the mode expansion. In the free
theory it can be found to read [21]

Xa
0 (z, z) = (xa

L + xa
R)− i

α′

2
(ka

L ln(z) + ka
R ln(z)) + i

√
α′

2

∑

n 6=0

1

n

(
αa
n

zn
+

α̃a
n

zn

)
(4.1.8)

with

ka
L = pa + 1

α′
wa , ka

R = pa − 1
α′
wa . (4.1.9)

1The suitable classical example in our case is the Lorentz force FL = v×B for a particle with velocity
v in a magnetic field B.
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Here pa denotes the (Kaluza-Klein) momentum and wa the winding along the compact
directions. Using the solution (4.1.5) yields

∂Xa(z, z) = −iα
′

2
ka
L

1

z
+

1

2
Ha

bc

(
α′

2i
kb
L x

c
R

1

z
− (α′)2

4
kb
L k

c
R

ln(z)

z

)

+ {O(zn), n 6= −1}

∂Xa(z, z) = −iα
′

2
ka
R

1

z
+

1

2
Ha

bc

(
α′

2i
xb
L k

c
R

1

z
− (α′)2

4
kb
L k

c
R

ln(z)

z

)

+ {O(zn), n 6= −1} .

(4.1.10)

We have given the mode expansion just up to linear singularities since the total mo-
mentum is obtained by integrating out the space-, i.e. σ-dependence; this amounts to
compute

P a =
1

2πα′

∫ 2π

0

dσ ∂τX
a(τ, σ)

=
i

α′

∮

C(0)

dz

2πi
∂Xa(z, z)− i

α′

∮

C(0)

dz

2πi
∂Xa(z, z)

=
1

2
(ka

L + ka
R) = pa

(4.1.11)

where the contours are counter-clock-wise and Cauchy’s theorem was employed. More-
over, the kLkR-terms cancel and we also exploited that Hx corresponds to a constant
B-field term which can be neglected since it appears as a total derivative in the action.
Hence (4.1.7) still has the same total momentum as the free theory. Moreover, in the
quantum theory P a = P a

L + P a
R will serve as the proper momentum operator.

If we would have changed the sign between the two integrals in the last computation
we would obtain the total winding in the free theory. However, here the kLkR-terms
add-up due to the changed relative sign. Thus, in order for the classical states to still
have the same winding as the free theory, we have to demand

Ha
bc k

b
L k

c
R = − 2

α′
Ha

bc p
b wc = 0 (4.1.12)

by the antisymmetry of H. At this point such a constraint seems rather artificial but we
will actually encounter the same restriction later when considering the quantum theory.

4.2 The H-CFT

In the previous chapter 3 we considered a free theory whose CFT description is well-
known. However, (4.1.3) is an interacting theory and requires a new CFT framework in
order to analyze the structure of the quantum theory in the spirit of section 3.3. This
will be achieved in the following and called CFTH .
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4.2.1 A holomorphic current

To utilize techniques of CFT we need to find proper conformal fields of our theory which
are apparently not the bosonic fieldsX as their behavior under conformal transformations
is not well-defined. We have already perceived that the action (4.1.3) can be considered
as a WZW model (2.2.2). Thus we can find chiral currents from those symmetries of the
theory which are generally not directly apparent in (2.0.4).

Rather surprisingly (4.1.3) is invariant under spacetime translations

Xa(z, z)→ Xa(z, z) + aa (4.2.1)

which in the following will be verified and the associated Noether current determined.
The variation of S subject to δXa = aa reads

δS =
1

2πα′

∫

Σ

d2z

[
∂aa ∂Xa + ∂Xa ∂a

a

+
1

3
Habc

(
aa ∂Xb ∂Xc − ∂aaXb ∂Xc − ∂aa ∂Xb Xc

) ]

=
1

2πα′

∫

Σ

d2z

[
∂aa

(
∂Xa −

1

2
HabcX

b ∂Xc

)

+ ∂aa
(
∂Xa −

1

2
Habc ∂X

b Xc

)]
.

(4.2.2)

In the second step we split the the first term in the second line in halves and performed
Stokes’ theorem for z respectively z. Thus for a constant we showed that (4.1.3) is indeed
invariant under spacetime translations. Upon another application of Stokes’ theorem we
also find the conservation law

0 = ∂
(
∂Xa − 1

2
HabcX

b ∂Xc
)
+ ∂

(
∂Xa − 1

2
Habc ∂X

b Xc
)

= ∂
(
∂Xa − 1

2
HabcX

b
0,L ∂X

c
0

)
+ ∂

(
∂Xa − 1

2
Habc ∂X

b
0 X

c
0,R

)

− 1
2
Habc

[
∂
(
Xb

0,R ∂Xc
0

)
+ ∂

(
∂Xb

0 X
c
0,L

)]

= ∂
(
∂Xa − 1

2
HabcX

b
0,L ∂X

c
0

)
+ ∂

(
∂Xa − 1

2
Habc ∂X

b
0 X

c
0,R

)
,

(4.2.3)

where we exploited that we work linear order in the flux by rewriting the terms propor-
tional to H in terms of the free fields and used the free field equations, i.e. ∂X0,R =
∂X0,L = 0. By using the equations of motions (4.1.4), both terms in the above are also
conserved separately and thus we have found the chiral currents

Ja(z) := i∂Xa(z, z)− i

2
Habc ∂X

b
0(z)X

c
0,R(z)

J
a
(z) := i∂Xa(z, z)− i

2
HabcX

b
0,L(z) ∂X

c
0(z)

(4.2.4)

with ∂Ja = ∂J
a
= 0. These currents could have also been found directly from the

equations of motion as in the WZW model; cf. remark 1.
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Remark 5. In the WZW model the the chiral currents correspond to the symmetry
under conjugation of the fields g with elements of the group manifold. Here we are
considering a three-torus T3 which is a compact abelian Lie group. We also mentioned
the formal identification ln(g) ∼ X. Hence conjugating g with elements of an abelian
group ea looks like translating X by formally using the logarithm identities.

Remark 6. Upon inserting the classical solution (4.1.5) into (4.2.4) we observe that
Ja = Ja

0 = i∂Xa
0 and J

a
= Ja

0 = i∂Xa
0 . That is, the chiral currents (4.2.4) in CFTH

coincide with the currents of the free theory. However, this does not enable us to conclude
that CFTH is merely the free bosonic CFT as this statement is only classically. Indeed,
in the following we will see that the quantum theory CFTH differs considerably from the
free bosonic CFT.

4.2.2 Conformal perturbation theory

Now we turn to the quantum theory. For calculating correlation functions we want to
consider the H-term in the action (4.1.3) as a perturbation, i.e.

S = S0 + S1 with S1 =
Habc

6πα′

∫

Σ

d2z Xa ∂Xb ∂Xc . (4.2.5)

The n-point correlator of n operators Oi(X) can be written as

〈O1 . . .On〉 =
1

Z

∫
[DX]O1 . . .On e

−S[X]

= 〈O1 . . .On〉0 − 〈O1 . . .OnS1〉0 − 〈O1 . . .On〉0 〈S1〉0 +O(H2)

= 〈O1 . . .On〉0 − 〈O1 . . .OnS1〉0 +O(H2) ,

(4.2.6)

where Z =
∫
[DX]e−S[X] is the partition function and 〈. . .〉0 denotes the correlator eval-

uated with respect to the free action S0. Moreover, 〈S1〉0 = 0 since the free action is
second order in the fields which only allows for an even number of operator insertions to

be non-trivial ; S1 consists of an odd number of operators.
The free propagator with respect to which correlators will be computed is standard

and reads [21]

Gab(z, w) =
〈
Xa(z, z)Xb(w,w)

〉
= −α′

2
ln |z − w|2 δab . (4.2.7)

Remark 7. As an odd number of operator insertions vanishes, in particular the insertion
of two fields X does not get any contributions linear order in H since 〈XXS1〉 contains
an odd number of fields. Thus the free propagator (4.2.7) is unperturbed up to O(H).
However, in [20] second order corrections have been computed which reveals a dependence
on a cut-off parameter, i.e. at this order we observe a renormalization group flow. This
is reasonable since at O(H2) the string beta-functionals (2.1.11) no longer vanish and
the system has to flow to another conformal fix point. Indeed the correction was found
to be proportional to Ha

cdH
cdb as expected from (2.1.11).
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4.2.3 Correlators of the currents

In this section we want to deduce the most important correlators of the currents (4.2.4).
This comprises two- and three-point functions.

