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Abstract

Topological defects–such as Domain Walls, cosmic strings, and magnetic monopoles–
are expected to appear during a phase transition in GUT of particle physics. The
concentration of such monopoles in the early universe was estimated to be the dominant
matter in the universe. However, this is in tension with the fact that monopoles have not
been observed. The former is known as the cosmological monopole problem. Different
solutions to this problem are known today, being inflation the most well known. In this
scenario, the universe inflates, dilutes the monopoles, and their density decreases to
acceptable levels. Another solution was proposed by Dvali, Liu, and Vachaspati in 1997.
The main idea is that Domain Walls, generated during the same phase transition, swept
away the monopoles before decaying.

In general, this solution proposes that defect interactions lead to a defect erasure
mechanism. This mechanism has been investigated in a SU(5) Grand unified model.
Besides, it has been recognized in the interactions of skyrmions with walls, and vortices
with walls in 3He. In the present work, we explore this mechanism in yet another
system. We study the unwinding process of a vortex during the collision with a layer of
Coulomb vacuum. This layer is a non-topological Domain Wall containing a core with a
Coulomb-like phase, inside which the whole symmetry group is restored.

Specifically, we considered the (2 + 1)-dimensional model of a complex scalar field
with a U(1) gauge symmetry, and sextic potential V(φ) = λ2|φ|2(|φ|2 − ν2)2. In this
model, the zero homotopy group and the fundamental group of the vacuum manifold
are non-trivial. Consequently, Domain Walls and vortices belong to the spectrum of this
model. A (ν, 0)-Domain Wall is a topological field configuration interpolating the Higgs
(〈|φ|〉2 = ν2), and the Coulomb (〈|φ|〉2 = 0) vacua. In this setup, a (ν, 0, ν)-Domain Wall
configuration forms a Coulomb vacuum layer characterized by its width l. Although
this configuration is unstable, we find numerically that if 40m−1

h . L, the layer can be
considered to be stable for time scales of order O(102m−1

h ), where mh is the mass of the
Higgs-like boson. We verified that this result holds for neutral and charged Domain
Walls.

On the other hand, the vortices in the φ6 model are formed in the Higgs vacuum, and
are similar to the Nielsen-Olesen vortex lines. The vortex field profiles are computed
numerically, and analytical asymptotic approximations are found. Finally, the collision
of a vortex with a layer of Coulomb vacuum is simulated numerically for different
regimes of the parameters λ, ν, the charge e, and the winding number n. Within this
approach, it is found that none of the vortices crosses the Coulomb vacuum layer. We
observe how the collision leads to the unwinding of the vortex, and the unconfinement
of the magnetic flux which dissipates in the core of the layer. We find that this defect
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Abstract

erasure mechanism occurs for all considered regimes of the parameter space. According
to these results, we suggest the independence of this mechanism from the values of
the parameters, and we argue how this mechanism can be generalised to more general
theories higher (3 + 1) dimensions.
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1. Introduction and Motivation

The Standard Model of particle physics (SM) has been proven to be an accurate descrip-
tion of fundamental interactions up to an energy scale of order 100GeV. However, there
are significant problems in high energy physics and cosmology that can not be answered
within the SM. Among these problems are the neutrino mass problem, the strong CP
problem, the origin of baryon asymmetry in the universe, and the nature of dark matter.
As a consequence, extensions of the SM are required to approach these problems.

Possible extensions of the SM, within which the gauge interactions are merged into
a single interaction, are known as Grand Unified Theories (GUT). If such unification
exists, there is the possibility that there was a grand unification epoch in the very early
universe. In the hot big bang cosmological model, the universe starts at a very high
temperature. As the universe expands and cools down, it undergoes a sequence of
phase transitions at different critical temperatures corresponding to different symmetry
breaking scales. During these phase transitions, and depending on the structure of the
vacuum manifold, different topological defects–such as Domain Walls, cosmic strings,
and magnetic monopoles–may be produced. Although topological defects have not
been observed, searches for magnetic monopoles are currently carried out[1].Besides,
observations of the cosmological microwave background have constrained the surface
tension of Domain Walls to be σ < 3.85× 109kg/m2, which corresponds to an energy
scale of formation for Domain Walls of 0.93 MeV [2]. However, the no observation of
topological defects is tension with the predictions from different GUT, in which the
monopoles were expected to be the dominant matter in the universe. In consequence,
a mechanism capable of solving this tension–known as the cosmological monopole
problem–is required.

In the following sections, we outline the general ideas behind GUT, spontaneous
symmetry breaking, and phase transitions in the early universe. Afterwards, we present
the basic properties, and classification of topological defects, and the Kibble-Zurek
mechanism for defects formation. Lastly, we establish in more detail the magnetic
monopole problem and discuss different solutions to this problem. Finally, we focus
on the mechanism proposed by Dvali, Liu, and Vachaspati in which the magnetic
monopoles are swept away by the Domain Walls.
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1. Introduction and Motivation

1.1. The Higgs mechanism in the Standard Model and Grand
Unified Theories

The strong, weak, and electromagnetic interactions are the three gauge interactions of the
SU(3)× SU(2)×U(1) Standard Model (SM). In general, gauge theories predict massless
gauge bosons. However, it is observed that the mediators of the weak force–the W±,
and the Z bosons–are massive. The origin of the mass of the gauge bosons is explained
by the Higgs mechanism. Due to the important role that this mechanism plays in the
SM and GUT, and to introduce some notation, we review it here with few examples: the
abelian-Higgs model, the non-abelian generalization, and the Glashow-Weinberg-Salam
model.

