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Abstract

In this master thesis, we investigate quantum disordered spin liquid ground states of
the Heisenberg-Kitaev model on the triangular lattice using Schwinger-boson mean-
field theory. Our goal is to identify and characterize potential gapped spin liquid
ground states. After reviewing known results of Heisenberg-Kitaev model, projective
symmetry group (PSG) analysis is carried out to determine the possible mean-field
ansatzes.

We focus on the only totally symmetric ansatz and compute the mean-field pa-
rameters self-consistently. Depending on the ratio of Kitaev and Heisenberg cou-
pling, we find three spin liquid ground states separated by two continuous phase
transitions. To characterise these phases, we compute one spinon dispersions, static
spin structure factors and examine their classical limits. Close to the Heisenberg
point we find SU(2) invariant zero-flux phase known from studies of the Heisenberg
model on the triangular lattice. In the opposite Kitaev-limit, a spin liquid that has
the classical ground state of the Kitaev model as its classical limit is found. Inter-
estingly, at intermediate couplings we observe a novel spin liquid ground state with
non-zero couplings of different spin components.
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Chapter 1

Introduction

Quantum spin models are a very important and popular class of systems describing
insulating materials with localized magnetic moments. Not only are they relevant for
many materials, they are intrinsically quantum mechanical and show many non clas-
sical counterintuitive phenomena. Having a finite number of degrees of freedom per
lattice site, they are one of the simplest quantum many-body systems. This makes
them prototypical examples for studying quantum many-body phenomena such as
thermal and quantum phase transitions, as well as non-equilibrium phenomena.

Furthermore, the relative simplicity of spin systems in one and two dimensions
leads to some exact solutions that are fundamentally important and can also be a
check for numerical methods.

There are many new concepts which were developed and used in the study of spin
systems. From the Bethe ansatz methods and the Jordan-Wigner transformation in
one dimensional systems to the semiclassical spin wave theory in ordered systems,
the renormalization group studies and many others.

In the past decades, there was a lot of interest in new topological phases of
matter called spin liquid phases. They do not exhibit magnetic order down to zero
temperature [1] and have no direct classical analogs. The spin liquid ground states
are expected to occur in frustrated systems, which lack an obvious way of ordering.

Treatment of these phases naturally leads to emergent gauge fields and lattice
quantum field theory [2]. We encounter the famous confinement problem from QCD.
Studying the degeneracy of ground states on the torus or excitations, the topological
nature of the phase is seen. It is also interesting to look at spin liquids from the
viewpoint of entanglement and entanglement entropy [3]. The topological nature
has lead to a lot of interest in quantum information, hinting at the solution of the
quantum decoherence problem.

Combining the symmetries and topological nature of the phase, we encounter
new exotic symmetry enriched topological (SET) phases. They can be partially
classified using projective symmetry group (PSG) [4].

Evidently, studying spin systems combines a lot of exciting new theoretical con-
cepts from many branches of physics. Hence we decided to study a specific geomet-
rically and chemically frustrated model in this thesis.

This so-called Kitaev-Heisenberg model on the triangular lattice arises naturally
as an effective model of Iridium Mott insulators [5, 6]. The geometrical frustration
of the model is a consequence of the triangular lattice. Moreover, strong spin-orbit
coupling gives rise to direction-dependent Kitaev couplings, chemically frustrating
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the system. Previous works have shown that the model can exhibit interesting
magnetically ordered states, for example the Z, vortex crystal [7, 6]. Our approach
is to look for quantum disordered spin liquid ground states using Schwinger-boson
mean-field theory (SBMFT). Even though SBMFT does not give quantitatively
accurate results, it is a very useful tool to construct and characterize potential spin
liquid states and to analyze their qualitative behavior [8, 9]. Furthermore, it allows
us to make connections to earlier work on magnetically ordered states by studying
the semi-classical large spin S limit.

Furthermore, we used the projective symmetry group (PSG) approach to deter-
mine possible ansatzes. Later on, we focused on the only totally symmetric ansatz,
determined the parameters self-consistently and characterised resulting phases by
dispersion, static spin structure factor and their classical limit.



Chapter 2

Theoretical Background

Spin systems are a very interesting playground of theoretical physics and are also
highly relevant for real materials. They arise naturally from Mott insulators. Fur-
thermore, quantum spin systems are one of the most important examples of strongly
correlated many body systems.

The prime examples of quantum spin models are given by the Heisenberg Hamil-
tonian:

1
Hy = 3 E A JijSi - S;j, (2.1)
Z?]
i#j

where S; and S; are spin operators acting on i and j lattice sites. J;; is the exchange
coupling constant coupling these two sites. Usually the interactions are taken to be
short range, e. g. nearest neighbours interactions and site-independent:

Hy=1J) S8 (2.2)
(4,7)

where (i, j) denotes the sum over nearest neighbours.

Depending on the sign of J and the geometry of the lattice, the ground states
can exhibit well known ordered ferromagnetic (J<0) and antiferromagnetic (J>0)
phases, as shown in Figure 2.1. In the cases where the system is frustrated, the
ground state can be a novel quantum spin liquid (QSL) phase.

Figure 2.1: Ferromagnetic order shown on the left and antiferromagnetic order on
the right.
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Figure 2.2: Triangle of antiferromagnetically interacting Ising spins illustrates the
concept of frustration. All three spins can not be anti-parallel to each other. The
ground state is 6-fold degenerate.

2.1 Quantum Spin Liquids

By lowering the temperature, the thermal fluctuations will become smaller and
smaller. Normally this leads to an ordered ground state, but depending on the
problem, because of low dimensionality and small spin (ideally S=1/2) we have
strong quantum fluctuations. They can prevent magnetic long-range ordering even
at zero temperature [1], resulting in a disordered quantum state called quantum spin
liquid (QSL). We can view quantum fluctuations as a consequence of the uncertainty
principle.

In cases where the classical ground state is highly degenerate, the quantum
fluctuations become more apparent and the likelihood of having a QSL ground
state is increased. We say that the system is frustrated. A simple example of
geometric frustration is shown in Figure 2.2. Geometric frustration is usually a
consequence of antiferromagnetic exchange interactions in combination with the
geometry of the lattice, the most famous examples are the two-dimensional kagome
and triangular lattices and the three-dimensional pyrochlore lattice. A similar way
to achieve frustration is to have competing incompatible interactions, for example
antiferromagnetic nearest neighbour couplings and next neighbour couplings on a
square lattice.

The main features of QSLs are [3]: anomalously high degree of entanglement
(massive superposition) and non-local excitations (e.g spinons - quasiparticles with
spin 1/2 and no electric charge). Two-dimensional systems are especially interesting,
because they can exhibit anyonic excitations, meaning that the the exchange of two
particles gives a phase that is neither 0 (bosons) nor 7 (fermions).

2.1.1 Describing Quantum Spin Liquids
1/S Expansion

Standard approach to describe antiferromagnetic phase is the semi-classical 1/S
expansion. It uses the Holstein-Primakoff representation of the spin operators with
bosons:

S7 =8 — aal (2.3a)

7 79

ST =1/25 — dlaa;, (2.3b)
S~ =al\/25 — ala;. (2.3¢)
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Figure 2.3: Valence-bond solid is a covering of the lattice by pairs of entangled spins.
Resonating valence-bond state is a superposition of many different pairings. It can
consist of short ranged (b) or long ranged (c) pairings. Taken from [1].

One can check that the spin operator algebra is preserved if we demand [a;, a!] = 1.

The idea is to start from a classical ground state configuration and assume that
the quantum deviations are small agai < S. Then one can expand the square root
operator in a Taylor series of 1/5.

But for quantum spin liquids this approach fails, since the expectation value of
spin operator is 0 and we have 25 ~ (ala;) [10]. So we need to find another way to
describe QSLs. One possibility is to use Schwinger-Boson mean-field theory, which

will be discussed in detail in Chapter 3.

Valence-Bond Picture

We try to look at the problem from the other limit. Let us examine wave functions
built from singlets |[ij]) = \/Lﬁ(| Tidi) — | 4it))-

IVB) = |[ioia] @ [[izis]) @ |[iais]) @ .. (2.4)

Here, every lattice site appears exactly once. A pictorial representation is shown in
Figure 2.3. There are some models where valence-bond (VB) wave function is an
exact ground state or a good starting point, but they break some lattice symmetries.
That is why these states are sometimes called valence-bond solids (VBS).

The resonating valence-bond (RVB) picture [11] is a way of obtaining spin liquid
ground states out of valence-bond states. In RVB the ground state is a linear su-
perposition of many different VB states. The superposition restores the symmetries
and QSL state is formed. Because it consists of singlets we have perfect short range
antiferromagnetic correlations but no long range antiferromagnetic order.

11
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Figure 2.4: Ground state of nearest neighbour Heisenberg antiferromagnet on the
triangular lattice: 120-degree order.

2.2 Heisenberg Model on the Triangular Lattice

The Heisenberg model on the triangular lattice has been the focus of numerous
studies, using many different numerical and analytical techniques. The community
has come to the consensus that the spin 1/2 antiferromagnetic nearest neighbour
Heisenberg model on the triangular lattice exhibits a 120-degree coplanar order in
the ground state [2]. Tt is shown in Figure 2.4.