Two-point functions

Calculating the two-point functions is particularly easy since the term involving the
perturbation S1 is odd as well as the terms involving H and therefore do not contribute.
Using (4.2.7) we readily obtain

〈
Ja(z1) J

b(z2)
〉
= (i)2 〈∂z1Xa(z1) ∂z2X

a(z2)〉0 =
α′

2

δab

(z1 − z2)2〈
Ja(z1) J

b
(z2)

〉
= (i)2

〈
∂z1X

a(z1) ∂z2X
a(z2)

〉
0
= 0

〈
J
a
(z1) J

b
(z2)

〉
= (i)2

〈
∂z1X

a(z1) ∂z2X
a(z2)

〉
0
=

α′

2

δab

(z1 − z2)2
.

(4.2.8)

Three-point functions

Computing three-point functions is a bit more involved and will be presented in more
detail. Using (4.2.6) we have to evaluate

〈
Ja(z1) J

b(z2) J
c(z3
〉
=
〈
Ja(z1) J

b(z2) J
c(z3)

〉
0
−
〈
Ja(z1) J

b(z2) J
c(z3)S1

〉
0

(4.2.9)

and similarly for the other combinations including J . We will present the computation
of the desired correlators in some detail. Our strategy is to compute correlators of
appropriate combinations of the fields X first and then deduce all the possible current
correlators by just differentiating. We will proceed successively and first consider

Kabc
0 :=

〈
Xa(z1, z1)X

b(z2, z2)X
c(z3, z3)

〉
0

− 1

2
Ha

pq

〈
:Xp

0,L(z1)X
q
0,R(z1) : X

b(z2, z2)X
c(z3, z3)

〉
0

− 1

2
Hb

pq

〈
Xa(z2, z2) :X

p
0,L(z1)X

q
0,R(z1) : X

c(z3, z3)
〉
0

− 1

2
Hc

pq

〈
Xa(z2, z2)X

c(z3, z3) :X
p
0,L(z1)X

q
0,R(z1) :

〉
0

(4.2.10)

with terms of higher order in H neglected. From this we will obtain the current correla-
tors in the free theory. The first term vanishes since it is odd and the remaining three
evaluate as follows. We have

kpq;bc :=
〈
:Xp

0,L(z1)X
q
0,R(z1) : X

b(z2, z2)X
c(z3, z3)

〉
0

+
〈
:Xp

0,L(z1)X
q
0,R(z1) : X

b(z2, z2)X
c(z3, z3)

〉
0

= (α′)2

4

[
ln(z12) ln(z13) δ

pb δqc + ln(z13) ln(z12) δ
pc δqb

]
,

(4.2.11)
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where we denoted zij := zi − zj and used (4.2.7) which can be split into a right-moving
and a left-moving part by exploiting ln |z| = ln(z) + ln(z) for the principal branch of the
logarithm. Moreover, since this term is already linear in H, all fields can be considered
free. Proceeding analogously for the other two terms we conclude

Kabc
0 = − (α′)2

8

(
Ha

pq k
pq;bc +Hb

pq k
a;pq;c +Hc

pq k
ab;pq

)

= − (α′)2

8
Habc

[
ln(z12) ln(z13)− ln(z13) ln(z12)− ln(z12) ln(z23)

+ ln(z23) ln(z12) + ln(z13) ln(z23)− ln(z23) ln(z13)
]
.

(4.2.12)

From K and (4.2.4) we readily obtain
〈
Ja(z1) J

b(z2) J
c(z3)

〉
0
= −i ∂z1∂z2∂z3Kabc

0 = 0

〈
Ja(z1) J

b(z2) J
c
(z3)

〉
0
= −i ∂z1∂z2∂z3K

abc
0 = +

i(α′)2

8
Habc z12

z212 z13 z23
〈
J
a
(z1) J

b
(z2) J

c(z3)
〉
0
= −i ∂z1∂z2∂z3K

abc
0 = − i(α′)2

8
Habc z12

z212 z13 z23〈
Ja(z1) J

b(z2) J
c(z3)

〉
0
= −i ∂z1∂z2∂z3Kabc

0 = 0 .

(4.2.13)

To obtain the perturbed contribution to the full O(H) current correlator we compute

Kabc
1 : =

Hpqr

6πα′

∫

σ

d2w
〈
Xa(z1, z1)X

b(z2, z2)X
c(z3, z3)

× :Xp(w,w) ∂Xq(w) ∂Xr(w) :
〉
0

= −(α′)2

48π
Habc

∫

Σ

d2w

[(
ln |z1 − w|2

(z2 − w)(z3 − w)
− ln |z1 − w|2

(z3 − w)(z2 − w)

)

+

(
ln |z2 − w|2

(z3 − w)(z1 − w)
− ln |z2 − w|2

(z1 − w)(z3 − w)

)

+

(
ln |z3 − w|2

(z1 − w)(z2 − w)
− ln |z3 − w|2

(z2 − w)(z1 − w)

)]
,

(4.2.14)

where we performed all six contractions using (4.2.7) and the antisymmetry of H as
above. As we did it above, all the correlators including the perturbation S1 can be
obtained by differentiating K1 and additionally by using the identity

∂z
1

z
= ∂z

1

z
= 2π δ(2)(z) (4.2.15)

which has to be understood in the sense of distributions. The strategy is to arrange the
integrand of (4.2.14) if necessary via integration by parts such that a δ-distribution of
the form δ(2)(zi − w) appears once in each term. We will illustrate this, say, with the
first term.

∂z1∂z2∂z3

∫

Σ

d2w
ln |z1 − w|2

(z2 − w)(z3 − w)
. (4.2.16)
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This combination of derivatives does not generate a δ. But the anti-holomorphic factor
in the denominator can be rewritten as (z3 − w)−1 = −∂w ln |z3 − w|2 and we can
perform a partial integration to have the w-derivative acting on the other logarithm in
the numerator. Thus

∂z1∂z2∂z3

∫

Σ

d2w
ln |z1 − w|2

(z2 − w)(z3 − w)
= −∂z1∂z2∂z3

∫

Σ

d2w
ln |z3 − w|2

(z2 − w)(z1 − w)

=

∫

Σ

d2w
2π δ(2)(z1 − w)

(z3 − w)(z2 − w)2

=
2π

z31z221
.

(4.2.17)

This allows us to compute

〈
Ja(z1) J

b(z2) J
c(z3)S1

〉
0
= −i ∂z1∂z2∂z3Kabc

1 = +
i(α′)2

8

Habc

z12 z13 z23
〈
Ja(z1) J

b(z2) J
c
(z3)S1

〉
0
= −i ∂z1∂z2∂z3K

abc
1 = +

i(α′)2

8
Habc z12

z212 z13 z23〈
J
a
(z1) J

b
(z2) J

c(z3)S1
〉
0
= −i ∂z1∂z2∂z3K

abc
1 = − i(α′)2

8
Habc z12

z212 z13 z23
〈
J
a
(z1) J

b
(z2) J

c
(z3)S1

〉
0
= −i ∂z1∂z2∂z3K

abc
1 = − i(α′)2

8

Habc

z12 z13 z23
.