The abelian-Higgs model:
Following [3], lets consider the abelian-Higgs model. It is a model with a U(1) gauge

symmetry, for which the Lagrangian is given by

L[ϕ, Aµ] = −
1
4

FµνFµν + (Dµ ϕ)∗Dµ ϕ−V(ϕ), (1.1)

where ϕ is a complex scalar field, Aµ is the vector potential with field strength
Fµν = ∂µ Aν − ∂ν Aµ, and Dµ = ∂µ − ieAµ is the covariant derivative, where e is the
coupling constant. If not stated otherwise, we will use natural units, and Greek indices
µ, and ν represent spacetime indices, while Latin indexes i, j, and k represent space
indexes. The scalar field potential is given by

V(ϕ) =
1
4

λ
(

ϕϕ∗ − ν2)2
, (1.2)

where we consider ν, and λ to be positive reals. The Lagrangian is invariant under the
gauge transformations of the fields

Aµ(x) → A′µ(x) = Aµ(x) +
1
e

∂µα(x),

ϕ(x) → ϕ′(x) = eiα(x)ϕ(x),

where α(x) is an arbitrary real function. A ground state, or vacuum, is a configuration
of the fields which minimises the energy functional

E[ϕ, Aµ] =
∫

d3x
[

1
2

F0iF0i +
1
4

FijFij

+ (D0ϕ)∗D0ϕ + (Di ϕ)
∗Di ϕ + V(ϕ)

] (1.3)

Notice that the energy E[ϕ, Aµ] is gauge-invariant. Then any gauge transformation of a
vacuum state is again a vacuum state. The first four terms of the integrand in 1.3 are

2



1.1. The Higgs mechanism in the Standard Model and Grand Unified Theories

non-negative. Then, in order to minimize the energy functional, lets consider the case
when all this four terms vanish. This occurs when Aµ is pure gauge, i.e.

Aµ =
1
e

∂µα(x),

and, in consequence, Dµ ϕ = (∂µ − i∂µα(x))ϕ = 0, i.e.

ϕ = eiα(x)ϕ0, (1.4)

where the real constant ϕ0 is determined from the minimization of the scalar field
potential V(ϕ), and it is equal to ϕ0 = ν. Then the vacuum expectation value (VEV) of
the norm of the field ϕ is non-zero, 〈|ϕ|〉 = ϕ0 = ν.

Now, in order to study the spectrum of excitations of the theory, we need to study
perturbations about a vacuum state. Since α(x) is arbitrary, it is always possible to
perform a gauge transformation such that we fixed the gauge to be unitary, i.e., we can
choose α(x) = 0 such that the vacuum configuration is given by

A(v)
µ = 0, ϕ(v) = ν (1.5)

Let’s consider excitation about this vacuum state. Excitations of Aµ are described by
Aµ itself, while excitations of ϕ about its VEV can be described by two real fields h, and
θ such that

ϕ =

(
ν +

1√
2

h
)

eiθ .

In the analogous model with a global U(1) symmetry, the field θ is known as the
Nambu-Goldstone field. Rewriting the scalar field potential in terms of h, and θ we find:

V(ϕ) = V(h) =
1
2

λν2h2 +
λν

2
√

2
h3 +

λ

16
h4.

In order to bring the Lagrangian to the canonical form (sum of the Lagrangian of
individual fields), we introduce the field

Bµ = Aµ −
1
e

∂µθ,

and substitute the field variables (ϕ, Aµ) by (h, Bµ). Then the Lagrangian 1.1 becomes

L[h, Bµ] =
1
2

∂µh∂µh +
1
2

m2
hh2 − 1

4
BµνBµν +

1
2

m2
vBµBµ + Lint, (1.6)

where Bµν = ∂µBν − ∂νBµ, mh =
√

λν, mv =
√

2eν, and the interaction part of the
Lagrangian is given by

Lint =
λν

2
√

2
h3 +

λ

16
h4 +

√
2e2νBµBµh +

1
2

e2BµBµh2.

3



1. Introduction and Motivation

From the canonical form 1.6, we get the spectrum of excitations of the theory. It
is composed by a real scalar field, h, with mass mh, and a massive gauge boson, Bµ,
with mass mv. Observe the appearance of a mass term for the vector field Bµ, and the
disappearance of the field θ. Loosely speaking, the gauge boson acquires mass while
“eating up" the Nambu-Goldstone boson. We remark here that our starting point, the
Lagrangian 1.1, as well as the Lagrangian 1.6 are gauge-invariant. Within this example
lies the essence of the Higgs Mechanism. The field h is called the Higgs field, and the
corresponding particle is the Higgs boson1.

The non-abelian case:
In general, the Higgs mechanism can be generalised to non-abelian theories. Following

[4], we start with the case of global symmetries. Let G be a compact group with
generators2 Ta , and let ϕ = {ϕi} be n real scalar fields in a real unitary representation
D of G. We consider the Lagrangian

L =
1
2
(∂µϕ)†∂µϕ−V(ϕ) (1.7)

to be invariant under the global symmetry. Thereafter, under the transformation
ϕ→ D(g)ϕ,

V(ϕ) = V(D(g)ϕ),

for all g ∈ G. In the case when the minimum of the potential are at non-vanishing values
of ϕ, the symmetry is said to be spontaneously broken, and the field ϕ will develop a
non-vanishing vacuum expectation value 〈ϕ〉 = ϕ0. The little group H of G with respect
to ϕ0, or unbroken subgroup, is formed by the elements of G that leave ϕ0 invariant, i.e.

H = {g ∈ G|D(g)ϕ0 = ϕ0}.