2.3 Kitaev Model on the Hexagonal Lattice

Here we quickly mention the Kitaev model on the Hexagonal Lattice, introduced by
Alexei Kitaev in 2006 [12]. Its interactions are anisotropic - two neighbours that lie
in direction vy are coupled only by S7S7. Definition of links is shown in Figure 2.5.

Figure 2.5: Honeycomb lattice and labeling of links in Kitaev model. Figure from
Kitaev’s paper [12].
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Kitaev model is given by a following Hamiltonian:

H:—JmZJff—JyZJ??—JZZan;, (2.5)

x-links y-links z-links

where 07 denote the Pauli matrices, and S7 = %

Remarkable property of this model is that it can be solved exactly. It has been
shown that its ground state is a quantum spin liquid, has a nontrivial topological or-

der and both abelian and non-abelian anyon quasiparticles are present in a magnetic
field [13].

Figure 2.6: Definition of the triangular lattice vectors a, and the coordinate systems
{z,y,z} and {2/, ¢/, 2'}. Operators S7 act along the ~ direction.

2.4 The Heisenberg-Kitaev Model on the Trian-
gular Lattice

This thesis focuses on the study of the Heisenberg-Kitaev model on the triangular
lattice, which has the following Hamiltonian:

Hyx =Ju Y Si-Sj+Jx »_ S7S), (2.6)

(i) Y1)
where S; is a spin operator located on a triangular lattice site i and the sum runs over
nearest-neighbor sites. The first term describes the usual isotropic Heisenberg inter-
action, whereas the second Kitaev interaction term explicitly breaks spin-rotation

13



Figure 2.7: The most common example of Ds; symmetry group is the staggered
ethane. On the left is shown the threefold rotation C5, whereas on the right the three
axes of twofold rotations (5 are shown. Figure taken from www.chemtube3d.com.

invariance. It couples only the v components S7 of the spin operators connected by
the link with direction a,. We parametrize the interaction by an angle

Jy = Jcos, Jix = Jsin. (2.7)

The energy scale will be fixed by J = /J% 4+ J2 = 1. The triangular lattice is

spanned by the basis vectors ax = €} and a, = —3€} + @e;, where the lattice

constant was set to unity. Additionally we define a, = —%e; — %ge’y = —ay — ay.
Here we expressed the vectors in a primed coordinate system, where €, and ey is a
pair of orthogonal vectors in the lattice plane and e}, is perpendicular to the lattice.

Spin-orbit coupling locks the primed coordinate system to the unprimed one,
which defines the orientation of the spin operators with respect to the lattice, i.e.the
component S7 points in the ~ direction, as is shown in Figure 2.6. This coordinate
system is fixed by the condition e, = (1,1,1)/v/3 and that e, projected onto the
lattice plane points into the direction of €.

The combined spin-orbit symmetry is D34 [7], which is depicted in Figure 2.7.

The threefold rotation C3 around the (1,1,1) axis act as:

Cs : (ax,ay,a,) — (ay, a,, ax), (2.8a)
Cs: (8%,5Y,5%) — (5%, 5%, 5%), (2.8b)

the three twofold rotations C5 have axes perpendicular to bonds, and the three
reflection planes lie parallel to the bonds. There are additional symmetries in spin
space Dy, that map (1, 1, 1) to the other three axes (—1,1,1), (1, —1,1) and (1,1, —1)
via three twofold rotations Cs, and the inversion generator is time reversal operator
[7].

2.5 Main Results From the Literature

In this section we will summarize the main results from the literature on the Heisenberg-

Kitaev model on the triangular lattice. Firstly, we will mention the connection to
real materials. Later on we will discuss Klein duality, folowing by known numerical
and analytical results.
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Figure 2.8: Crystal structure of BaglrTioOg. The exchange path Ir-O-O-Ir produces
direction depended coupling. Figure taken from the paper of M. Becker et al. [6].

2.5.1 DMaterials

In the recent years there was significant progress in synthesizing new materials. One
example is Iridate BagIrTiaOg synthesized in 2012 [14]. It shows lack of magnetic
ordering down to the temperature of 0.35K, even though large Curie-Weiss temper-
ature Oy ~ —130K implies strong magnetic coupling. This could point to a spin
liquid ground state. The disorder in the material was quite high, so the results are
inconclusive.

It has been argued by M. Becker et al. [6], that this material realizes the
Heisenberg-Kitaev model on the triangular lattice. In work done by Andrei Catuneanu
et al. [15], it was pointed out that there should be an additional symmetric anisotropic
exchange term F(S?Sf + 57 S¢) in the effective Hamiltonian. Moreover, it was sug-
gested that Na,IrOy could also realize Heisenberg-Kitaev model on the triangular
lattice [5].

Here we will quickly mention how we arrive at the effective Heisenberg-Kitaev
model. Details can be found in the cited work. Strong spin-orbit coupling in transi-
tion metals with only partially filled d orbitals can lead to an effective j=1/2 states
(6, 15]. In particular we have a triangular lattice of isolated Ir?* ions surrounded
with octahedral cages of oxygen, as shown in Figure 2.8. The octahedral crystal
field splits the Ir*" ions to e, and t, orbitals'.

Strong spin orbit coupling (SOC) then further splits the states into filled effec-
tive j=3/2 and half-filled effective j=1/2 states. Strong on site Coulomb repulsion
localizes these states.

We want to mention how Kitaev-type interactions come into place, as explained

1eg orbitals consist of d,> and d,2_,> orbitals, whereas t,, orbitals consist of dy,d,. and d.;.
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Figure 2.9: Left: labeling of the four sublattices 1-4, figure taken from I.
Rousochatzakis et al. [7]. Right: the lines in the figure are connecting Klein dual
points. Figure taken from the work done by M. Becker et al. [6].

in M. Becker’s PhD thesis. The superexchange spin interaction through a ligand
oxygen can happen in two main ways: 180-degree Ir-O-Ir exchange paths give rise
to the Heisenberg type interactions, because the same type of orbitals are coupled to
the oxygen orbitals. The so called 90-degree Ir-O-Ir exchange paths couple different
orbitals, and the two possible paths interfere, resulting in an anisotropic interaction

HY = —JkS)S). (2.9)

The Ir-O-O-Ir exchange path in BaglrTisOg still leads to the destructive interference
and suppression of the isotropic exchange. But due to the longer exchange paths, the
isotropic part also plays an important role. Thus we arrive at the Heisenberg-Kitaev
model on the triangular lattice.

2.5.2 Klein Duality

Duality transformations are a powerful tool in modern physics. The duality trans-
formation between two problems gives information about second problem if we know
something about the first problem. In our specific case, we can use a specific trans-
formation, to connect the model at two different couplings ¢). For instance we can
deduce the whole phase diagram if we know only the Jg > 0 part of it.

The ”four sublattice rotation trick” has been know since 2002 [16, 17]. It was
generalized by Itamar Kimchi and Ashvin Vishwanath [5], so it can be used for an
arbitrary lattice, if the lattice allows for such duality transformation.

We will focus on the triangular lattice. Following the formulation from the work
done by lIoannis Rousochatzakis et al. [7], we have labeled four sites in Figure 2.9.
The transformation maps the spins S to the rotated spins S:

S; =8, (2.10a)
Sz = (=55, -54,53), (2.10b)
Ss = (—55, 5%, -53), (2.10¢c)
Sy = (5%, -5Y,—5%). (2.10d)

The form of Hamiltonian is preserved, with the changed coupling constants (Figure

16



dual 120° order nematic phase

dual Z-
vortex crystal -

Y dual O(3) FM

Figure 2.10: Phase diagram obtained from exact diagonalization on small clusters
in work done by M. Becker et al. [6], from where this figure is taken.

2.9):
Jn = —Ju, (2.11a)
JK—>2JH+JK, (2.11b)
~ 2
== arctan# + 7. (2.11c)
—JH

In the following analysis we can concentrate on the Jy > 0 part of the phase diagram,
and later use duality to solve the dual part.

2.5.3 Numerical Results

The classical version of the problem was treated both numerically with Monte Carlo
simulations by loannis Rousochatzakis et al. [7], and analytically with Luttinger-
Tisza approximation by Michael Becker at al. [6].

The quantum problem was treated numerically using exact diagonalization on
small clusters of up to 27 sites [6]. The resulting phase diagram is shown in Figure
2.10. In this work M. Becker at al. also examined AF Kitaev point using the
density-matrix renormalization group (DMRG) on small clusters. Kazuya Shinjo et
al. [18] used the density-matrix renormalization group (DMRG) on lattices with 12
X 6 sites to study the Heisenberg-Kitaev model.

Exact diagonalization on a 12-site cluster and a Schwinger-fermion mean-field
method for the point Jy =0, Jx > 0 was used by Kai Li et al. [19].

Numerical results point towards the existence of 5 different phases mentioned
below.

Z5 Vortex phase

Classical numerical treatments of the problem suggests that Kitaev coupling close
to antiferromagnetic Heisenberg point ¢y = 0 changes the 120-degree order to an
incommensurate non-coplanar Z, vortex phase. In the long distance limit a Zs vortex
phase can be understood as a 120-degree order with a slowly varying coordinate

17
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Figure 2.11: Left: Bragg peaks of S77(q) are shifted. Blue, red and black correspond
to v=x,y and z respectively. Right: One of the three sublattices of the Zy vortex

crystal. Both figures correspond to the classical model and are taken from the paper
of M. Becker et al. [6]

frame. The Bragg peaks in the static spin structure factors? S77(q) are shifted from
the corners of BZ to incommensurate momenta in v direction, as is indicated in
Figure 2.11.