(4.2.18)

The final result is now obtained by subtracting (4.2.13) and (4.2.18) which yields

〈
Ja(z1) J

b(z2) J
c(z3
〉
= − i(α′)2

8

Habc

z12 z13 z23〈
Ja(z1) J

b(z2) J
c
(z3
〉
= 0

〈
J
a
(z1) J

b
(z2) J

c(z3

〉
= 0

〈
J
a
(z1) J

b
(z2) J

c
(z3

〉
= +

i(α′)2

8

Habc

z12 z13 z23

(4.2.19)

In particular we see that the currents (4.2.4) have holomorphic respectively anti-
holomorphic correlation functions.

4.2.4 The current algebra and the energy-momentum tensor

We want to find the OPE of the chiral currents and the energy momentum tensor of the
theory. The OPE of the currents could in principle be directly read-off from the general
current algebra of a WZW model (2.2.20) since we know that the structure constant is
proportional to H. However, so far we developed the CFT very closely to the discussion
of the WZW model. Therefore we expect the currents (4.2.4) to be primary fields of
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conformal weight h = 1 or h = 1 in our CFT respectively. Thus the current algebra can
also be determined from the structure of the two- and three-point functions. In general,
the JJ-OPE is of the form [35]

Ja(z) J b(w) =
∑

k,n≥0

CJJ
Φk

anJJΦk

n!

∂n
wΦk(w)

(z − w)2−hk−n (4.2.20)

provided J has conformal weight h = 1. The coefficients CJJ
k can be determined from

the two- and three-point functions since we know that for general chiral primaries Φi of
weight hi

〈Φ1(z) Φ2(w)〉 =
dΦ1Φ2 δh1,h2

(z − w)h1+h2

〈Φ1(z1) Φ2(z2) Φ3(z3)〉 =
CΦ1Φ2Φ3

zh1+h2−h3
12 zh1+h3−h2

13 zh2+h3−h1
23

(4.2.21)

and the OPE coefficients are related to the three-point coefficients by CΦiΦjΦk
= CΦiΦj

Φl

(d−1)ΦlΦk
. J will be the only primary of weight h = 1 in our theory. Therefore we are

just interested in n = 0 such that a0JJΦk
= 1 and only have to consider the J correlators

as well as 1 which has weight 0 and CJJ
1 = dJJ .

From (4.2.8) and (4.2.19) we read-off dJJ = α′/2 δab and CJJJ = −i(α′)2/8Habc.
Thus the only non-vanishing OPE coefficients read CJJ

1 = α′/2 δab CJJ
J = −iα′/4Habc.

Doing the same for the anti-holomorphic currents and using (4.2.20) we find the singular
parts of the OPE’s

Ja(z) J b(w) =
α′

2

δab

(z − w)2
− i

α′

4

Hab
c

z − w
J c(w) + reg.

J
a
(z) J

b
(w) =

α′

2

δab

(z − w)2
+ i

α′

4

Hab
c

z − w
J
c
(w) + reg.

(4.2.22)

and the JJ-OPE is purely regular. This is indeed the current algebra of a WZW model
with fabc = −α′/4Habc and k = α′/22.

As we have showed in subsection 2.2.3, from the current algebra (4.2.22) one can also
deduce the Kač-Moody algebra (2.2.23). Laurent-expanding the currents and employing
the same techniques we find for the modes

[ jam, j
b
n ] = −iα

′

4
Hab

c j
c
m+n +mδab δm,−n

[ j
a

m, j
b

n ] = +iα
′

4
Hab

c j
c

m+n +mδab δm,−n .
(4.2.23)

Remark 8. In a WZW model the OPE of the chiral currents does not have the relative
sign in the second term in (4.2.22) as well as in the Kač-Moody algebra (4.2.23). This
is simply a matter of definition; by defining J → −J , from (4.2.19) we observe that the
relative sign would be absent.

2If we would have introduced α′ in the WZW model (2.2.2) we would have found a quantization
condition for k in terms of α′.
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The energy-momentum tensor

Following the lines of the discussion of the WZW model in section 2.2, the energy-
momentum tensor (2.2.24) was determined by the Sugawara construction; in the CFTH

the quantum energy-momentum tensor thus suitably normalized reads

T (z) =
δab
α′

:Ja J b : (z) , T (z) =
δab
α′

:J
a
J
b
: (z) . (4.2.24)

The normalization can be justified by calculating the TT -OPE.

How to contract. We already defined a generalized Wick theorem (2.2.26) in order to
contract correctly in interacting theories. However, as we already observed in remark 3,
contractions up to linear order in the structure constants, H in our case, are captured
correctly by just replacing the contracted fields by the respective OPE deduced from the
current algebra, here (4.2.22), without writing-out normal orderings.

Using the OPE (4.2.22) and employing the antisymmetry of H yields the TT -OPE

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ reg.

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ reg.

(4.2.25)

with the central charge c = 3 which is the same as in the free theory since we only
consider the three directions of the torus.

Since we deduced the energy-momentum tensor in CFTH we are able to identify
the primary fields in the theory. In particular, the currents (4.2.4) should be chiral
primaries of conformal weight (h, h) = (1, 0) respectively (h, h) = (0, 1). Indeed, by
again employing (4.2.22)and the antisymmetry of H we readily find

T (z) Ja(w) =
Ja(w)

(z − w)2
+

∂w Ja(w)

(z − w)
+ reg.

T (z) Ja(w) = reg.

T (z) J
a
(w) = reg.

T (z) J
a
(w) =

J
a
(w)

(z − w)2
+

∂w J
a
(w)

(z − w)
reg. ,

(4.2.26)

i.e. J and J are chiral primaries with the respective conformal weights.

4.2.5 Vertex operators

In string theory the states one intends to scatter are represented by vertex operators

since the bosonic fields X itself are not conformal. In order to respect all the symmetries
of our theory, the vertex operators have to have conformal weight (h, h) = (1, 1). As
we would like do deduce properties of the spacetime geometry from CFT correlators
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analogously to the open string case, we of course have to identify the proper objects to
scatter. Since we are dealing with an interacting theory, we cannot expect the vertex
operators of the free theory still to be valid. In the following we will investigate the
tachyon vertex operator.

Proper ”coordinates“ in CFTH

From a conformal field theory perspective the currents (4.2.4) are the proper fields to
study since they have a well-defined behavior under conformal transformations. In a
free theory the bosonic coordinates XL/R are basically the primitives of the currents and
this is why one is able to make statements about the bosonic fields with CFT methods.
However, this does not apply to our theory as one can see from (4.2.4). Thus the
proper ”coordinates“, denoted X (z, z), to consider in this setup are defined as integrals
of (4.2.4), i.e. by

Ja(z) =: i ∂X a(z) , J
a
(z) =: i ∂X a(z) . (4.2.27)

In particular, due to the anti-/holomorphicity of the currents these fields obey the wave
equation ∂∂X a = 0 and thus split into a left- and right-moving part

X a(z, z) = X a
L(z) + X a

R(z) (4.2.28)

as this is the most general solution.

Remark 9. Let us collect some evidence for an interpretation as spacetime coordinates
of this fields. As can be seen from remark 6, linear order in H we have X a

L/R = Xa
0,L/R

since the free fields are the primitives of the currents. These are of course coordinates
for the spacetime manifold since they are in the free theory H = 0. It is crucial at this
point to interpret this result correctly: Also for the free theory, the manifold is given
by T

3 and all we want to know about the X ’s is whether they are still coordinates for
the torus – they are! However, the complete geometry is also determined by the metric
and the torsion and as we have already seen in current algebra, they also have a strong
impact on the CFT. Thus the spacetime geometry is nevertheless (T3, G,H) at O(H);
with X we have just chosen a different atlas.

For later reference we also need the OPE of X with the currents (4.2.4). These can
be obtained by formally integrating the JJ-OPE (4.2.22), giving

Ja(z)X b
L(w) = −i

α′

2

δab

(z − w)
+

α′

4
Hab

c J
c(w) ln(z − w) + reg.

J
a
(z)X b

R(w) = −i
α′

2

δab

(z − w)
− α′

4
Hab

c J
c
(w) ln(z − w) + reg.