Then, the generators th of H annihilate ϕ0, i.e. thϕ0 = 0. Choosing a basis {Ta} for the
Lie algebra of G such that {th} ⊂ {Ta}, we refer to the elements of {th} as the unbroken
generators, and the remainder generators of G, the elements of {t′b} = {Ta} − {th},
as the broken generators, i.e. t′bϕ0 6= 0. Without loss of generality, let ϕ(v) = ϕ0 be a
ground state. Assuming that there is no accidental degeneracy, all possible vacua have
the form ϕ = D(g)ϕ0, where g does not depend on x. In other words, ifM is the set of
classical vacua, then G acts transitively onM, where the action is determined by the
representation D. ThusM can be identified with the coset space,

M = G/H,

which is refereed to as the vacuum manifold.
1The term “Higgs field" is also applied to the scalar field ϕ, whose vacuum expectation value is non-trivial.
2More precisely, let {La} be a basis for the Lie algebra of G and D the adjoint representation. Here

a = 1, ...N, where N is the dimension of the Lie algebra of G. We shall assume the correspondence
Ta = D(La).
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1.1. The Higgs mechanism in the Standard Model and Grand Unified Theories

Now, we consider perturbations about the vacuum state ϕ(v) in order to get the
spectrum of excitations. The perturbations can be described by a real scalar field
ϕ′ = {ϕ′i}, such that ϕ = ϕ0 +ϕ′. Rewriting the Lagrangian 1.7 up to second order on
ϕ′i, we get

L =
1
2

∂µ ϕ′i∂
µ ϕ′i −

1
2

µ2
ij ϕ
′
i ϕ
′
j =

1
2

∂µϕ′†∂µϕ′ − 1
2

ϕ′†µ2ϕ′, (1.8)

where

µ2
ij =

[
∂2V

∂ϕi∂ϕj

]
ϕ=ϕ0

. (1.9)

Since ϕ0 is a minimum of V(ϕ), and V(ϕ) = V(D(g)ϕ), it follows that

0 =
∂V
∂ϕi

Ta
ij ϕj

0 =

[
∂2V

∂ϕi∂ϕj
Ta

jk ϕk +
∂V
∂ϕj

Ta
jkδki

]
ϕ=ϕ0

0 = µ2
ijT

a
jk ϕ0k = µ2Taϕ0.

The vectors t′bϕ0 are linearly independent. In consequence, for each broken generator t′b,
the vector t′bϕ0 is an eigenvector of µ2 with zero eigenvalue. In general, the remaining
eigenvalues are non-zero. If N is the number of generators of G, and K the number of
generators of H, then the spectrum of excitations is composed by n− (N − K) massive
modes, and N − K massless modes corresponding to the Nambu-Goldstone bosons.

Considering now gauge invariance, we introduce the gauge fields Aa
µ = 0. Let La be a

basis for the Lie algebra of G satisfying the commutation relations

[La, Lb] = −i fabcLc,

where fabc are the structure constant of G. The non-abelian Higgs model is described by
the gauge-invariant Lagrangian

L =
1
2
(Dµϕ)†Dµϕ−V(ϕ)− 1

4
Fa

µνFaµν (1.10)

where
Fa

µν = ∂µ Aa
ν − ∂ν Aa

µ + e fabc Ab
µ Ac

ν

is the Yang Mills field strenght, e is the gauge coupling constant, and Dµϕ is the
gauge-covariant derivative

Dµ = (∂µ − ieAa
µTa)ϕ

The gauge transformation is given by the following transformation of fields

Aµ → gAµg−1 + ie−1g−1∂µg,

ϕ → D(g)ϕ,

5



1. Introduction and Motivation

where g = g(x), and Aµ = Aa
µTa.

Proceeding as in the abelian case, we choose a ground state
(

Aa(v)
µ ,ϕ(v)

)
, and consider

excitations about it in order to get the spectrum of excitations of the theory. In what
follows we choose a basis in which µ is diagonal, i.e µij = µiδij, where µi are the
eigenvalues of µ, and µl = 0 for l = K + 1, · · · , N. After a field redefinition and a gauge
transformation, one can rewrite the Lagrangian 1.10 as

L =
1
2

∂µ ϕ′k∂µ ϕ′k −
1
2

µ2
k ϕ′k

2 − 1
4

Fa
µνFaµν +

1
2

M2
bc Aµ

b Acµ + Lint; (1.11)

where k = 1, · · · , n− (N − K), b, c = 1, · · · , N − K; and the vector field mass matrix is
given by

M2
bc = e2(t′bt′c)ij ϕ0i ϕ0 j. (1.12)

It follows that the spectrum of excitations is composed by:

• n− (N − K) massive Higgs bosons, corresponding to the scalar fields ϕk,

• N − K massive vector bosons, corresponding to the vector fields associated with
the broken generators t′b,

• K massless vector bosons, corresponding to the vector fields associated with the
unbroken generators th.

Notice that the N − K would-be Goldstone bosons have disappeared. The correspond-
ing degrees of freedom have been absorbed as the longitudinal degrees of freedom of the
N− K massive vector fields. We remark here that the Lagrangian 1.11 is gauge-invariant.
However, if one tries to interpret the massive vector fields as gauge fields, then one
erroneously concludes that the gauge invariance is gone. This fact explains the standard
terminology: Spontaneous Symmetry Breaking.