What happens in the quantum model is not enteirly clear, DMRG [18] suggests
that S77(q) are not just delta functions, and that S77(q) are different for different

-

Nematic Phase

The exact diagonalization data and DMRG point toward the extance of a nematic
phase in the vicinity of the Kitaev AF point 1) = 7. Classically, the phase at Jg = 0,
Jik > 0 has a large ground state degeneracy consisting of antiferromagnetic Ising
chains that are decoupled [7]. Actually, these are not all possible classical ground
states, the whole ground state manifold has massive SO(2) degeneracy and can be
written as [7]:

Sr = (fattnm(=1)" fyym(=1)", foza(=1)")", (2.12)

with f2 + f7 + f2 = 1. The lattice coordinates are (n,m) = nay + may and the
sets {zm }, {ym} and {z,,} are random choices of +1. These states contain collinear,
coplanar and non-coplanar states.

DMRG suggest that this degeneracy is reduced to non-extensive 3 x 2% [6, 18]
and that second nearest AF Ising chains are aligned. This was also shown ana-
lytically with quantum order-by-disorder method [20]. Numerical results suggest
that for small Jy > 0, neighbouring spin chains are aligned antiferromagnetically.
Correlations between spins are shown in Figure 2.12.

Z¢ Ferromagnetic Phase

At the FM Heisenberg point Jx = 0, Jy < 0 the model is SU(2) symmetric, and
the ground state consists of spins aligned in the same direction. At this point the
ferromagnetic order parameter can point in any direction.

2Defined in section 4 with the equation 4.14.
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Figure 2.12: < 5757 > for the nematic phase at the Kitaev AF point, the one of
the 6 degenerate states that is expected for Jy > 0. Upward red (downward blue)
arrows correspond to positive (negative) correlations. Figure from [18].

For finite Jg, this degeneracy is reduced to Zg by quantum fluctuations, i.e. six
directions along the spin axes. This has been shown by quantum order by disorder
[7], exact diagonalization and by 1/S term of large S expansion [6].

Effects of finite symmetric anisotropic term I'.

Andrei Catuneanu et al. [15] tried to explain the physics of BaglrTipsOg. The
theoretical analysis showed that an additional symmetric anisotropic term should
be included in the effective Hamiltonian in addition to the Heisenberg-Kitaev part.
It can be written as:

Hp= Y T(SrS)+5°59), (2.13)

afL(i,5)

where the sum runs over nearest neighbours. a5 L (7, j) means that on v bond we
sum over indices that are different from v, i.e. on x bond we get a term I'(S}S7 +
St S7).

They used Luttinger-Tisza method and classical Monte Carlo simulations to
show that a finite value of I' stabilizes the 120-degree order and stripy phase in a
large part of the phase diagram. Specifically, they predict that Baslr'TioOg has a
stripy ordered ground state.
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Chapter 3

Schwinger-boson Mean-field
Theory (SBMFT)

Obtaining ground states of the spin Hamiltonians on the triangular lattice is no-
toriously difficult. Schwinger-boson mean-field theory (SBMFT) provides a way of
obtaining an approximate solution to this problem. This is done by representing
spin operators with bosons, choosing a mean-field ansatz, preforming the mean-
field decoupling and diagonalizing the quadratic Hamiltonian using a Bogoliubov
transformation. Mean-field parameters need to be determined self-consistently. The
mean-field decoupling has been shown to be equivalent to the large N limit of the
symplectic group Sp(N), which is a generalization of SU(2) spin algebra [21].

3.1 Schwinger-bosons Representation

We can express the spin operators with two species by and b, of Schwinger-bosons:

S; = %bjaaagbm, (3.1)
where the indices @ and § run over up and down values (we employ a summation
convention over the repeated Greek indices), i denotes the lattice site and o,4 is a
vector of Pauli matrices. The commutation relations are preserved, but the resulting
Hilbert space is too big. To reobtain the original problem, we need to restrict
ourselves to the case where the density of bosons is equal to 2S

Ay = bl bio = 28. (3.2)

This is one of the advantages of SBMFT, namely we can formally treat the size
of spin as a continuous variable. In the large spin limit S — oo we arrive at the
classical limit, where we expect a long range ordered phase. By decreasing the
spin size, the quantum fluctuations become more and more important. For S small
enough (formally it can be smaller than 1/2), the spin liquid phase solutions are
obtained. We impose the above constraint by adding a Lagrange multiplier term
> )\i(b;-rabm — 25) to the Hamiltonian.
The description has a U(1) gauge redundancy:

bra — €i¢(r)bra7 (33&)
bl — e 0Wpl (3.3b)
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3.2 Operators for Mean-Field Decoupling

Usually, the mean-field decoupling is performed with an order parameter such as
magnetization. But spin liquid phase lacks such an obvious choice.

Normal SU(2) symmetric Hamiltonians Hy can be decoupled in terms of SU(2)
invariant link operators:

Aij = %Eaﬁbioabjﬁa Bij - %b;rabja, (34)
where i and j are neighbouring lattice sites.

Since our Heisenberg-Kitaev Hamiltonian is not SU(2) invariant, we will also
use SU(2) breaking triplet fields fzj The following representation of time reversal
operator will be used: T' = —io?K, where K is complex conjugate operator. We
have included factors of (i) in #7 fields such that they transform only by complex
conjugation under time reversal, and the expectation values transform as T(17) =
(t7)*. If the expectation value is real, then it is time reversal invariant.

The t7 fields are:

. L1

tiy = 5(binbjr — bibyy), ti = —5 ity +bibj), (3.5a)
N ;

tij = _§(binji —|- biibjT)' (35b)

Note how the change of direction affects the fields:

~ ~

The spin operator terms of the Hamiltonian can now be written as (: : depicts
normal ordering):
Si-S;=:BLB;: — AL Ay, (3.7a)
YQY _ _ iy . pt .

The equation 3.7 is not an unique way of expressing the Hamiltonian with link
operators. Using the appropriate expression is important for the validity of the
mean-field approximation. We are now ready to preform a mean-field decoupling.
The hat is used to indicate operators.

AlAG = AL Ay + AL Ay — | AP+ (Ay — Ap)T(Ayy — Ay), (3.8)

where A;; = (Aw) is the expectation value. We make our first approximation by
dropping the last term, i.e. we expand to linear order in fluctuations around the
mean-field. Analogously for the other fields.

Our Hamiltonian now reads

Hyp = (Ju+Jx) Y [(B i) Qb;[abjﬂf + BwambT |Bij|2]
(ij)

1
—Ju Z [(A ) 260éﬁbwébjﬁ + Al] 26045 J,B 'La |A2]| :|
(@)

—JKZ[( )L+ () - [ }+ZA (b bio — 25), (3.9)

YI1{i5)
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where the operators t:yj defined in the equation 3.5 have still not been explicitly
expressed. The resulting Hamiltonian is still too difficult to handle, because we
have three parameters for each bond of the lattice. Furthermore, our approach must
be self-consistent:

OFur
O\

These conditions are equivalent to demanding that we are at the saddle point of

the free energy Fyr(Aij, Bij, tzj, Ai). Next we focus on the problem of obtaining a

mean-field ansatz with the use of the projective symmetry group approach (PSG).

Ay = (Ay), By; = (By)), t3, = (11,), = 0. (3.10)

3.3 Search for an Ansatz - PSG

In our treatment we will make second approximation: we demand that the density
condition is satisfied only on average: A, (bjabia —25).

The number of mean-field parameters grows fast with system size, but we expect
them to attain just a few different values. Numerical solutions of small clusters agree
with this claim [22].

The way out of this, is to demand that the mean-field ansatz is invariant under
(at least some) of the symmetries of the original Hamiltonian H. Since our descrip-
tion still has some gauge redundancy, symmetries can act on boson operators b, b
projectively without changing any physical observables.

Systematic way of dealing with the problem of finding ansatzes was introduced
by Xiao-Gang Wen for Schwinger-fermion mean-field states [4] called projective sym-
metry group (PSG) approach. It was later developed for SU(2) invariant Schwinger-
boson mean-field ansatzes on triangular lattice by Fa Wang and Ashvin Vishwanath
9] and extended to the time-reversal symmetry-breaking chiral SU(2) invariant
ansatzes by Laura Messio et al. [23].

Here we will closely follow the procedure carried out in the literature mentioned
above and carefully extend it to non SU(2) symmetric ansatzes.