(4.2.29)

and the other combinations vanish. We (formally) used integration by parts to obtain
the logarithmic term together with regular ones. Furthermore we neglected the possi-
bility of integration constants here which can be either holomorphic or anti-holomorphic
functions; this freedom becomes important below.
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The tachyon vertex operator

After identifying all the necessary ingredients, we can now define the tachyon vertex

operator analogous to the free theory as

V (z, z) := :exp (i kL · XL + i kR · XR) : (4.2.30)

with the momenta (4.1.9) and the shorthand notation k · X := δabk
aX b. Of course it has

to be justified to be called vertex operator. By employing the JX-OPE (4.2.29) we first
compute

Ja(z)V (w,w) = Ja(z) :exp (i kL · XL + i kR · XR) : (w,w)

=
∞∑

n=0

(ikL b)
n

n!
Ja(z) : (X b

L)
n eikR·XR :

= ikL b

∞∑

n=0

(ikLc)
n

n!
n :Ja(z)X b

L (X c)n eikR·XR :

=
α′ ka

L

2

V (w,w)

(z − w)
+ i

α′

4
Ha

bc k
b
L :J c V : (w,w) ln(z − w) + reg.

(4.2.31)

and similarly

J
a
(z)V (w,w) =

α′ ka
R

2

V (w,w)

(z − w)
− i

α′

4
Ha

bc k
b
R :J

c
V : (w,w) ln(z − w) + reg. . (4.2.32)

These can be used to compute the OPE with the energy momentum tensor (4.2.24). We
obtain

T (z)V (w,w) =
δab
2

:JaJ b : (z)V (w,w)

= 2
δab
α′

:

[(
α′

2

ka
L

(z − w)
+ i

α′

4
Ha

pq k
p
L J

q(z) ln(z − w)

)
J b(z)

+

(
(α′)2

4

ka
L k

b
L

(z − w)2
+ i

α′

2
Ha

pq k
p
L k

b
L J

q(z)
ln(z − w)

(z − w)

)]

× V (w,w) : +reg.

=
α′ k2

L

4

V (w,w)

(z − w)2
+

ka
L :Ja V : (w,w)

(z − w)
+ reg.

=
α′ k2

L

4

V (w,w)

(z − w)2
+

∂wV (w,w)

(z − w)
+ reg. ,

(4.2.33)

where the antisymmetry of H was exploited. Similarly we find

T (z)V (w,w) =
α′ k2

R

4

V (w,w)

(z − w)2
+

∂wV (w,w)

(z − w)
+ reg. . (4.2.34)
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Thus V is a primary field of weight (α
′

4
k2
L,

α′

4
k2
R) which has to be equal to (1, 1) in order to

define a vertex operator. Therefore we demand α′k2
L/R = 4 which is the usual mass-shell

condition, i.e. V indeed corresponds to the tachyon.
The vertex operators – local operators in a CFT – correspond one-to-one to states

in the theory. In particular, the tachyon vertex operator in the free theory corresponds
to the the degenerate ground state |kL, kR〉. In the following we want to discuss the
properties of the operator corresponding to V in CFTH , that is, the state

|V 〉 :=
∫

[DX] V (z = 0, z = 0) e−S[X] = lim
z,z→0

V (z, z)|0〉 (4.2.35)

where |0〉 denotes the ground state of the theory corresponding to the identity operator.
If we would Laurent-expand the fields ∂X (z) and ∂X (z) and declaring the appearing
coefficients to be creation and annihilation operators, it is a standard argument to show
that (4.2.35) corresponds to a vacuum3. Rather we want to investigate if |V 〉 carries
momentum respectively winding as in the free theory. Therefore we have to act with the
momentum operator (4.1.11) on the state; this can be done as follows

P a
L |V 〉 = lim

w,w→0
P a
L V (w,w)|0〉

= lim
w,w→0

1

α′

∮

C(0)

dz

2πi
i∂Xa(z, z)V (w,w)|0〉

= lim
w,w→0

1

α′

∮

C(0)

dz

2πi
:

[
Ja(z) +

i

2
Ha

bc ∂X
b
0,L(z)X

c
0,R(z)

]
: V (w,w)|0〉 .

(4.2.36)

In the last step we observed that ∂Xa is not a proper field in CFTH but that the OPE
can be computed by using the OPE with the holomorphic current and subtracting the
difference Ja − i∂Xa according to the definition (4.2.4). The subtracted term can be
seen to be linear in H already and thus the OPE of this term with V reduces to the
OPE with the free tachyon vertex operator V0(w,w) = exp(ikL · X0,L + ikR · X0,R) in
the free CFT. That is, the second term can be evaluated just by substituting the free
propagator (4.2.7) for any contraction as usual. The evaluation is straight forward in
particular since we already encountered all necessary techniques. Together with (4.2.31)
we obtain

P a
L |V 〉 =

ka
L

2
lim

w,w→0
V (w,w)|0〉

lim
w,w→0

∮

C(0)

dz

2πi

α′

2
Ha

bc

[
ikb

L

2
:J c V : (w,w) ln(z − w)

+
kb
L

2

:Xc
0,R(z)V0(w,w) :

(z − w)
+

kc
R

2
:J b

0 V0(w,w) : ln(z − w)

− iα′kb
Lk

c
R

4

V0(w,w) ln(z − w)

(z − w)
+ reg.

]
|0〉

(4.2.37)

3See for example [36]
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The first term gives the momentum eigenvalue. For scattering amplitudes and the mo-
mentum conservation appearing there to make sense, we require |V 〉 to be an eigenstate
for the momentum-operator. Thus all the remaining terms have to vanish. This can be
achieved as follows.

• We can add a term ∼ Ha
bc k

b
L : J c

0 V0 : (w,w) ln(z − w) as integration constant to
(4.2.29) since it is regular in z. This adds to the first term in the second line to
give ln |z − w|2; this disappears after integration.

• Inserting the mode expansion (4.1.8), the only term in the expansion of Xc
0,R which

gives a non-vanishing contribution after integration is the zero-mode xc since V0 is
non-singular. This gives a Hx-contribution that can be gauged away.

• The second logarithmic term can be treated analogously to the first.

• We encountered a term proportional to Ha
bck

b
Lk

c
R = − 2

α′
Ha

bcp
bwc which survives

even after performing the integral and the limit. It vanishes upon demanding

Ha
bc p

b wc ≃ [ ~p× ~w ] = 0 . (4.2.38)

This condition was already encountered in subsection 4.1.1 by requiring the clas-
sical field to have winding w.

We have seen that all the remaining terms vanish upon using (4.2.38). Therefore we
showed

P a
L |V 〉 =

ka
L

2
|V 〉 (4.2.39)

and can argue similarly for the right-moving part. Hence we verified that |V 〉 = |kL, kR〉.

Remark 10. One may wonder why we haven’t just imposed the constraint Ha
bck

b
L/R = 0

since this would take care of the logarithmic terms we treated by adding integration
constants to the JX-OPE. However, momenta transversal to the flux would trivialize
most of our results. Since we also want to consider T-dualities later, it was argued in
[7] that this conditions should be discarded in order to have sensible transformations.
Nevertheless, the appearance of logarithmic terms in the OPE’s of our theory may hint
towards a logarithmic CFT 4.

4.3 T-dual backgrounds

In our aim of detecting interesting (non-)geometries in closed string theory we will not
only allow for the H-flux background but also for the T-dual backgrounds identified in
subsection 2.3.2. Above we have developed the CFT describing the sigma model (4.1.3)
linear order in the flux which enables us to apply T-duality as discussed in section 2.3.

4See for example [37] and references therein.
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Since we identified X a in CFTH as proper coordinates in our theory which also split into
a holomorphic and an anti-holomorphic parts, we recall the action of T-duality applicable
in our case:

• The right-moving coordinates will be reflected, i.e.