Glashow-Weinberg-Salam Theory:
In the SM, the electroweak theory of Glashow-Weinberg-Salam illustrates the Higgs

mechanism[5]. Within this model, the gauge group is G = SU(2)×U(1). Then, for
the group G, the number of generators is N = 4. The Higgs field ϕ is a scalar field
doublet with respect to SU(2), and has U(1) charge 1

2 , corresponding to n = 4. The

scalar-field potential is given by V(ϕ) = λ
(

ϕ† ϕ− v2

2

)2
, and determines the vacuum

expectation value (in the unitary gauge) 〈ϕ〉 =
(

0
v√
2

)
. One can show that there is

only one unbroken generator Q, and it generates the little group H = U(1)e.m.. In
consequence, the spectrum of the theory is composed of K = 1 massless vector boson,
n− (N − K) = 1 massive Higgs boson, and N − K = 3 massive vector bosons. The
massless vector boson corresponds to the photon field Aµ, while the massive vector
bosons correspond to the W±, and Z-boson fields. These bosons, including the Higgs
boson, have been detected experimentally. Their masses are mW = 80GeV, mZ = 91GeV

6



1.1. The Higgs mechanism in the Standard Model and Grand Unified Theories

and mh = 125GeV. As a final remark, the Higgs field also couples to fermionic fields
through a Yukawa coupling. After symmetry breaking, these couplings give rise to the
mass terms in the Lagrangian for the fermions, hence, the Higgs mechanism is said to
explain how the fields acquire mass in the SM.

Motivations for GUT:
The SM is characterised by three coupling constants gs, g, and g′. Due to radiative

corrections, the coupling constants depend on the energy scale q as well as their “fine
structure constants" α = g2/4π. In the case of the SU(2) group, for q > 100GeV, all
particles can be treated as massless, and hence the running of αw is given by [6]

αw(q2) =
g2

4π
≈ αw(q0)

1 + 0.265αw(q0)Ln(q2/q02)

where q0 ∼ 100GeV and αw(q0) ≈ 1/29. On the other hand, in the case of quantum
chromodynamics the running of the strong fine structure constant is given by

αs(q2) =
g2

s
4π

=
12π

(11n− 2 f )Ln(q2/ΛQCD
2)

,

where experimental data suggest that ΛQCD ≈ 220MeV. f = 5 is the number of massless
flavors, and n = 3 the number of colors. Comparing αw and αs, one finds that the
coupling constants meet at q ∼ 1017GeV. This observation suggest that above 1017GeV,
the strong and weak interactions may be unified in a large gauge group G, characterized
by a single coupling constant gU . Then, the different running for gw and gs is explained
by the running within the SU(3) and the SU(2) subgroups, after the symmetry breaking
of the larger group G at 1017GeV.

Georgi-Glashow Model:
The smallest extension of the SM, that incorporates the whole spectrum is given by the

simple group SU(5). However, measurements of the proton lifetime and bounds on the
neutrino masses rules out the minimal SU(5) model as a realistic theory. Nevertheless,
to explain the common features of GUT, we will consider this model as an example.

The SU(5) group has N = 24 generators which correspond to 24 Gauge fields. It is
possible to identify 8 of them with the generators of SU(3), corresponding to the gluons
fields; and 3 generators with the generators of the SU(2) subgroup, and 1 generator with
the U(1) generator, corresponding to the electroweak interactions[5]. The 12 remaining
bosons form two charged coloured triplets X±4/3

i , and Y±1/3
i , where i = 1, 2, 3 is the

color index and the upper index corresponds to the electric charge. After the symmetry
breaking SU(5)→ SU(3)× SU(2)×U(1), the vector bosons X, and Y acquire masses
of order 1015 − 1017GeV. Then, bellow this energy scale, transitions between the SU(2)
and SU(3) are exponentially suppressed. This behaviour is common to all GUT that
undergo a phase transition associated to the spontaneous breaking of a unified group G.

7



1. Introduction and Motivation

1.1.1. Phase transitions and spontaneous symmetry breaking

Up to now, in the discussion of symmetry breaking and Higgs mechanism we have
considered purely classical scalar field potentials to determine the vacuum expectation
value of a Higgs field ϕ. Although this approximation simplifies the discussion, the
reality is that quantum, and finite temperature effects should be taken into account.

Since ϕ is a quantum field, radiative corrections modify the classical potential V(ϕ).
The radiative corrections are due to self-interactions, and interactions with other quan-
tum fields. The corrected potential is known as the effective potential. Besides, at
non-zero temperature, the expectation value of the Higgs field can be thought of as
describing a Bose condensate of Higgs particles immersed in a thermal bath of various
particles and antiparticles. Assuming that the particle masses are proportional to the
Higgs expectation value, the free energy of the system,

F = E− TS (1.13)

is a function of ϕ. Thus, the equilibrium value of ϕ is found by minimizing the free
energy, and is temperature-dependent[4].

At low temperature, the second term of the right-hand side of 1.13–TS–is negligible,
and the equilibrium value of ϕ tends to a ground state ϕ(v), which minimises the energy–
E. On the other hand, at high temperatures, the entropy term becomes more relevant
than the energy term. Thus, the free energy is minimized if the entropy is increased.
This occurs when the available phase space becomes larger. For massive particles, the
phase space is inversely proportional to the mass, and since the particle masses are
proportional to the Higgs expectation (or equilibrium) value, then there is a tendency for
the Higgs field to decrease as a function of temperature. As a consequence, above some
critical temperature Tc the Higgs expectation value vanishes, and the symmetry is said
to be restored at high temperatures. Most of our experience with macroscopic systems
suggest that the low-temperature phase has less symmetry than the high-temperature
phase. However, different models can be constructed in which a broken symmetry at
high temperatures can be restored at low temperatures. An example of such models,
described by Weinberg in [7], is the model of two n-vectors with O(n)×O(n) global
symmetry.

At zero temperature, one can evaluate the effective potential perturbatively as an
expansion in powers of coupling constants,

Veff(ϕ) = V(ϕ) + V1(ϕ) + V2(ϕ) + · · ·

where Vn(ϕ) is the contribution of Feynman diagrams with n closed loops. Depending
on the model, radiative corrections are negligible, or can modify completely the char-
acter of symmetry breaking. At finite temperatures, it was found that the free energy
density–F–is given by the same diagrammatic expansion as the effective potential Veff(ϕ)

with all the Green’s functions replaced by finite-temperature Green’s functions [4][7][8].
This is the reason why the free energy per unit volume is called the finite-temperature

8



1.1. The Higgs mechanism in the Standard Model and Grand Unified Theories

effective potential, F (ϕ, T) = Ve f f (ϕ, T).