3.3.1 Gauge Redundancy

In Schwinger-boson representation we have a U(1) gauge redundancy of the descrip-
tion (in contrast to Schwinger-fermion description where it is SU(2) ):

bea — €7®by = G0 G, (3.11a)
bl, — e Wbl = Gbl G (3.11b)

Where G is the representation of the gauge group action and is given by
G = exp (2 Z biabWQ(r)> : (3.12)

This means that our ansatz transforms as

Ay — Aijei(e(i)+9(j)), (3.13a)
By — Bijei(ff)(i)w(j))’ (3.13b)
th N tzjeiw(i)w(a‘))_ (3.130)
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Physical observables are gauge independent, but our ansatz parameters A, B and
t are not. So by choosing a specific ansatz we break this gauge symmetry. Actually,
the mean-field parameter moduli are related to the scalar product of two spins and
are thus physical observables [23]. Other physical observables are the fluxes, which
we define as arguments of Wilson loop operators. Relevant examples of Wilson loop
operators are (Awfl;rkflklfllt}, <BUB];€]§,“> and (Awfl;rkfklflm This information will
be later used to distinguish different ansatzes.

We define the invariant gauge group (IGG) as the set of gauge transforma-
tions that do not modify a specific ansatz. IGG must be at least the Z, group
formed by elements (i) = 0 and (i) = 7 for all lattice sites. In some cases it can
be a bigger group. One example of a U(1) IGG would be nearest neighbour coupled
spins on a bipartite lattice without a B;; field. Then the elements of IGG are of the
form 6(i) = +6, where we have a + sign on one sublattice and a - sign on the other
with some angle 6.

3.3.2 Projective Symmetry Group (PSG)

Imagine that we have a group of symmetries X with elements X of our original
Hamiltonian. In works [4, 9, 23], which we closely follow, this is the group of lattice
symmetries. But in our non-SU(2) invariant case, this symmetry can also act as a
rotation on the spin part, which is expressed in terms of the axis of rotation and an
angle that depends on the symmetry X as 0(X):

bt x|

X: [bﬁ] — 72000 [bTX(”T ] (3.14)
rl X(r))’

with 0 = (0%, 0%, 0%)T being vector of Pauli matrices.

X acts on the ansatz as:

Aij = Ax()x () Bij = Bx@)x(j): ti; — tﬁ%&m (3.15)
Transformation of t fields is in general complicated, since we get some nontrivial
combinations of b and bf. The expression written here is only valid for our specific
model and its symmetries. Since the A and B fields are SU(2) invariant, rotations
in spin space do not affect them.

Usually we demand that if our ansatz satisfies the symmetries, it should get
back to itself by acting with the symmetry. But, having the gauge redundancy, it
is enough to demand that the ansatz is transformed to a gauge equivalent ansatz.
Then there exists a gauge transformation Gy, such that combined transformation
G x X acts as the identity on the ansatz.

The set of all transformation GxX that leave a mean-field ansatz in-
variant is called the Projective Symmetry Group (PSG) [4].

Obviously, IGG is a subset of PSG, that consists only of gauge transformations
and thus correspond to 1 € X. Thus for each element X of X, if GxX € PSG then
also G;G x X € PSG for any element GG; € IGG. It follows that:

PSG =~ IGG x X (3.16)

The PSG depends only on imposed symmetries X and on the ansatz, but not
directly on Hamiltonian. That is one of the main reasons why the PGS approach is
so powerful.
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Figure 3.1: Fixing the spin space axis to real space. The spin operator S7 acts along
the v direction. The C5 rotation rotates around z’ axis. Translations by the lattice
vectors a, and a, are generated by 77 and T5.

3.3.3 Symmetries

To find the algebraic constraints on PSG, we first need to examine the symmetries
of our Hamiltonian. The situation is a bit more complicated than in the SU(2)
symmetric case, since we need to be careful about how symmetries act on the spin
space, and how bosonic operators by, transform as spinors.

We have mentioned the point group symmetries of our problem before in section
2.4. Our ansatz has to incorporate the following symmetries:

e Translations along the two independent lattice directions ayx and ay generated
by T1 and TQ,

e D3, point group.

e We will not explicitly demand time reversal symmetry, but we will later discuss
it.

Rotations in spin space act trivially on SU(2) invariants and non-trivially on ¢7.

Generators of the symmetries act as:

Ty (r1,r2) = (r1+ 1,r2), (3.17a)
Ty : (r1,m9) = (ri,m2 + 1), (3.17Db)
Se : (11,72; Sz, Sy, S2) — (r1 — 12,715 =8y, —S5., —5%), (3.17¢)
Cs : (r1,79; 84, Sy, S2) = (=12, 71 — 19355, Su, Sy), S2 = Cs, (3.17d)
oyt (11,72; 55,5y, S:) = (TQ,Tl,Sy,Sx,Sz), (3.17e)
bl 2 (o guigey | OF
Cy : [b&“”] o7 8 (T [ g’“mrm] , (3.17)
(ri,r2)d (=ra,r1—r2)l

with the notation (ry,r2) = rax + ma, and S denotes the generator of six-fold
pseudorotation in Ds4. Translations act trivially on spin space.
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We can check how (3 acts on t” fields and see that they indeed act as expected
(that is also the reason why we have inserted the factors of (i) and -1 in fields ¢7 the
way we did):

Cy(t™) = 9, Cy(th) =5, Cy(t?) = 1. (3.18)

3.3.4 The Algebraic Projective Symmetry Groups

We want to find all ansatzes compatible with the imposed symmetries of the model.
First we find the algebraic PSG’s [4, 9, 23], then we look for all ansatzes consistent
with an algebraic PSG and specific problem. Algebraic PSG’s are determined only
by the chosen symmetry group X and the chosen IGG.

The basic idea is that the algebraic relations of the generators of X impose
algebraic relations on the PSG. There are only finitely many of them, since every
symmetry element can be rewritten as a "normal ordered” product of generators
by using these constraints. For example, consider the translations 77 and 75. The
algebraic relation on X is

T, T Ty = 1. (3.19)
When implemented by the PSG, we see:
(G, To) NG, Th) "G, ToGr, T € 1GG. (3.20)
Using 117, = 15T and 1117 1'— 1 the expression can be rewritten as:
G (T G ) (T Gy 1) (T LG (T 1) ™) = £1. (3.21)

The combination Y ~'GxY applied to site r will just act as the gauge transformation
on the site Y (r). Since translations do not act on spin space, and the gauge trans-
formation G'x just change b, — b.€**X®) we end up with (all equations concerning
phases hold up to 2m)

—on[r] — 6n [T1(r)] + ¢, [T1(r)] + by [Ty ' T1(x)] = pur. (3.22)

We will now fix the gauge as in Wen'’s original paper on fermionic PSG [4].
If we perform a gauge transformation G on Gx X € PSG, the ansatz is invariant
under Gx X:

GGxX)G'=(GGxXG X 1X, (3.23a)
Gx = Gx = (GGxXGIXY). (3.23b)

So the phases change as:
ox[r] = oclr] + ox[r] — o [X 7 (r)]. (3.24)

We partially fix the gauge

dclr] — ¢[Ty ' (v)] = ¢, [r], (3.25)
so the new G, is trivial, i.e. ¢r,(r) = 0. Equation 3.22 becomes:
o1,[T1(r)] = ¢ [r] = a7 (3.26)
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We can also fix ¢r,(r1,0) = 0, since the previous gauge fixing only fixed the gauge
in the direction of 7. Translational invariance thus leads to:

o1 (r1,7m2) = 0, ¢, (71, 72) = pr7TL. (3.27)

The gauge is still not totally fixed, since

G1: ¢(r) = constant, (3.284a)
Go . o(r) =7y, (3.28b)
Gs: o(r) = 7. (3.28¢)

do not interfere with the previous gauge fixing. We use G to fix A )—(1,0) to be
real.

The chiral PSG’s - weakly symmetric states

Upon condensation of bosons in the limit S — oo we arrive at the classical ground
states of spin Hamiltonians. It has been shown that using only strictly symmetric
(time reversal symmetric) ansatzes misses the chiral (non coplanar) classical ground
states [23]. So a more general approach is needed, where time reversal symmetry
and some lattice symmetries can be broken.

Weakly symmetric ansatzes are the ones that respect all symmetries up to time
reversal [23], and are extension of strictly symmetric ansatzes to chiral ones.

It is important to note the distinction between even and odd symmetries (parity
ex = £1). We will see the parity of the transformation by examining the transfor-
mation of fluxes. But first, let’s look closely at the subgroup of symmetries that
are necessarily even, X, € X. It necessarily contains the squares of elements since
€% = 1, but it may contain more elements.

Chiral algebraic PSG’s of X" are defined as the algebraic PSG’s of X, [23]. The
transformations that may be odd are contained in Xy = (X —&.). We will determine
all weakly symmetric ansatzes, by examining the transformations of A on the fluxes
of the ansatzes compatible with chiral algebraic PSGs.