X a(z, z) = X a
L(z) + X a

R(z)
T−−→ X̃ a(z, z) = X a

L(z)−X a
R(z) . (4.3.1)

In particular, T-duality acts by reflecting the anti-holomorphic current J
a
. Thus

an odd number of T-dualities changes the sign of the anti-holomorphic three-point

function in (4.2.19).

• The reflection exchanges momentum and winding modes, i.e.

pa
T←→ wa . (4.3.2)

In the previous section we deduced the condition (4.2.38) ~p× ~w = ~0 in order for tachyon
vertex operator V to have the usual momentum and winding quantum numbers. This
condition is only satisfied if we just consider pure momentum or pure winding quantum
numbers for V in the H-flux background. Recalling the definition (4.2.30) of V , pure
winding scattering amounts to a relative sign in the exponent. The possible configura-
tions in view of T-duality are given in Table 4.1. Since (4.2.38) is a condition for the

H-flux ω-flux Q-flux R-flux

i. (p1, p2, p3)
T3←→ (p1, p2, w3)

T2←→ (p1, w2, w3)
T1←→ (w1, w2, w3)

ii. (p1, p2, w3)
T3←→ (p1, p2, p3)

T2←→ (p1, w2, p3)
T1←→ (w1, w2, p3)

iii. (p1, w2, w3)
T3←→ (p1, w2, p3)

T2←→ (p1, p2, p3)
T1←→ (w1, p2, p3)

iv. (w1, w2, w3)
T3←→ (w1, w2, p3)

T2←→ (w1, p2, p3)
T1←→ (p1, p2, p3)

Table 4.1: The possible momentum and winding configurations for V with allowed and
forbidden configurations due to (4.2.38) highlighted.

H-flux background, the admissible configurations for the T-dual backgrounds are the
ones related to the admissible configurations with H-flux.

The pure momentum configurations are the most interesting ones as low-energy effec-
tive actions would be derived with respect to these. Hence we will focus on the admissible
pure momentum configurations.

We only consider pure momentum scattering in the H- and R-flux background. The
latter is defined by pure winding scattering in the H-flux background. The unknown
spacetime for the R-flux will be denoted TR3 with coordinates (X̃ a).
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4.4 Tachyon scattering amplitudes

As we have already seen in chapter 3, CFT correlation functions can be used to study
properties of the geometry of the theory. In the following we will follow the same spirit
by investigating the structure of pure momentum N -point correlation functions of the
previously discussed tachyons in the H- and R-flux background.

4.4.1 The basic three-point function and propagators

As already discussed in remark (7) the propagator (4.2.7) for the bosonic fields Xa is not
corrected in the present interacting theory up to linear order in H. The perturbation at
O(H) first affects the three-point function to be discussed and translated to the fields
X a here.

As discussed above, the basic fields in our theory are X a. The propagator with respect
to these can be derived by using that X a coincide with the free fields and the propagator
(4.2.7). Upon using (4.1.5) we find

〈
X a(z, z)X b(w,w)

〉
=
〈
Xa

0 (z, z)X
b
0(w,w)

〉

=
〈
[Xa(z, z)− 1

2
Ha

pq X
p
0,L(z)X

q
0,R(z)]

× [Xb(w,w)− 1
2
Hb

pq X
p
0,L(w)X

q
0,R(w)]

〉

= Gab(z, w)− 1
2

〈
Xa(z, z)Hb

pq X
p
0,L(w)X

q
0,R(w)

〉
0

− 1
2

〈
Hb

pq X
p
0,L(z)X

q
0,R(z)X

a(w,w)
〉
0

= Gab(z, w)

(4.4.1)

since we work up to linear order in the flux and three-point functions in the free theory
trivially vanish. Thus the propagator is the same as (4.2.7);

〈
X a(z, z)X b(w,w)

〉
= −α′

2
ln |z − w|2 δab . (4.4.2)

The perturbation can be captured by considering the three-point function of the basic
fields X . By definition of X a this can be determined by integrating (4.2.19). In order to
proceed, we need to introduce the Rogers dilogarithm [38, 39, 40].

Definition 5. The Rogers dilogarithm is defined by

L(z) := −1

2

∫ 1

0

dx

[
ln(1− z x)

x
+

ln(z x)

z−1 − x

]
(4.4.3)

for all z ∈ C \ {0, 1}.
With this definition at hand we can verify the following result.

Lemma 6. We have

1

z12 z13 z23
=

2

3
∂z1∂z2∂z3

[
L

(
z12
z13

)
+ L

(
z23
z21

)
+ L

(
z13
z23

)]
(4.4.4)

with zij := zi − zj and analogously for zij.
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Proof. First we will compute the derivative of (4.4.3). We find

dL(z)

dz
= −1

2

∫ 1

0

dx
ln(z x)

(1− z x)2
= −1

2

[
ln(1− z)

z
+

ln(z)

1− z

]
. (4.4.5)

In particular, the arguments in the claim are related as follows. Setting z12
z13

=: z we obtain
z23
z21

= 1− 1
z
and z13

z23
= 1

1−z
. Although lengthy, with these observations the verification is

straight-forward. The anti-holomorphic case will be similar.

From the lemma the integration of the three-current correlators (4.2.19) can readily
be read-off. As we have mentioned before, we want to consider pure momentum and pure
winding scattering in the H- and R-flux. Since the latter is obtained by performing three
T-dualities, the anti-holomorphic three-J correlator comes with a different sign. Thus we
have to distinguish these two cases; the corresponding basic three-point functions read

〈
X a(z1, z1)X b(z2, z2)X c(z3, z3)

〉H
= θabc

[
L
(

z12
z13

)
− L

(
z12
z13

) ]

〈
X a(z1, z1)X b(z2, z2)X c(z3, z3)

〉R
= θabc

[
L
(

z12
z13

)
+ L

(
z12
z13

) ] (4.4.6)

with θabc := (α′)2

12
Habc and

L(z) := L(z) + L(1− 1

z
) + L(

1

1− z
) . (4.4.7)

We abbreviated

〈
X a(z1, z1)X b(z2, z2)X c(z3, z3)

〉R ≡
〈
X̃ a(z1, z1) X̃ b(z2, z2) X̃ c(z3, z3)

〉R
. (4.4.8)

Analogously to (3.3.7), the combinatorics necessary for contracting exponentials with
the perturbation can be captured by

:F(X ) : :G(X ) ::H(X ) :

= exp

[∫
d2z1 d

2z2 d
2z3 G

abc
H/R(z1, z2, z3)

δ
δXa

F
(z1,z1)

δ
δX b

G
(z2,z2)

δ
δX c

H
(z3,z3)

]

× :F G H :

(4.4.9)

with Gabc
H/R(z1, z2, z3) denoting the respective correlator in (4.4.6).

Remark 11. • Since the interaction term in (4.1.3) is of third order in the fields,
evaluating correlation functions in the perturbation theory up to linear order in
the flux is completely captured by substituting (4.4.2) respectively (4.4.6) for all
possible two- and three-contractions.

• We omitted considering an integration constant for (4.4.6). As we will see later
in section 4.5, (4.4.6) implies a Jacobi identity for the coordinates which would be
non-vanishing in particular for coordinates at different points in space. Also in
view of the open string analogue this seems unnatural.
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4.4.2 The structure of N-point functions

The propagator (4.4.2) is the same as in the free theory. Thus, all the implications
from the perturbation are encoded in the contractions evaluated using (4.4.6) and a
possible phase we would like to detect can just arise from these. Given the observations
of section 4.3 we consider scattering of either of the two tachyon vertex operators

V H
i ≡ Vpi(zi, zi) = :exp

[
ipi · X (zi, zi)

]
:

V R
i ≡ Vwi

(zi, zi) = :exp
[
iwi · X̃ (zi, zi)

]
: .

(4.4.10)

We will set w|H ≡ p|R and write the superscripts of the vertex operators as superscript
of the correlator if inserted in order to keep the notation simple. In any case, the
background under consideration will be clear from the notation.