The abelian-Higgs model, revisited
As an example, following [4], we consider the abelian-Higgs model described by the

Lagrangian 1.1, and quadratic potential

V(ϕ) = µ2
0|ϕ|2. (1.14)

The symmetry breaking in this model is induced by radiative corrections. The one-
Loop contribution to Veff was computed [9] to be

V1(ϕ) =
µ2

0
ν0σ2 |ϕ|

4ln
(
|ϕ|2
σ2

)
,

where σ is the renormalization scale, and

ν0 =
16π2µ2

0
3e4σ2 (1.15)

is a dimensionless quantity. The corresponding effective potential is known as the
Coleman-Weinberg potential

Ve f f (ϕ) = µ2
0|ϕ|2 +

µ2
0

ν0σ2 |ϕ|
4ln
(
|ϕ|2
σ2

)
. (1.16)

The figure 1.1 shows the shape of the effective potential for different values of ν0. One
can show that for ν0 > 0.447 the effective potential has a single minimum at ϕ = 0.
For ν0 < 0.447, the effective potential has another minimum for |ϕ| 6= 0. Moreover,
for ν0 < 0.367 the global minimum of the effective potential is at |ϕ| 6= 0, and the
symmetry is spontaneously broken. In what follows, we assume that ν0 < 0.367, i.e. at
zero temperature, the effective potential breaks the symmetry.

At high temperatures T, such that e|ϕ| � T, the finite-temperature effective potential
is given by[4]

Ve f f (ϕ, T) = m2(T)|ϕ|2 + µ2
0

ν0σ2 |ϕ|
4ln
(
|ϕ|2
σ2

)
, (1.17)

where m2(T) = µ2
0 +

1
4 e2T2. In order to study the behaviour of this potential, we

introduce the dimensionless temperature-dependent quantity

ν(T) =
16π2m2(T)

3e4σ2 = ν0 +
4π2

3

(
T
eσ

)2

.

The figure 1.2 shows the behaviour of the effective potential 1.17 for ν0 = 0.25 at different
temperatures. The behaviours (a) and (b) correspond to very high temperatures. If
T > T1, where ν(T1) = 0.447, then Ve f f (ϕ, T) is dominated by the 1

4 e2T2|ϕ|2 term, and
has a unique minimum at ϕ = ϕ0 = 0. In this case the symmetry is said to be restored
at high temperatures. Notice that, as a consequence, the gauge boson Aµ is effectively
massless. (c) in figure 1.2 shows the behaviour of Ve f f (ϕ, T1).
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Figure 1.1.: Coleman-Weinberg effective potential 1.16 for different values of the param-
eter ν0.

When the temperature drops bellow T1, a second minimum of the potential at
ϕ = ϕ1 6= 0 appears, as shown by (d) of figure 1.2. Notice that the value of the
Higgs field at the second minimum is temperature-dependent, ϕ1 = ϕ1(T). Moreover,
one can show that ϕ1(T) is a monotonic decreasing function. Further, the value of
Ve f f (ϕ1, T) decreases as the temperature decreases. As a consequence, there exists a
critical temperature–Tc–such that the two minimum become equal, i.e

Ve f f (ϕ0, Tc) = Ve f f (ϕ1, Tc). (1.18)

The behaviour of Ve f f (ϕ, Tc) is shown by (e) of figure 1.2. Similarly to the analysis
of the Coleman-Weinberg potential, a first estimate for the critical temperature is given

by ν(Tc) = 0.367, which correspond to Tc ≈
√

4π2

3 (0.367− ν0)eσ. However, the effective
potential expansion 1.17 is not valid at ϕ ∼ σ and T ∼ Tc, and a more detailed analysis
is required[8][6][4]. Nevertheless, this detailed description of the critical temperature is
not required for our discussion.

Below the critical temperature, T < Tc, corresponding to the behaviour (f) of figure
1.17, the minimum of the effective potential at ϕ1 becomes a global minimum. As a
consequence, the symmetry is spontaneously broken, and as seen before, the vector
boson acquires mass via the Higgs mechanism. Finally, at zero-temperature, T = 0, the
effective potential is given by the Coleman Weinberg potential, 1.16, and its behaviour is
shown by (g) of figure 1.17.
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Figure 1.2.: Finite temperature effective potential 1.17 for fixed parameter ν0. The (a)-(f)
behaviours corresponds to different temperature T regimes: (a) and (b)
corresponds to T > T1, (c) to T = T1, (d) to T1 > T > Tc, (e) to T = Tc, (f) to
Tc > T > 0, and (g) to T = 0. In this figure, ν0 = 0.25 is fixed. T1 and Tc are
estimated to be T1 = 0.12eσ, and Tc = 0.095eσ.

Coulomb, Higgs, and Landau phases

The abelian-Higgs model 1.1 is a particular case of quantum electrodynamics. Depending
on the details of the matter sector, quantum electrodynamics exhibit three different
dynamical regimes[10], or phases3. We summarise the most important properties of these
three different phases bellow.

• The Coulomb Phase, also known as the symmetric phase, corresponds to the
regime in which the gauge field is massless. Consequently, two (static) probe
electric charges, separated a distance R, will experience a Coulomb-like interaction
with potential U(R) ∼ e2(R)/R. Classically, e(R) is the probe particles charge,
and it is constant. On the other hand, quantum corrections, due to loops of virtual
particles of mass m > 0, make e(R) run according to the Landau formula. At large
distances e2(R) ∼ 1/lnR. If m is finite, then e2(R) is frozen at e∗2 = e2(m−1), and
the long-range interaction becomes U(R) ∼ e∗2/R.