The group of necessarily even symmetries X, necessarily contains squares of the
generators T2, T%, Sz = C3. To determine the rest of the elements, we first list the
algebraic relations in A

T, T T =1, (3.29a)
o2 =1, (3.29b)

S =1, (3.29¢)

S T STy = 1, (3.29d)
T5Ss = S¢T1 Ty, (3.29)

Tio, = 0,15, (3.29f)

Se0,56 = 0. (3.29g)

The only difference in our derivation compared to [23] is that we have a pseudo
rotation generator Sg that also acts on the spin space instead of just normal rotation
on the lattice. But at this step, this does not make any real difference. From the
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above equations we can get some more information on the parity € of the transfor-
mations:

€T, €Sy = €S6ETy s (3.30a)

€T5€S = €S4€TLET,- (3.30b)

Thus ey, = e, = 1 and A, is generated by 77,75 and Cs5. It has the following
algebraic relations:

T, T LT =1, (
Cs =1, (3.31b
CsTCy' Tyt =1, (3.31c
CyMTy T = o5t (3.31d

From above, we obtain the algebraic constraints on phases:

b1y (r1,72) = 0, (3.32a)
o1, (r1,72) = prmry, (3.32b)
Gy (r1,72) + ¢y (Cs(r1,12)) 4 ¢, (C5 (11, 72)) = por, (3.32¢)
— o1, (r1,72) — ¢y (Ty ' (r1,72)) + by (11, 72) = pa, (3.32d)
O, (T7(r1,72)) + by (To T (r1,72)) — Gy (r1,772)
+¢1,(T2C3(r1,72)) = parr. (3.32¢)

We finally completely fix the gauge by using G3 to set p3 = 0 and G4 to set py = 0.
On the triangular lattice, which has one site per lattice cell we obtain (equation
3.32¢) the condition that allows us to simplify above equations to:

o1, (r1,m2) = 0 (3.33a)
o1, (r1,72) = P77y (3.33b)
ri+1 km
Pcy(r1,7m2) = p1 <7"2 — 5 ) + 3 (3.33¢)

with py = 0,1 and k = +p, = —1,0, 1.

Now we search for all ansatzes of our decoupling consistent with X,. We have
already fixed A(o0)-(1,0) = A to be real. Further, we fix the bonds tf, ;) o) = tei®
and Bg,0)-(1,0) = Be's . All other bonds can be deduced using PSG. The result is
presented in Figure 3.2. If p; = 1 the unit cell is doubled and the treatment of the
problem is more cumbersome.
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r =

Figure 3.2: Ansatzes respecting the symmetries on the triangular lattice. All arrows
carry B;; parameters of modulus B and argument ¢p, A;; parameters of modulus
A and argument 0 on red arrows, k%’r on blue ones and k%’r on green ones. t7 fields
have amplitude t on v bonds and phases ¢; + k:%”n(y) where n(y) is 0,1,2 on red,
blue and green arrows. On dashed arrows, A;;, t;; and B;; take an extra p;7 phase.
The figure is taken from the paper written by Laura Messio et al. [23], and the
information about t fields has been added.
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Aort

Figure 3.3: Fluxes used to determine the additional constraints. Depending on
the position and orientation of the bonds, there are additional phase factors, as
explained in Figure 3.2.

Transformations of Fluxes

Until now, we have taken into account only the symmetries &,. The rest of the
symmetries Xy will be investigated using transformations of fluxes.

In the addition to fluxes Arg(AijA;kAklA*) and Arg(B;; B, Byi) used in [23],
we use an additional independent flux Arg(A;;AjtAj;). The fluxes are shown in
Figure 3.3. Transformations under pseudo- rotatlon S and reflection o, give some
new constraints:

2%n(1l — es,)/3 = 0, (3.34a)
2%kr(1+ €,,)/3 = 0, (3.34b)
op(1+€sy) = i, (3.34c)
op(1 —€5,) = p1m, (3.34d)

¢t(1 ~es,) =0, (3.34¢)
&i(1 — €5,) = 0. (3.34f)

The equations 3.34e and 3.34f are our new addition in comparison with the paper
[23] written by L. Messio et al. For different parities we get the following results:

€ss | €0, | D1 k o5 o
1 1 0 0 0,7 any
-1 -11 0 0 0,7 0,7
1 |-11]01]|-1,0,1|pi7/2,pi7/24 x| Oy
-1 ] 01 0 0 any 0,m

The time reversal operator acts on the ansatzes only by complex conjugation (we
have specifically chosen such f;yj operators). Nonzero expectation value of t fields
break the SU(2) symmetry of the problem, so the only totally symmetric ansatz is
the one with p; =0, £ = 0 and ¢; = 0. In the following we will focus mostly on this
ansatz.

If we allow for negative fields, then phases 0 and 7 correspond to the same ansatz.
The list of all possible weakly symmetric ansatzes is shown in Table 3.1
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Ansatz | py | k | ¢ | ¢
1 0 0 0 0
2 0 0 0 | any
3 0 0 |any | O
4 0-1,1| 0 0
) 1 0 [7/2] O
6 1 |(-1,1|#x/2] 0

Table 3.1: Summary of all possible weakly symmetric PSG’s. Here we allow for
negative fields so phases 0 and 7 correspond to the same ansatz. Ansatz 1 respect
all symmetries in X and also time reversal, ansatz 2 breaks time reversal symmetry,
but all symmetries in X are even. Ansatzes 3-6 are weakly symmetric and correspond
to chiral states. Moreover, ansatzes with p; = 1 have a doubled unit cell.
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Chapter 4

Treatment of the Totally
Symmetric Ansatz

In this chapter we will investigate the totally symmetric ansatz, which is charac-
terized with p; = 0, k = 0, ¢, = 0 and ¢, = 0. We will derive how to determine
the mean-field parameters self-consistently. Furthermore, we will explain how to
calculate characteristic quantities: one spinon dispersion and static spin structure
factor.

4.1 Fourier Transformation

After we have selected the ansatz, we can preform a Fourier transformation to
simplify Hy;r. We will use the following definition of the Fourier Transformation:

1 . 1 .
bio = ——= Y e by, bho = —— Y ™Mby, (4.1)
e g

The normalization of ¢ is thus

Z €i(k7k0)ri = 5k,k0N- (42)

With the use of the ansatz, we simplify our H,;r by going to momentum space.
A detailed calculation is presented in Appendix A.1. We rewrite our Hy;p using
the Nambu spinor Uy = (b, biy, bT_kaT_k L)T. The density term can be expressed as

follows:
1
2 bl b = §k Denbia = 5 }k (Beobica + b ka)

1 2N
- D (babra + b-rabl ) — R (4.3)
k

where we used the commutation relations [bka, bL/ 5] = 0k i 0ap to get the form of the
Nambu spinor, the factor of two comes from the two species of bosons 1 and |. We
write Hyp as:
Ly =~ > Ul Hn + 3Tl AP + 3Tkt = 3(Ju + Ji )| B — A1+ 25).
N N &=k

(4.4)
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For our totally symmetric ansatz, the matrix Hy has the following form:

A (Jg+ Jk)

2T 2
1

Hy, = §(iJHA(sin(k1) + sin(kq) + sin(ks)) — iJxt cos(ks)),

Hi; = B(cos(ky) + cos(ks) + cos(ks)),
H23 = %(—ZJHA(Sln(kl) + Sil’l(k’g) + Sil’l(k’g)) — ZJKt COS(kg)),
Hys = %K(z Feos(ky) — tcos(ks)), (4.5)

J
Hyy = 7K<_Z t cos(ky) — tcos(ks)),
Hjy = Hys, Hy = Hiy, Hgy = Hij, Hyy = Hj,y,
H12 = 07 H21 = 07 H34 = 07 H43 =0.

With by = k- ax = ky, ks =k -ay, = — 1k, + Lk, and ky = —k; — ko

4.2 Bogoliubov Transformation

After mean-field decoupling, we are left with a quadratic Hamiltonian, which can be

diagonalized by a Bogoliubov transformation using a SU(2,2) transformation matrix
Py defined via:

Wi = (bicy, bacy, bl bl ) (4.6a)
'k = (71, Yx2s Wikﬂikz)T7 (4.6b)
Wy = Ak, (4.6¢)

where the ~; operators describe bosonic Bogoliubov quasiparticles, i.e. bosonic
spinons carrying spin 1/2. We need to find matrices Py and a diagonal matrix €
such that:

Pl H\ Py = Plr*p = 1%, (4.7)

with 7% = diag(1,1,—1,—1). The second condition is necessary to maintain the
commutation relations in the new variables. From this follows:

Bt (77 Hy) P = 776 (4.8)

We have diagonalized the matrix 7% Hy using computer software and obtained a
diagonal matrix €2 with two different eigenvalues that are twice degenerate. To
get the transformation matrix P in the right form, we needed to be careful with
the order of the rows and normalization. Since we diagonalized the problem, our
vacuum is annihilated by ~:

Yka|GS) = 0. (4.9)
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Figure 4.1: First Brillouin zone of the triangular lattice. Reciprocal primitive vectors
G; and G4 as well as position of I', M and K points are shown.

The eigenvalues correspond to half of the spinon excitation energy and take the
form:

) 1| (A e+ JK)B)2 — J2 A% — J2t%(cos® ky + cos? ky + cos? k)
Wi1,2 =3 ~ ,
2\ F2|Jg Ik A|\V/12(cos? ky + cos? ky + cos? k)

(4.10)
A = A(sin(ky) + sin(ky) + sin(ks)),
B = B(cos(k;) + cos(ks) + cos(ks)).

We again used the notation k; =k - ax, ks = k-ay and ks = —k; — ks.

Since the order of 7y is reversed in front of the last two eigenvalues, we use the
commutation relations and %H M F becomes:

%HMF I Z <2w1 )’ykl’yld + 2w (k) 'Yk2'Vk2> N Z ( )+ waf )>

- 3JH|A|2 + 3|t = 3(Jy + Jg)|BI* — A1 + 25). (4.11)

The thermodynamic limit is taken and summation is replaced by integration. The
measure can be deduced from

1 1
1= = d?k, 4.12
Nsites 2 VOIBZ /BZ ( )

where | » denotes the integration over the first Brillouin zone, which is a hexagon
and is shown in Figure 4.1.