Proposition 4. The correlation function of N tachyon vertex operators in CFTH with

H- respectively R-flux background reads

〈V1 V2 . . . VN〉H/R = 〈V0,1 V0,2 . . . V0,N〉H/R
0 ×

exp

{
−iθabc

∑

1≤i<j<k≤N

pi,a pj,b pk,c

[
L
(

zij
zik

)
∓ L

(
zij
zik

)]}

θ

(4.4.11)

with the first factor denoting the corresponding free correlator an the subscript of the

second factor indicates that this has to be understood linear in θ.

Proof. By applying (4.4.9) to :V
R/H
1 . . . V

R/H
N : the claim immediately follows.

From now on we will drop the subscript θ. As before, all results have to be understood
linear order in θ.

Crossing symmetry

We formulated CFTH on the sphere S2 whose conformal Killing group is PSL(2,C).
It acts by arbitrarily permuting the operator insertions on the sphere respectively the
compactified complex plane C ∪ {∞} and has to be a symmetry in a proper conformal
field theory. Thus in particular (4.4.11) has to be invariant under arbitrary permutations
of the vertex operators. This property is non-trivial and in order to show that, we need
the following

Lemma 7. The redefined Rogers dilogarithm (4.4.7) satisfies

L(z) = L(1− 1
z
) = L( 1

1−z
)

L(z) = π2

2
− L(1− z) ,

(4.4.12)

where π2

6
= L(1) with L the usual Rogers dilogarithm (4.4.3).
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Proof. The first claim is a direct consequence of the definition of L. The second claim
follows immediately from the corresponding properties of Rogers dilogarithm L, namely
L(z) + L(1− z) = L(1) [39].

In order to show PSL(2,C) we will first consider N = 3. Introducing the shorthand
notation

{123}∓ := exp
{
−iθabc p1,a p2,b p3,c

[
L
(

z12
z13

)
∓ L

(
z12
z13

)]}
(4.4.13)

and y := z12
z13

we find the possibilities listed in Table 4.2. Any permutation changes

permutation argument L L+ L sign for
phase for Rmomenta

{123}∓ y L(y) × + ×
{312}∓ 1

1−y
L(y) × + ×

{231}∓ 1− 1
y

L(y) × + ×
{132}∓ 1− y π2

2
− L(y) π2 − iπ2θabcp1,ap2,bp3,c

{213}∓ 1
y

π2

2
− L(y) π2 − iπ2θabcp1,ap2,bp3,c

{321}∓ y
y−1

π2

2
− L(y) π2 − iπ2θabcp1,ap2,bp3,c

Table 4.2: The way (4.4.13) changes upon permutation of the operator insertions.

zσ(1)σ(2)

zσ(1)σ(3)
which can be written in terms of y; this is given in the second row of the table. All

resulting combinations of y as arguments of L can be expressed as L(y) by using (4.4.12),
listed in the third row. A possible additional constant due to the transformations can
in total be apparent only for the R-flux, i.e. ”+“-case since they appear for L(y) and
L(y) ≡ L(y) likewise. This is shown in the fourth row. The fifth row shows the sign of
the combinations of momenta p1p2p3 due to the antisymmetry of θ; we observe the sign
of L(y) for odd permutations which compensates for the sign change by θ. The last row
summarizes the collected additional phase.

Thus, upon permuting the operator insertions we have found

{σ(1)σ(2)σ(3)}− = {123}−

{σ(1)σ(2)σ(3)}+ = exp
[
i
(

1−sgn(σ)
2

)
π2 θabc p1,a p2,b p3,c

]
{123}+ (4.4.14)

with a phase for odd permutation only in the R-flux background. This seems to spoil
PSL(2,C)-invariance. But as we already encountered in section 3.3, the free propagator
in (4.4.11) imposes momentum conservation. In particular this implies p3 = −(p1 + p2).
Thus, after using momentum conservation the additional phase disappears and (4.4.11)
is a proper CFT correlation function, at least for N = 3.

Proposition 5. Upon interchanging the the i-th and the i+1-th operator in (4.4.11) we
find
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〈V1 . . . Vi+1 Vi . . . VN〉H/R = exp

[
iǫπ2 θabc

N∑

j=1
j /∈{i,i+1}

pi,a pi+1,b pj,c

]

× 〈V1 . . . Vi Vi+1 . . . VN〉H/R

(4.4.15)

with ǫ = 0 for the H-flux and ǫ = 1 for the R-flux for all N ans arbitrary permutations

can be deduced. Furthermore the phase vanishes by using momentum conservation, i.e.

(4.4.11) is PSL(2,C)-invariant.

Proof. From (4.4.11) we observe that only those triples of indices which contain i and
i + 1 are affected. The corresponding momentum terms get an extra minus sign by
restoring the ordering 1 ≤ i < j < k ≤ N . The arguments of L change as follows. With
x =

zi(i+1)

zij
and y =

zji
zj(i+1)

we have

z(i+1)i

z(i+1)j

=
x

x− 1
for j > i+ 1 ,

zj(i+1)

zji
=

1

y
for j < i . (4.4.16)

Using (4.4.12), i.e. L
(

x
x−1

)
= π2

2
− L(x) and L

(
1
y

)
= π2

2
− L(y) we obtain the desires

phase indeed only for the R-flux since the π2

2
-terms add up. All possible permutations can

be generated by a finite number of transposition. Therefore (4.4.15) suffices to deduce
phases for any different operator ordering.

For proving the last assertion we proceed inductively. We have already seen N = 3.
Suppose the phase vanishes for N − 1 and i+ 1 < N (without loss of generality). Then

θabc
N∑

j=1
j /∈{i,i+1}

pi,a pi+1,b pj,c = θabc
N−1∑

j=1
j /∈{i,i+1}

pi,a pi+1,b pj,c + θabc pi,a pi+1,b pN,c

= θabc
N−1∑

j=1
j /∈{i,i+1}

pi,a pi+1,b

(
−

N∑

n 6=j

pn,c

)
+ θabc pi,a pi+1,b pN,c

= θabc pi,a pi+1,b pN,c − θabc pi,a pi+1,b pN,c = 0 .

(4.4.17)

Thus (4.4.11) is indeed PSL(2,C)-invariant.

To illustrate the previous proposition it is instructive to consider again N = 3. For
instance, we have

{312}+ = exp
(
iπ2 θabc p1,a p3,b p2,c

)
{132}+

= exp
(
−iπ2 θabc p1,a p2,b p3,c

)
{132}+

= exp
(
−iπ2 θabc p1,a p2,b p3,c

) [
exp

(
iπ2 θabc p1,a p3,b p2,c

)
{123}+

]

= {123}+ ,

(4.4.18)

confirming the respective result given in Table 4.2.
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To summarize, we deduced the general form of N -point functions of tachyon vertex
operators (4.4.11) and explicitly showed in proposition (5) that these are proper CFT
correlation functions. We also detected a phase appearing by the comparison of different
operator insertions. Although absent after imposing momentum conservation the oc-
currence of this phase is remarkable since it arises from non-trivial properties of Rogers
dilogarithm. We will consider this the desired phase analogous to the open string case
and further elaborate on it in the next section.

4.5 Emergence of nonassociative geometry

In the preceding sections we developed CFTH and studied the structure of N -point
correlation functions in the case of tachyons. This enables us to seize the strategy
emphasized in chapter 3 and study the inference of CFT correlation functions on the
spacetime geometry.

4.5.1 Nonassociative coordinates

The purpose of the following is the investigation of algebraic properties of the coordinates
X a. In order for that we will employ the principle already observed in remark 4 in
section 3.3 to use radial ordering to deduce commutators from propagators.