3These regimes are also admitted in non-abelian gauge theories. However, non-abelian theories exhibit
more dynamical regimes that are not discussed in the present work
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1. Introduction and Motivation

• The Higgs Phase, also known as the broken phase, corresponds to the regime in
which all excitations are massive. In the case of the abelian-Higgs model, this
phase is realized when the expectation value of the Higgs field is non-zero, 〈ϕ〉 6= 0.
Two probe (static) electric charges, separated a distance R < m−1

v , will experience
an interaction with a Coulomb-like potential U(R) ∼ e2(R)/R, where the gauge
coupling e(R) runs according to the Landau formula. For R > m−1

v , e(R) is frozen
at e(m−1

v ), and the particles experience a Yukawa-like potential U(R) ∼ e−mvR/R.
As a consequence, at large distances, there is no long-range interaction between
charges.

• The Landau zero-charge phase, also known as an infrared-free phase, corresponds
to the regime in which the gauge field, and the virtual particles are massless, m = 0.
In this case, e2(R) does not freeze, and e2(R)→ 0 as R→ ∞. Although this theory
has no localized asymptotic states, nor S matrix, it is well defined in a finite
volume.

Phase transitions
First-order phase transitions
Returning to our example, the abelian-Higgs model with potential 1.14 and ν0 < 0.367,

the system is present in different dynamical regimes depending on the temperature
T. We remark here that, since we assume µ0 6= 0, the Landau zero-charge phase is
not admitted in this model. Above Tc, the symmetry is not broken, and the system is
in the Coulomb phase. At T = Tc, the Coulomb and Higgs phases are both equally
energetically favourable, and both phases can be present in the system in different
regions of space. These regions, for reasons that we will discuss in the next section,
are referred to as bubbles and are separated by Domain Walls. As the temperature
decreases below Tc, the minimum ϕ1 becomes deeper and the expectation value of the
Higgs field can change from ϕ0 to ϕ1. In our example, as it can be seen in figure 1.2,
the two minimum of the potential are separated by a potential barrier. In this case, the
transition ϕ0 → ϕ1 occurs via bubble nucleation[6][4]. If the bubble nucleation rate is
big enough4, the bubbles collide and eventually fill all space. As a consequence, the
system undergoes a phase transition from the Coulomb phase to the Higgs phase.

The phase transition in the abelian-Higgs model is an example of first-order phase
transitions. In general, this process is violent, and large deviations from thermal equi-
librium are expected. Another typical characteristic of first-order phase transitions
is that the symmetric phase remains metastable bellow the critical temperature. The
metastable vacuum state, at 〈ϕ〉 = 0 in the abelian-Higgs model, is referred to as “false
vacuum". The false vacuum decay occurs via two different mechanisms. Firstly, if the
temperature at the time of the transition is small compared to the potential barrier
height, the transition occurs as a result of quantum tunnelling. On the other hand, if the
temperature is bigger than the barrier, the transitions ϕ1 → ϕ0 are classical and their

4More precisely, if we take into account the expansion of the universe, the bubble nucleation rate should
be bigger than the universe’s expansion rate.
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1.1. The Higgs mechanism in the Standard Model and Grand Unified Theories

rate is determined by static field configurations known as sphaleron.

Second-order phase transitions
On the other hand, second-order phase transitions are characterised by the fact that

the order parameter (the vacuum expectation value 〈ϕ〉, in the case of the abelian-
Higgs model) increases continuously as the temperature is decreased below the critical
temperature. For completeness, we present here an example of such transition: the
Goldstone model. It can be recovered from the abelian-Higgs model if we set e = 0 and
consider the potential 1.2. As discussed in [4], the finite-temperature effective potential
is given by

Ve f f (ϕ, T) = m2(T)|ϕ|2 + λ

4
|ϕ|4,

where m2(T) = λ
12

(
T2 − 6ν2), and ϕ independent terms are omitted. The critical tem-

perature is Tc =
√

6ν. When T > Tc, the potential has a unique minimum at ϕ0 = 0,
and the symmetry is restored. Bellow the critical temperature, at T < Tc, the potential
has a minimum at ϕ1 6= 0, and the symmetry is spontaneously broken. It follows that
|ϕ1| = 1√

6
(T2

c − T2)1/2, and that ϕ1 → ϕ0 as T → Tc. In addition, one can show that
the two minimum ϕ0 and ϕ1 are never separated by a potential barrier, and that the
transition ϕ0 → ϕ1 is smooth.

Phase transitions in the SM and GUT
In the SM, the electroweak phase transition is a cross-over with no dramatic cosmolog-

ical consequences, and no large deviations from the thermal equilibrium are expected.
On the other hand, first-order phase transitions are pretty common in different GUT[4].
In general, critical temperatures are determined by the energy scale at which a symme-
try breaking takes place. Thus, a Grand Unified Theory with a sequence of symmetry
breaking

G → H → · · · → SU(3)× SU(2)×U(1)→ SU(3)×U(1)em,

predicts a series of critical temperatures Tci, corresponding to the scale of symmetry
breaking due to the condensation of a Higgs-like field ϕi. In a cosmological context,
when the universe cools bellow a certain Tci, the field ϕi acquires and expectation value
〈ϕi〉 6= 0. The magnitude of 〈ϕi〉 is determined by the scalar field potential. However,
the orientation of 〈ϕi〉 6= 0 in the field space, i.e. the corresponding point in the vacuum
manifoldM, is not fixed by any local physics.