4.3 Satisfying the Self-Consistency Relations
We need to determine the values of the mean-field parameters in order to satisfy
self-consistency equations. This is equivalent to finding the saddle points of the free

energy Fyr(A, B,t,\) and in our case the mean-field energy of the ground state,
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which can be easily shown by demanding that the first derivatives of Fy/p(A, B, t, \)
vanish. The ground state energy reads:

E d?k
]]\\/;F _ /BZ Vol (wl(k) + wg(k))

+3Jg| AP 4 3Tk |t]* — 3(Ju + Jr)|B]* — A1 +289). (4.13)

For this task we use Mathematica. Because we need to compute the energy at many
different points, it is important to optimize the program.

The integration over the first Brillouin zone is the most costly operation. This
is why we used fast Cuhre integration routine from Cuba package [24]. It was
considerably faster than all Mathematica’s integration routines.

In our case we found the relevant saddle point by maximizing Fj;r with respect
to B and A\ and minimizing with respect to A and t. We tried different routines, and
ended up using Mathematica’s FindMaximum and FindMinimum functions. These
are searching only for local maximum/minimum, which we checked that was also
the global one by using different starting values.

It can happen that by decreasing A, eigenvalues become complex at some mo-
menta before Ejp reaches a local maximum. This means that the excitation gap
closes at some momenta and a Bose-Einstein condensate is formed leading to a
state with long-range magnetic order. In this case A is set by the point where the
eigenvalues become complex (for some momenta).

To further speed up the program, we tested if the eigenvalues are real at the
momenta, where the minima is most probable to occur, i.e. I', M and K points. If
the eigenvalue was complex, we did not need to perform the integration.

4.4 Static Spin Structure Factor

We want to characterise resulting states. To accomplish this, it is illustrative to
compute the static spin structure factor and its components. They are the Fourier
transform of correlation functions (S¢(0)S%(r)) and can be measured experimentally
by neutron scattering experiments.

Sla) = 1 D(CS[Si- S8 = 57(q) + 5(a) + (). (4.14)
i,J
In addition we compute off-diagonal elements of the spin correlation tensor
S(q) = % D (GS|S¢SY|GS)etalri), (4.15)
i,J
We express the terms using Schwinger-bosons:

1

5 q) = el D> (blasbiepe™ TV, 0 binse™ I TETD) (4 16a)
i,j,k,k/,kli,k///
1 C
= IN > (0ot sbact b, 055D —as)- (4.16D)
k. k!’
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Using Bogoliubov transformation matrix Py, we express the bosonic operators by in
terms of new bosonic operators 7y, and ”yT_k. Since 7, annihilate the vacuum, we can
evaluate the expression using Wick’s contractions, which is equivalent to performing
normal ordering and collecting the ”constant” terms.

1

5a) = 3 DUk + (Pl k) (417)
k. k”

((Pita) s1 01 + (Pita) g2 kg2 + (Pk-i-Q)ﬁ?)’YT—(k—s-q) + (Pk+Q)/34’7T—(k+q),2)
(P )it s + (P )i tor s + (Per)sgv—101 + (P )ouv-1cr.2) 0%
((Pk”—q)§3’)/g,k//+q)7l + (Pk”—q)54’yg,k//+q)72)>-

We obtain contributions 0_k k7, 0k k+q and dqo:

C 1 C (6
5 q) = IN Z (<kaa0-a5b(k+Q)5bT—k'yo-'Cyl5b—(k+Q)5> + <bleUaﬂb(k+q)/3b£+q70§l5b(k)6>>
k
+ L5q. (4.18)

The term L dq0 1s proportional to < S¢ >< S§¢ > and is thus zero, when the
state is in spin liquid phase. Evaluation of Wick’s contractions leads to many terms.
To compute them, we made use of the excellent Mathematica package for symbolic
calculations with second-quantization-operator expressions SNEG [25]. The result-
ing expressions have the form:

1

S(q) = Vo, /kode(Pk,Pk-&-q), (4.19)

where f°( Py, Pctq) is a complicated function of around 50 terms consisting of the el-
ements of the transformation matrices Px and Pxiq. An expression for f**(Px, Px+q)
is given in the appendix A.2.
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Chapter 5

Results and Discussion

It this chapter we present the results of our approach. First, we show solutions
of the self-consistency equations, i.e. the saddle points of Fy;r. We argue that
they correspond to three distinct phases. Then we characterise these three phases
by looking at the spinon dispersion relations and the static spin structure factors.
Furthermore, we look at the non-diagonal parts of the spin structure factors S°¢(q)
defined before. Lastly, we present the results of an analysis of the classical limit.

5.1 Self-consistent Mean-field Parameters

Self-consistent mean-field parameters are obtained by searching for the saddle points
of Fyr as explained in Chapter 4. To make sure our algorithm for the determination
of the saddle points works as expected, we test it at the Heisenberg (Jx = 0) point.
The resulting energy agrees with the value provided in Subir Sachdev’s paper [8] !.

The resulting values of A, t and B at the saddle points are shown in Figure 5.1.
We identify three phases. In SL1, the fields A and B are nonzero, SL2 has all three
parameters nonzero, SL3 only has the field t different from zero. The resulting phase
diagram is shown in Figure 5.2.

We notice that the region of SL2 grows with the spin size S. If we increase S
further from 0.2, at least for some values of ¥ the spinon gap closes and a Bose-
Einstein condensate is formed, indicating a magnetically ordered state.

For further characterization, we will focus on six saddle points at S = 0.14 shown
in Table 5.1.

Phase | 9 A t B A Eyvr
SL1 0 0.181 0 -0.0528 | 0.4025 | -0.0901
SL2 | 0.6 | 0.176 | 0.0389 | -0.0476 | 0.303 | -0.0701
SL2 | 0.8 | 0.132 | 0.117 | -0.023 | 0.281 | -0.0635
SL2 [ 0.85 | 0.109 | 0.135 | -0.0147 | 0.276 | -0.0634
SL2 | 0.9 | 0.0687 | 0.154 | -0.0055 | 0.272 | -0.0645
SL3 0 0.165 0 0.338 | -0.082

bl

Table 5.1: Six saddle points at S=0.14 used for further discussion.

1Sachdev used the decoupling S; - S; = 5% — 2 : A;rinj : with only A fields, so for this test we
needed to change Jy — 2Jx, add constant term JgS? and set B fields to zero.
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Figure 5.1: Values of At and B for different values of ¢ = arctan(Jg/Jy) at three
values of spin size S. In all three cases we have a finite excitation gap and thus a Z,
spin liquid phase.
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Figure 5.2: Phase diagrams for three values of S.

5.2 Dispersion

The spinon dispersion is not a gauge invariant quantity, nevertheless it is an inter-
esting object to look at. When the value of S is increased, the excitation gap closes
at some values of q in the Brillouin zone. Further increasing the value of S, we
develop Bose Einstein condensate at these points, which then determine the Bragg
peaks of static spin structure factor.

The typical lower branch of dispersions are shown in Figure 5.3. The minima of
the dispersion in SL1 are at the K points in the corners of the first Brillouin zone,
which is consistent with previous results [8], resulting in 120-degree order for larger
values of S. The minima in SL3 occur at the M points in the middle of the edges of
the first Brillouin zone and at I" point at 0.

In a region of SL2 close to SL1 the minima stay in the corners of the first
Brillouin zone. Then, by increasing 1, the minima start to move along the edge
of the first Brillouin zone and are thus located at incommensurate momenta. For
some values of ¥ and S, the global minima jump to zero momentum, which we
believe to be an artefact of the mean-field approximation. It would imply a spinon
condensate at I' point that correspond to ferromagnetic state, which is not expected
for antiferromagnetic couplings Jy and Jx. We think that B fields are overestimated,
decreasing the value of B fields by a few percent shifts the absolute minima back to
incommensurate momenta.

All these situations are very close in energy and parameters, thus the mean-field
analysis is probably not enough to always accurately determine the position of the
minima in SL2. Indeed, we will later show that dispersion minima at incommensu-
rate momenta are in accordance with the expected magnetic order in the classical
limit.
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Figure 5.3: Lower branch of the spinon dispersion w_ (k) for the six points shown in
Table 5.1. The black hexagon marks the boundary of the first Brillouin zone. Note
that the local minima shift from the corner of the first Brillouin zone (K point) in the
SL1, through incommensurate momenta and I" point (q = 0) in SL2 to the middle of
the edges of the first Brillouin zone and zero (M and I points). The global minimum
in SL2 can be either at K point, [ point or incommensurate momenta depending on
Y and S (see main text for a discussion).
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Figure 5.4: Diagonal elements S®*(q) at ¢ = 0.85. We see that diagonal elements
SY(q) and S**(q) are simply S**(q) rotated by +%.

5.3 Static Spin Structure Factor

The static spin structure factor can be measured directly in neutron scattering
experiments. In the spin liquid ground state neutron excites two (fractionalized)
spinon excitations, and the structure factor is continuous. On the other hand,
neutron excites only one magnon (spin wave) in the spin ordered phase, so we have
sharp Bragg peaks in the spin structure factor.