The candidate for finding new properties are the basic three-point functions (4.4.6)
since the propagator (4.4.2) is not corrected linear order in the flux. Let us collect some
necessary special values for L following from the special values L(0) = 0, L(∞) = π2

3

and L(−∞) = −π2

6
of Rogers dilogarithm [40] and the definition (4.4.7);

L(0) = 0 , L(∞) = π2

2
, L(−∞) = 0 . (4.5.1)

We would like to evaluate the equal time, i.e. equal radius double-commutator of the
coordinates using (4.4.6). In particular, only the equal space double-commutator is
expected to reveal interesting features since for arbitrary points we cannot make any
particular statements about L. If we pick small numbers 0 < δ1 < δ2 while introducing
the shorthand notation X a(z) ≡ X a(|z|) since we are interested in equal space points,
i.e. the angle remains the same, we find

〈
R
{[
X a(|z|),

[
X b(|z|),X c(|z|)

]]} 〉H/R

= lim
δ1,δ2→0

〈
X a(|z|)X b(|z|+ δ1)X c(|z|+ δ2)−X a(|z|)X b(|z|+ δ2)X c(|z|+ δ1)

−X a(|z|)X b(|z| − δ2)X c(|z| − δ1) + X a(|z|)X b(|z| − δ1)X c(|z| − δ2)
〉H/R

= θabc lim
δ1,δ2→0

〈[
L
(

+
++

)
− L

(
++
+

)
− L

(
−−
−

)
+ L

(
−
−−

) ]
∓
[
c.c.
]〉

= θabc
〈[
L(∞)− L(0)− L(0) + L(−∞)

]
∓
[
c.c.
]〉

=
(

π2

2
∓ π2

2

)
θabc
〈
1
〉
.

(4.5.2)
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In the second step we employed (4.4.6) where we indicated δ1 ≡ +, δ2 ≡ ++, −δ1 ≡ −
and −δ2 ≡ −−. This is in order to illustrate the ”speed“ of convergence and whether
zero is reached from above or below (e.g. ++ is the fastest from above). The third step
then applies the limit and for the last step we used (4.5.1). Thus we have found

[
X a(|z|) ,

[
X b(|z|) ,X c(|z|)

] ]
= 0

[
X̃ a(|z|) ,

[
X̃ b(|z|) , X̃ c(|z|)

] ]
= π2 θabc .

(4.5.3)

An algebraic property encoded by at least three objects is associativity rather than
commutativity and can be characterized by the Jacobi identity

JI(A,B,C) := [A, [B,C]] + [C, [A,B]] + [B, [C,A]] (4.5.4)

for any A,B,C in some algebra. The commutators are to be understood with respect to
the (ring-)multiplication. Writing out the definition it is easy to see that that a commu-
tative as well as an associative product implies a vanishing Jacobi identity. Negating this,
a non-vanishing Jacobi identity implies the product of the algebra to be noncommutative

and nonassociative.
On the algebra of functions C∞(M) on the spacetime M = T

3 or M = TR3 we define

[
X a,X b,X c

]
:= lim

zi→z
JI(X a(z1),X b(z2),X c(z3)) . (4.5.5)

This can be computed using (4.5.3) for the indices cyclically permuted and we readily
find

[
X a,X b,X c

]
= 0

[
X̃ a, X̃ b, X̃ c

]
= 3π2 θabc ,

(4.5.6)

i.e. the coordinates of the R-flux background are noncommutative and nonassociative
(NCA).

Thus, from the basic three-point function (4.4.6) we deduced that the spacetime
(non-)geometry for the R-flux background is NCA, which is opposed to the spacetime
geometry of the H-flux.

This was first detected in [12] from studying the SU(2)k WZW model and parallel
by [13] with a different approach.

4.5.2 The CFT perspective

The methods employed in [12] to detect the NCA (4.5.6) could have also been used. We
could have expanded the coordinates X a in a Laurent series with the coefficients of the
chiral currents (4.2.4) appearing as modes. These obey the Kač-Moody algebra (4.2.23)
with different signs for the structure constant Ha

bc in the H- and R-flux case and (4.5.5)
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could have been worked-out more directly. However, the zero-modes elude this procedure
and were treated differently in [12].

The crucial thing to observe was already emphasized in section 4.3, that is, T-duality
acts on the currents (4.2.4) by

Ja(z)
T−−→ Ja(z) , J

a
(z)

T−−→ −Ja
(z) . (4.5.7)

Considering three T-dualities as we did above therefore changes

• the sign of the structure constant in the anti-holomorphic copy of the Kač-Moody
algebra (4.2.23)

H-flux: [ j
a

m, j
b

n ] = +iα
′

4
Hab

c j
c

m+n +mδab δm,−n

R-flux: [ j
a

m, j
b

n ] = −iα
′

4
Hab

c j
c

m+n +mδab δm,−n

• the sign of the anti-holomorphic three point function in (4.2.19)

and also establishes the difference between the basic three-point function (4.4.6) for
H- and R-flux. Thus all features of the R-flux background absent for the H-flux, in
particular NCA (4.5.6) attribute to the different sings for the currents (4.2.4). To obtain
a highest-weight representation of the algebra (4.2.23) one defines raising and lowering

operators

J3
n := −κ j3n , J±

n := κ
(
j1n ± i j2n

)
(4.5.8)

with κ = − 4
α′H123 as new basis since they satisfy the commutation relations desired

constructing these representations [35]:

[
J3
m, J

3
n

]
= κ2 mδm,−n ,

[
J3
m, J

±
n

]
= ±J±

m+n ,
[
J+
m, J

−
n

]
= 2κ2 mδm,−n + 2 J3

m+n . (4.5.9)

The same can be done for the second copy. Thus the Kač-Moody algebra for the fluxes
can be generated by

H − flux :
{
J3
n , J

±
n = κ

(
j1n ± i j2n

)}
×
{
−J3

n , −J
±

n = −κ
(
j
1

n ± i j
2

n

)}

R− flux :
{
J3
n , J

±
n = κ

(
j1n ± i j2n

)}
×
{
J
3

n , J
±

n = κ
(
j
1

n ± i j
2

n

)}
.

(4.5.10)

With these definitions one can check that the H- and R-flux case yield the same algebra
(4.5.9) upon using the respective Kač-Moody algebras (4.2.23). One therefore obtains the
same representations etc. for the CFT corresponding to the H- and R-flux background
and we can infer that

From the point of view of conformal field theory, the H- and R-flux backgrounds
are indistinguishable although the spacetime geometries are very different.
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Remark 12. It is interesting to note that the different relative sign between the holo-
morphic currents (4.2.4) for the R-flux is captured by the symmetry of the WZW model
on a Lie group G discussed in subsection 2.2.2 since G(z) = G−1(z) as a group (with
multiplication as group structure). We already mentioned that the usual T-dual theories
are equivalent as CFT’s on the quantum level. The last observations hint towards the
possibility of extending this statement also to the R-flux case which cannot be obtained
by applying the Buscher rules.

4.5.3 An N-ary product

So far we found a worldsheet independent phase (4.4.15) and also nonassociative coor-
dinates (4.5.6) only on the spacetime manifold for the R-flux background. Following
section 3.3 we can encode the phase by defining the triangle-N -product

(f1△N f2△N . . .△N fN) (x) :=

exp

[
π2

2
θabc

N∑

i,j,k=1
i<j<k

∂

∂xa
i

∂

∂xb
j

∂

∂xc
k

]
f1(x1) f2(x2) . . . fN(xN)

∣∣∣∣
xi=x

(4.5.11)

for fi ∈ C∞(TR3). This is the closed string generalization of the open string non-
commutative product (3.3.11).