For instance, in the abelian-Higgs model, the orientation of 〈ϕ〉 6= 0 in the field space
is determined by its phase α(x) (see equation 1.4). The choice of α(x) depends on
random fluctuations and takes different values in different regions of space, where the
system is in the broken phase. Spatial variations of α(x) will gradually disappear since
the free energy is minimized by and homogeneous field ϕ. Above certain correlation
length scale ξ(t), the values of α(x) are uncorrelated. Causality requires ξ(t) to be
smaller than the causal horizon,dH. If one assumes that the universe is homogeneous
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1. Introduction and Motivation

and isotropic, its metric is given by the Friedmann-Robertson-Walker metric, and the
causality bound of ξ(t) can be rewritten in terms of the scale factor a(t) as

ξ(t) < dH(t) = a(t)
∫ t

0

dt′

a(t′)
.

We conclude that–for length scales bigger than the causal horizon dH–the spatial
variations of the VEV 〈ϕ(x)〉 is responsible for the formation of non-trivial field configu-
rations[11]. These configurations are known as topological defects, and we expand on
them on the next section.

1.2. Topological defects

In general, topological defects arise in models whose vacuum manifoldM has a non-
trivial topology. In order to be more precise, lets go back to, by now well known example,
the abelian-Higgs model with scalar potential 1.2. As a first step, lets simplify further
the discussion while considering the Goldstone model (i.e. let e = 0, and ϕ to be real) in
(1 + 1) dimensions. Thus, the corresponding field equation for ϕ simplifies to

�1+1ϕ +
∂V(ϕ)

∂ϕ
= 0, (1.19)

where the minimum of the quartic scalar potential V(ϕ) is degenerate at ϕ = ν, and
ϕ = −ν. An static solution to the field equation 1.19, that asymptotically interpolates
between these two minimum, is given by

ϕk(x) = νtanh

(√
λ

2
νx

)
=

mh√
λ

tanh
(

mh√
2

x
)

. (1.20)

This solitonic solution is known as kink and is shown in figure 1.3. The corresponding
energy density is given by [3]

ε(x) =
λν4

2
1

cosh4
(√

λ
2 νx

) =
m4

h
2λ

1

cosh4
(

mh√
2

x
) .

Notice that, ε(x) ∼ m4
h

4λ e∓2
√

2mhx for x → ±∞. Thus, ε(x) is significantly different from
zero only if |x| . rk ∼ m−1

h . It follows that the size of the kink is of order rk, which is
comparable to the Compton wavelength of an elementary excitation. Integrating ε(x),

we get the total energy Mk =
2
√

2
3 mhν2 = 2

√
2

3
m3

h
λ . In the weakly coupled regime λ� m2

h,
thus mh � Mk. Then the Compton wavelength corresponding to the energy of the kink,
λk = Mk

−1, is much smaller than the classical size of the kink rk, i.e.

rk

λk
∼ ν2 =

m2
h

λ
� 1.
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Figure 1.3.: Kink profile 1.20

Consequently, a kink is essentially a classical object, even in quantum theory[12].
The solution 1.20 is centred about x = 0, and it is not invariant under spatial

translations, xµ → xµ − x0µ, nor boost transformations, xµ → Λµν(u)xν. However, the
transformed field configuration

ϕ(x0,u)(t, x) =
mh√

λ
tanh

(
mh√

2
γu((x− x0)− ut)

)
, (1.21)

where γu = (1− u2)−
1
2 , is also a solution to the field equations. The new solution

ϕ(x0,u) is centred around x0 + ut. Thus, u represents the velocity of ϕ(x0,u), and γu is the
corresponding Lorentz factor. Further, one can show that the corresponding energy is
M(x0,u) = γu Mk. The solutions ϕ(x0,u) are known as boosted kinks.

Another remarkable property of kink solutions is that they are non-dissipative solu-
tions. The classical stability can be established by a perturbative analysis[12]. However,
in a more fundamental sense, topological defects stability arises from a topological
conservation law. As a first stage, lets define the topological current kµ for the (1 + 1)
Goldstone model as

kµ =
1

2ν
εµν∂ν ϕ,

where εµν is the anti-symmetric tensor with ε01 = 1. It follows immediately that ∂µkµ,
so kµ is conserved. The associated conserved topological charge, for a given field
configuration is

QT =
1

2ν

∫ ∞

−∞
dxk0 =

1
2ν

ϕ(t, x)|x=∞
x=−∞.

Any field configuration ϕ(t, x), such that it is a solution to the field equations and has
finite energy, should satisfy

lim
x→±∞

xε[ϕ(t, x)] = 0,
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where ε[ϕ] = 1
2 (∂0ϕ)2 + 1

2 (∂1ϕ)2 + V(ϕ). This condition is satisfied if, and only if, the
field configuration approaches sufficiently fast 5 one of the vacuum configurations. In
other words,

ϕ+ ≡ lim
x→∞

ϕ(t, x) = ±ν,

ϕ− ≡ lim
x→−∞

ϕ(t, x) = ±ν,
(1.22)

for all times t. This conditions separates the space of possible solutions in four discon-
nected sectors characterized by the asymptotic behaviour of the solutions. The four
possible asymptotic behaviour are {ϕ+ = ν, ϕ− = ν}, {ϕ+ = −ν, ϕ− = −ν}, {ϕ+ =

ν, ϕ− = −ν}, {ϕ+ = −ν, ϕ− = ν}. The vacuum states ϕ(x, t) = ν and ϕ(x, t) = −ν

have zero topological charge, QT = 0, and belong to the first and second sectors, respec-
tively. The boosted kinks ϕ(x0,u) have non-zero topological charge QT = 1, and belong
to the third sector. The anti-kink configuration given by ϕ(x) = −ϕk(x) belongs to the
fourth sector and has topological charge QT = −1.