We have derived how to compute the static spin structure factor in the section
4.4. In Figure 5.5 we show the results for the zz-component S**(q) of the static
spin structure factor for the six different saddle points listed in Table 5.1. Notice
that the maxima change the position to incommensurate momenta in the SL2 phase.
The other diagonal elements S*¥(q) and S**(q) are simply S**(q) rotated by +% as
shown in Figure 5.4.

The total static spin structure factor can be computed from the diagonal elements
by

S(q) = S™(q) + 5*"(q) + S*(a), (5.1)

and is shown in Figure 5.6. Here, the maxima stay at commensurate momenta in
all phases, since the maxima of the diagonal elements S“*(q) are broad.

We also note that even though the total magnetization (), S;) = 0 in the spin
liquid ground state per construction, the variance of the total spin ((}°;S;)?) is
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non-zero in the SL2 and SL3 phase. We see that this indeed holds by observing
non-zero structure factor at zero momenta in SL2 and SL3 phases. This is because
the ground state is not a total spin singlet, which is in accordance with non-zero
expectation value of the triplet fields fv‘

Off-diagonal Elements

The striking difference between the SL2 phase and the other two phases is that
the phases SL1 and SL3 have vanishing off-diagonal elements S%(q) defined in
equation 4.15, but they are non-zero in SL2.

These non-zero off-diagonal elements indicate correlations of different spin com-
ponents. Even though the matrix S%(q) can be diagonalized for a specific mo-
mentum q, it can not be diagonalized for all momenta at once using the same
transformation matrix. The real and imaginary parts of the off-diagonal elements
Se(q) for the fourth point (¢ = 0.85) in Table 5.1 are shown in Figure 5.7.
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Figure 5.7: Real and imaginary part of off-diagon llmntS() SL2 computed
for the fourth point (¢» = 0. 85) in Table 5.1. Note that these non-zero off-diagonal
values of S%(q) imply correlations of different spin components in the SL2 phase.
By contrast, the off-diagonal elements vanish in the SL1 and SL3 phases. Fur-
thermore, we see that the maxima of the imaginary part are at incommensurate

momenta.
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Figure 5.8: Minima of dispersion with respect to S at ¢ = 0.9. We see that the gap
closes at S ~ 0.32.

5.4 Condensation and Classical Limit

In this section we will investigate the condensed state. When the parameter S
increases, the minima of the excitation gap closes at some S, as is shown in Figure
5.8.

Further increasing S adds bosons in the zero modes and Bose-Einstein condensate
forms, i.e. we get a nonzero expectation value of (b). This means that we get
a nonzero ordered magnetic moment. The size of the ordered magnetic moment
(density of Bose-Einstein condensate) is determined by S through the saddle point
conditions.

We know that condensation happens at zero modes momenta k¢;, where i runs
over all nonequivalent zero modes in the first Brillouin zone. This in turn determines
the possible positions of Bragg peaks as the differences of zero mode momenta
kei — Kej as is schematically shown in Figure 5.9 for the SL2 phase. The eigenvectors
of 7% Hy in the Bogoliubov transformation matrix Py contain additional information
about the structure of the ordered phase.

5.4.1 Classical Limit in SL1 phase

The SL1 phase is the phase appearing in the Heisenberg model on the triangular
lattice. The classical limit has been derieved by Sachdev [8] and by Fa Wang and
A. Vishwanath [9].

Condensation happens at the corners (K points) of the first Brillouin zone. There
are only two distinctive points k. = (47/3,0) and —k., the rest of the corners can
be reached by reciprocal vectors G; and Gg shown in Figure 4.1. The structure of
the condensate is determined by the eigenvectors of the matrix 7% Hy, which are the
columns of the Bogoliubov transformation matrix F_:

V1 (ke) = (4,0,0,1)7,
Yo (ke) = (0, —4,1,0)7. (5.2)
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Figure 5.9: Schematic picture showing how in the SL2 phase the positions of zero
modes (orange) at k¢; determine the possible positions of Bragg peaks of the static
spin structure factor (blue) as the differences k¢; — ke;.

The condensate has thus the form:

bch iSl
b, —18
( pt ' ) = s11(ke) + s2¢a(ke) = s ? (5.3)
—ket 2
bT—kc¢ S1

with only |s1|* + |sa|* determined by the size of spin S. The spin expectation value
in real space has the following form:

ber N\ [ isie’ReT 4 szemier \ fc etker — jogeiker 5 4
<(br¢)> - (—iSQGikcr + STe—ikcr) - ( C;(Eikcr + Cﬂ{e—iker ) ( . )
where we rewrote the constants as ¢; = s; and ¢y = 753 to match the expression on
page 9 in the reference [9].

The ordered magnetic moment can easily be calculated from x as S(r) = %I'TO'SL'.
When plotted, we recognise the 120-degree order shown in Figure 2.4. The freedom

of choice of ¢; and ¢y is just a consequence of the global SU(2) symmetry, i.e.
changing them rotates the plane in which the spins order.

T

5.4.2 Classical Limit in SL3 phase

The treatment of classical limit in SL3 phase is quite a bit more cumbersome, because
now we have four nonequivalent zero modes at three nonequivalent M points and
at [ point as shown in Figure 5.10. Furthermore, the Hamiltonian is not SU(2)
symmetric. The zero modes occur at the following nonequivalent momenta:

il
N

7 (5.5)

ch = (Oa O) kc1 = (07

kc2 = (7T7 _) kc3 = (7T7 -
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Figure 5.10: Dispersion in SL3 at the condensation point. The distinct eigenmodes
are labeled by 0 to 3.

There are two eigenvectors of 77 Hy_, for every zero mode:

1\7
¢02 = (\/67 6 707 _2> 5 (56b)
—1—-4i —i 1 \"
= ,—,—,0) 5.6¢
o= (575 75 (5.6c)
—i =144  1\"
¢12 = (_67 \/6 ) 7%) 9 (56d)
1+i —i 1 \"
¢21: < \/6 7_67_2>O> 5 (5 66)
—i 1—i  1\"
¢22 - <_67 \/6 a07 _2 ; (56f)
—1+4i i 1 \"
¢31 - ( \/6 7%7 _27()) 9 (56g)
i —1—i  1\"
Y3z = 7 6 ,0,—2 (5.6h)
Accordingly, the condensate has the form:
ka .
b
( ka:T ) = Z (cathin + ciathin) Ok ey (5.7)

In contrast to the SL1 case, we now have 8 complex constants ¢;; determining the
spin order. In SL3 case the points at k¢ and —k¢; are equivalent as they are
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connected by the linear combination of the lattice reciprocal vectors G; and Gs.
For the description to be self-consistent, (bx o) = (b—k ) must hold, which gives 4
nonequivalent equations:

i1 (Vin)s + Cip(Via)s = cin (i )1 + cia(thi2)1, (5.8)

where i goes from 0 to 3.

After taking these equations into account, we are still left with four complex
parameters, that need to be fixed to obtain the spin order parameter. To fix them,
we would need to go beyond mean-field description in order to take the interactions
between zero modes into account.

We avoid this problem by making some reasonable assumptions about the con-
densate. Firstly, we demand constant density of condensed bosons at each lattice
site, meaning that the ordered spin length is the same at each lattice site. Since
the order is commensurate, we have only four distinctive sites and this can be done.
This assumption definitely holds in the classical limit S — oo.

Secondly, we demand zero total magnetization. Thirdly, we demand that either
all four or two modes have the same occupancy. The total occupancy is determined
by the spin size S through 7 (|ea|? + |cio|?) = 25. We have numerically solved
for these constraints, the result is shown in Figure 5.11. Because of Dy, degeneracy
in the spin space, similar states can also be obtained that are ordered in different
directions. The ordered spin momentum can be written as:

S(n, m) = % (=10, (~1)")
S(n,m) = % (=™ (=)™ )", (5.9b)

where in the first expression all four modes have the same condensate density,
whereas in the second expression only two modes 1 and 2 or 0 and 3 are condensed
with the same density and the other two are equal to zero. Here, we labelled sites
on the triangular lattice by the integers n and m via r = nax + may, = (n,m).
Note that both solutions belong to SO(2) degenerate ground state manifold of the
classical Kitaev model on the triangular lattice with the energy Ey = —N Jk.

g (5.92)

5.4.3 Classical Limit in SL2 phase

Lastly, we discuss the classical limit in SL2 phase. Assuming the condensation hap-
pens at six distinct incommensurate momenta, this determines the possible positions
of Bragg peaks (see Figure 5.9). This is in accordance with the classical Zy vortex
phase, which is the ground state of the classical Heisenberg-Kitaev model for Jz > 0
and Jx > 0 [7, 6].

Because the condensation happens at six distinctive points, there are too many
parameters and not enough constraints to determine the structure of the condensate
and magnetic order parameter within mean-field theory. The interactions between
zero modes become important.