To show that this indeed captures the possible phases it suffices to show it for the
transposition in (4.4.15). We have

(f1△N . . .△N fn+1△N fn△N . . .△N fN) (x)

≃ exp

[
π2

2
θabc

N∑

i,j,k=1
i<j<k

∂
∂xa

i

∂
∂xb

j

∂
∂xc

k

]

= exp

[
π2

2
θabc

N∑
...

i,j,k/∈{n,n+1}

∂
∂xa

i

∂
∂xb

j

∂
∂xc

k

]
exp

[
π2

2
θabc

N∑

i 6=n,n+1

∂
∂xa

n+1

∂
∂xb

n

∂
∂xc

i

]

= exp

[
π2

2
θabc

N∑
...

i,j,k/∈{n,n+1}

∂
∂xa

i

∂
∂xb

j

∂
∂xc

k

]
exp

[
− π2

2
θabc

N∑

i 6=n,n+1

∂
∂xa

n

∂
∂xb

n+1

∂
∂xc

i

]

= exp

[
− π2 θabc

N∑

i 6=n,n+1

∂
∂xa

n

∂
∂xb

n+1

∂
∂xc

i

]
exp

[
π2

2
θabc

N∑

i,j,k=1
i<j<k

∂
∂xa

i

∂
∂xb

j

∂
∂xc

k

]

≃ exp

[
− π2 θabc

N∑

i 6=n,n+1

∂
∂xa

n

∂
∂xb

n+1

∂
∂xc

i

]

× (f1△N . . .△N fn△N fn+1△N . . .△N fN) (x)

(4.5.12)
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where ≃ means that we just indicated the exp-structure. Since the derivatives com-
mute, the operator-phase can be put in front of the differential operator in the definition
(4.5.11). Choosing fi(x) = exp(ipi · x) the action of the operator-phase gives the desired
phase in (4.4.15) and thus encodes the properties of (at least) tachyon correlators upon
permutations.

The triangle-N -product has the following properties.

• Using △3≡△ we can calculate

[xa, xb, xc] : =
∑

σ∈Σ3

sign(σ) xσ(a)△xσ(b)△xσ(c)

=
∑

σ∈Σ3

sign(σ) π2

2
θσ(a)σ(b)σ(c) = 3π2

(4.5.13)

where we used that Σ3 contains three even and three odd permutations and that
θ is totally antisymmetric5. Therefore the triangle-tri-product implies the non-
vanishing Jacobi identity (4.5.6).

• As opposed to (3.3.11), the triangle-N -product (4.5.11) cannot be obtained by
successive application of the tri-product. This can already be seen in the easiest
instance;

[(f1△ f2△ f3)△ f4△ f5 ](x) = (f1 . . . f5)(x) +
π2

2
θabc [ ∂af1 ∂bf2 ∂cf3 f4 f5

+ ∂a(f1 f2 f3) ∂bf4 ∂cf5 ](x) +O(θ2)
6= (f1△5 f2△5 f3△5 f4△5 f5)(x)

(4.5.14)

as the case where one derivative acts on either f4 or f5 misses. This can be seen
as intrinsically reflecting the nonassociativity of (4.5.11).

• The triangle-products of different order can however be related via

f1△N . . .△N fN−1△N 1 = f1△N−1 . . .△N−1 fN−1 (4.5.15)

which can be readily verified. In principle, this also allows for defining a two-
product; f △2 g = f △3 g△3 1 = f g – the usual commutative product. However, we
know that this can’t be the correct one since we argued that TR3 is in particular
noncommutative.

To summarize, we constructed an N -ary product (4.5.11) on the spacetime TR3

for the constant R-flux background from which one can deduce the NCA (4.5.6) and
also the phase (4.4.15) which appears when permuting the operator insertions. This
completes our aim of generalizing the open string analysis in chapter 3 – which revealed
noncommutative geometry on D-branes – to the case of closed strings with constant H-
respectively R-flux background. For the latter we detected NCA which completes the
picture in that the boundary of the string (if any) detects noncommutative geometry
and the bulk detects NCA geometry for the simples B-fields turned-on.

5Note that [xa, xb, xc] is just the Jacobi identity.
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Chapter 5

Conclusion

After having introduced basic notions for strings moving in background fields, we re-
viewed noncommutative geometry in open string theory to emphasize the guiding prin-
ciple for the main part of the thesis. There we studied the structure of closed bosonic
string theory probing the geometric background of a constant H-flux along a flat three-
torus and probing the non-geometric R-flux background obtained after applying three
formal T-dualities to the former.

The main concern was to generalize the open string noncommutativity for a constant
B-field background to the bulk and to characterize the spacetime topology by a product
deduced from CFT correlation functions. We developed CFTH as the proper conformal
field theory describing the constant H-flux configuration up to linear order in H. For
CFTH , we identified chiral currents analogous to the currents in WZW models and com-
puted two- and three-point functions of them. From these, the OPE’s of the currents
were deduced, which revealed, as expected, the same current algebra as for WZW mod-
els with H appearing as structure constant. The three-point functions were integrated
to give the basic three-point function for the coordinates X a; they crucially depend on
Rogers dilogarithm. From the point of view of conformal field theory, T-duality acts
particularly simple as the right-moving parts of the coordinates just get reflected. This
enabled us also to consider the basic three-point function for the T-dual coordinate X̃ a

describing the R-flux background. The two three-point functions just differ by a sign be-
tween the holomorphic and anti-holomorphic constituents. However, this sign turned out
to imply a non-vanishing Jacobi identity only for the coordinates of the R-flux. Thus we
found the R-flux background to be noncommutative and nonassociative, confirming the
result in [12]. This explicitly identifies the R-flux as origin for nonassociative geometry
in closed string theory.

Furthermore, we studied tachyon vertex operators in CFTH which turned out to be
physical objects but which only carry the usual center-of-mass momentum and winding
quantum numbers upon imposing ~p× ~w = ~0. Thus we could only reliably compute pure
momentum scattering in the H- or R-flux background, where the latter is defined by
pure winding scattering in the former. Very generally, we computed N -point functions
of tachyons in the H- and R-flux background by using the basic three point functions
and the uncorrected propagator.
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We detected a non-trivial phase only for the R-flux by permuting operator insertions
which relied on the properties of Rogers dilogarithm. To reconcile with PSL(2,C)-
invariance, we observed that the phase vanishes after imposing momentum conservation.
However, the appearance of this phase reflects a genuine spacetime property since it is
independent of the worldsheet coordinates and we suppose that the somewhat ”light“
appearance just reflects the simplicity of our background. A more complicated analysis
incorporating back reactions on the geometry, i.e. going beyond linear order in the fluxes
may give a more apparent phase.

Analogous to the open string case, we defined a nonassociative product for functions
on the space corresponding to the R-flux capturing the phase. Although a straight-
forward generalization of the Moyal star-product, its properties are very different. Most
importantly, the new N -product can not be obtained by successive application of the
lower order products.

Since it already appeared in the simplest cases, the example of the open string non-
commutativity and the closed string NCA show that generic string backgrounds have
these more complicated (non-)geometries. The usual commutative and associative ge-
ometries are rather an exception.

Of course, lots of interesting issues worth studying arise.

• Generalizing the analysis to the superstring, in particular the construction of
SCFTH .

• The OPE’s we computed show logarithmic terms which may hints towards a loga-
rithmic CFT.

• We have seen that the consistency equations for string backgrounds arise as equa-
tions of motion of Einstein-Cartan theory. Since NCA geometries seem to be more
generic than the usual ones, we may ask if it is possible to reconstruct the full
consistency equations to all orders in α′ from a pure target space approach via an
nonassociative Einstein gravity.

• From a more mathematical point of view, it would be interesting to study geometry
with the nonassociative product we proposed on its own right.
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to thank Prof. Dr. Dieter Lüst who found the time for discussion beside his many duties.
My special thank is dedicated to my dear fellow Andreas Deser with whom I spent most
of the time in this project having lots of fertile discussions. I would also like to thank the
members of the string theory group at the MPI, first and foremost Dr. Benjamin Jurke,
Thorsten Rahn and Dr. Oliver Schlotterer for support in many aspects.

Last but not least I am grateful to Dr. Robert Helling being the soul of the TMP
program which gave me the opportunity to study mathematical physics at the LMU.
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