However, because our ansatz is real and thus time reversal symmetric, the clas-
sical limit (if it exists) corresponds to coplanar state [23], which is different from
non-coplanar Z, vortex phase. This is apparent by looking at the scalar spin chirality

o1



SX

Figure 5.11: The ordered spin configurations from SL3 phase. Top: we condensed
all four modes with the same densities. Bottom: Condensed modes 1 and 2 with the
same density. For better visibility we have plotted S7 along the 7/ direction, and
not along the ~ direction (v =x,y,z) shown in Figure 2.6.
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defined for spins on an elementary triangle

All in all, the classical limit in SL2 has proven to be inaccessible using only
mean-field approach.

5.5 Discussion

We have shown that we can use the Schwinger-boson mean-field treatment to study
the Heisenberg-Kitaev model on the triangular lattice. Using a simple symmetric
ansatz we get a phase diagram consisting of three spin liquid phases for small spin
size S. Condensation occurs at S =~ 0.3, meaning that we expect the physical spin
one-half system to have some ordered spin signature, if the quantum effects are not
underestimated. But proximity to spin liquid still plays an important role.

The SL1 phase occurs close to the Heisenberg point and it has the 120-degree
order as its classical limit. This agrees with previous results of the Heisenberg model
on the triangular lattice.

Increasing the antiferromagnetic Kitaev coupling Ji leads to the SL2 phase,
which has interesting properties. The minima of the dispersion relation can change
the position to incommensurate momenta. This could imply that the classical limit
of SL2 leads to a Zs vortex crystal phase, but we were not able to show this using our
simple methods. The off-diagonal elements of S% were non-zero in SL2, in contrast
to SL1 and SL3. Furthermore, diagonal and off-diagonal elements have their maxima
shifted away from the corner points in the first Brillouin zone to incommensurate
momenta.

The SL3 phase has the minima of the dispersion relation at M and I' points. We
have shown that in the classical limit (under reasonable assumptions) we recover
the classical ground states of the Kitaev model on the triangular lattice. The S is
again diagonal, but with different values on the diagonal.

Ansates with p; = 1 have a doubled unit cell resulting in increasing the complex-
ity of the problem, since Hy is now 8 x 8 matrix. But, we have quickly looked at
other p; = 0 ansatzes. The k =1, ¢ = 0 and ¢, = 0 ansatz showed only two spin
liquids, separated by a first order phase transition. Interesting was an ansatz with
k=0, ¢ = 0 and ¢p determined by a saddle point, since this ansatz can change
chirality continuously y;;; ~ Im(BZJB]kBkl) = |B|sin(3¢p). But the saddle point
condition set ¢ = 0 or |B| = 0 depending on if we looked at maximum or minimum
of the free energy with respect to ¢g.
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Chapter 6

Conclusion and Outlook

We investigated the Heisenberg-Kitaev model on the triangular lattice using the
Schwinger-Boson mean-field approach for antiferromagnetic Heisenberg and Kitaev
couplings focusing on the potential quantum disordered Zs spin liquid ground states.

After reviewing the most important theoretical background, we introduced the
model and performed the mean-field decoupling. Then we spent quite some time
describing a systematic way of obtaining the mean-field ansatzes with the use of the
projective symmetry (PSG) group approach. We extend it to non-SU(2) symmetric
case of Heisenberg-Kitaev model and obtained weakly symmetric ansatzes.

In the following, we focused on the only totally symmetric ansatz. We preformed
a Bogoliubov transformation to diagonalize the problem and then searched for the
saddle points of free energy to determine the mean-field parameters self-consistently.
Furthermore, we derived the one spinon dispersion and static spin structure factor.

In chapter 5, we presented the results of the simplest ansatz. We noticed three
spin liquid phases separated by a continuous quantum phase transition, which we
characterised. The SL1 phase was shown to be the spin liquid phase discussed by
previous works for the Heisenberg model on the triangular lattice. The SL2 phase
showed interesting dispersion with the minima at incommensurate momenta. It was
shown that the phase exhibits correlations of different spin components in contrast
to SL1 and SL3. Moreover, the maxima of the elements of static spin structure
tensor S are shifted to incommensurate momenta. Close to the Kitaev point, we
found a SL3 spin liquid phase, for which we calculated the dispersion and static spin
structure factor. Furthermore, we investigated the classical limit of this phase and
showed that we recover classical ground states.

It appears that we have discovered a continuous phase transition between three
symmetry enriched topological (SET) phases, where the gap stays finite. In the
future, it would be interesting to further investigate this interesting fact. Also,
focusing on other ansatzes obtained from our PSG analysis and comparing them
with our results would be also interesting. Calculating the dynamical structure
factor would give further characterization of the phases and it could be measured by
neutron scattering experiments and compared with theoretical predictions. Another
interesting possibility would be to try to go beyond the mean-field approximation
and introduce coupling to the gauge fields. A study focusing on the excitations
would shed light on the topological nature of the resulting phase.
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Appendix A

Technical Details

A.1 Details of Fourier Transformation

After we selected the Ansatz, we can preform FT to simplify Hyr. Here we will
write the details of Fourier transformation for Ansatz 1. The notation k, = k - a,
will be used. Convention of the fourier transformation used is

1 .
bia = ——= Y € WFiby,. Al
\/Nzk:e k (A1)

A.1.1 Fourier Transformation of B fields

Here, we write the steps of simplifying B fields terms. We will use the only totally
symmetric ansatz to lower the number of parameters. An additional % appears
because of double counting of pairs.

1
S (B blabia + Bughlabial (A.22)
<ij>
1 ,
2N 3 Z[ bkabk/ae 0rsK5) 4 By bl beac”™ Uﬂ"i*kfﬂ] (A.2b)

i;y,j=tFa~ kk’

2N ZZ |: i Z:t'y bkabk'ae ik ri—ikk'a + B (i£7) bk/ bkat 72(kri7klrj)]

7y kK’
(A.2¢c)
1 . ,
= 127 [(Bopan) blabeae ™™ + Bogaoy bl brac ™™ |. (A.2d)
K
Writing B = | B|e's:
Z [|B| cos(k, + QSB)bkaUaﬁbkg} (A.3)

k

For later we can split the sum over k to sums over k and —k and we get an
additional factor of 1/2.
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A.1.2 Fourier Transformation of A fields

Here we need to be careful because A;; = —Aj;.
1 1 ;
> [(Aij) S€apbiabjs + Ai@(ﬁaﬁ)bjgbm (A.da)
<ij>
- = N S [ )" €apbiabio e’ TR 4 A obl bl et fﬂ} (A.4b)
i,j=itey kK’
= - Z [ Aoee, ) €apbiaboipe E ) + Aoy, eapbl bT kﬁe_lk(ia”)] (A.4c)

The form of the ansatz is now used to determine the directions of A fields. They
are positive along a., directions.

=1 Z [(Aom)*wakab—kﬂ(@ka —e ™) + A(]eweaﬁb;r(abik/3<€_lk7 — e“k”)} (A.5a)
k,y
1
= 5 Z [(Aﬂev)*ﬁaﬁbkabfkﬂi sin k,y —+ AOE’Y 6aﬁbLabT_k5(_Z sin kV):| . (A5b)
ky

In the case of the totally symmetric ansatz the A fields are real and we are left with:

SA(sinky +sinky +sinks) Y [(bmb_k L= bigboxe) — (0T, — bLib[kT)} . (A5c)
k

A.1.3 Fourier Transformation of t fields

The situation is identical to the case of A fields, the only difference is that bonds
do not have a direction since t;; = t;;. For the totally symmetric ansatz, t fields are
also real.

Z [( )" tw +t5( tw ] = —tz M cos k., (A.6)

<ij>
where operator t7 is operator t7 with the substitution

bia — bkom b]’a — bka- (A?)

A.2 Static Spin Structure Factor

We have derived that the spin structure factor has elements of the form:

1

SCd ( ) VOI k

[ i o) (A8)

Here we will only show [ (P, Pyiq):
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1 * * * *
[ (P; Picrq) = 1 (Pras Pirq1 Pirs B qui + PrtsParai1 Pios Py g1 (A.9)

+ Pios Pirq22 PasPicsquz + PrasPeraqr2 Beas P qo2 + Piess Pirq21 Piais Py qan
+ Pk33Pk+q22P1><k13 l;k+q42 + Pk43Pk+q21P;13 1><k+q31 + Pk43Pk+q22P;13 1><k+q32
+ PrasPierq21 Bais Py g + Pz Peraze P B qee T Proa Pier a1 s Py qu
+ PriaPcrqui Poa Py g + Praa Perqze B Py quz + PraaPerqi2 Peas By g2
+ Pk34Pk+q21P1><k14P1i+q41 + Pk34Pk+q22P1i14P1i+q42 + Pk44Pk+q21P1i14P1i+q31
+ PrarPirqe2 Paia Prcsgze + PraaPera2t Baa P g + PraPiraz2 Pas Py o
+ Piess Pt g1 Prag Picyqan + Piss Pira12Picas P qaz + Pias Perat1 Pos Py g1
+ Praz Pacrqr2 Proz Py g2 + Pias Prerqin Pios Py quin + P Pierqi2 Peas P qu2
+ Pk34Pk+q11P1i24P1i+q41 + Pk34Pk+q12P1i24P1i+q42 + Pk44Pk+q11P1i24P1i+q31

* * * * * *
+ PaasPra12Pai B gzz + PerPeran Bod P qn + PerPeaiz o B qrz) -
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