Notice that, due to 1.22, the time evolution of a solution can not change the sector to
which it corresponds. This fact can be understood in terms of energy constraints. If such
a smooth transition from one sector to another is possible, it would require an infinite
amount of energy to lift the field configuration, near one of the two spatial infinities,
over the potential barrier separating the two vacuum state. However, in a finite volume,
such transitions are allowed although are exponentially suppressed.

We conclude the discussion of the Goldstone model by describing the relation between
the existence of kink solutions and the topology of the vacuum manifold. The vacuum
manifold is given by M = {ϕ|V(ϕ) = 0}, where we assume the (global) minimum
of the scalar potential to be at 0. For the potential 1.2 M = {ν,−ν}, and we observe
that each sector can be associated to a map f : S0 →M, where S0 = {−1,+1} is the
zero-sphere, if we identify f (±1) ≡ ϕ±. Fixing ν as a base point, i.e. f (1) = ν, then
f (−1) = ±ν. This condition determines that there are only two equivalence classes
under homotopy. These classes are known as homotopy classes[3]. We denote the
homotopy class of f by [ f ]. The set of homotopy classes of maps with base point x ∈ M
is known as the zero-homotopy group π0(M, x). Notice that each homotopy class
[ f ] ∈ π0(M, x) corresponds to a different connected component ofM. In general, for
all x ∈ M, one identifies π0(M) ≡ π0(M, x) with the set of disconnected components
ofM.

This criteria for existence of kinks in the Goldstone model can be generalised as
follows. The key points are that V(ϕ) has multiple degenerate vacuum, and that
the field configuration approaches different vacuum at the spatial infinity. In d + 1
dimensional spacetimes, the spatial infinity can be identified with the Sd−1 sphere. Since
the fields approach at infinity certain configuration corresponding to a point in the
vacuum manifoldM, a field configuration can be associated to a function f : Sd−1 →M.
Notice that different field configurations can be associated to the same function f . When

5More precisely, there exist a distance y, such that |∂i ϕ| < |x|−1 for y < |x|
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a field configuration6, associated to f1, can be smoothly deformed into other field
configuration, corresponding to f2, via a symmetry transformation, one can show that f1

and f2 are in the same conjugacy class of the homotopy group πd(M)[4]. If πd(M) = 0,
then any field configuration can be deformed smoothly into any other field configuration
via a symmetry transformation. On the other hand, when πd(M) is not trivial, there
are solitonic field configurations that can not be deformed to a field configuration of
homogeneous vacuum.

Because of this intertwining of the topology of the vacuum manifold M with the
topology of spatial infinity, Sd−1, the resulting solitons are known as topological defects.
In the following section we discuss the Kibble–Zurek mechanism[11], which explains
how topological defects can be formed.

1.2.1. The Kibble–Zurek mechanism

In theories that undergo a phase transition, associated to a spontaneous symmetry
breaking pattern G → H, a Higgs-like field acquires a certain vacuum expectation value
〈φ〉 corresponding to a point of the vacuum manifoldM. the VEV 〈φ〉 does not need
to be constant over spacetime. Moreover, as we mention before, the orientation of the
Higgs condensate appear in a random fashion in causally disjointed points7. Depending
on the topology ofM, we have the following cases:

• If π0(M) 6= 0, two neighbouring causally disconnected volumes can develop a
VEV corresponding to different disconnected components of the vacuum manifold
(probably corresponding to different phases of the theory). Therefore, there
will exist a transitional region between these two volumes where the VEV will
interpolate between the two VEV. In a cosmological context, as we mention in
section 1.1.1, in (3 + 1) dimensions, the transitional region is an extended object,
whose energy is concentrated near two-dimensional surfaces, the so called Domain
Walls[13].

• If π1(M) 6= 0, three neighbouring causally disconnected volumes can develop
the VEVs ϕ1, ϕ2, and ϕ3. We assume here thatM is connected, so that no pair of
volumes are separated by a Domain Wall. The VEV 〈ϕ〉 in the transition region
between the three volumes should interpolate between ϕ1, ϕ2, and ϕ3. If 〈ϕ〉 can
not be smoothly deformed to a homogeneous vacuum, then a region of symmetric
phase will be trapped along the edge. In this case, the energy in the transitional
region is concentrated near a one dimensional extended object, known as cosmic
string.

• If π2(M) 6= 0, a similar argument goes trough for four neighbouring causally
disconnected volumes developing the VEVs ϕ1, ϕ2, ϕ3, and ϕ4. The VEV 〈ϕ〉

6Here we assume a certain base point x ∈ M. If d > 1, andM is not connected, we restrictM to be the
connected component of x. For details see section 3.3 of [4]

7More precisely, there exist a correlation length ξ < dH such that, if the distance between the spacetime
points x and y is larger than ξ, then 〈φ(x)〉 and 〈φ(y)〉 are independent.
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in the transition region around the vertex where the four volumes meet, should
interpolate between ϕ1, ϕ2, ϕ3, and ϕ4. If 〈ϕ〉 can not be smoothly deformed to a
homogeneous vacuum, then a region of symmetric phase will be trapped around
the vertex. In this case, the energy in the transitional region is concentrated near
one point. These field configurations are known as monopoles.

In this way topological defects can be formed during a phase transition. In addition,
the existence of stable topological defects is constrained by Derricks theorem [14]. It
states that for d ≥ 1, there are no stable time-independent, localized solutions to the
field equations. This result also applies for the case when the Higgs field is composed
by n real scalar fields. For gauge theories, the theorem prohibits the existence of
non-trivial static classical solutions for d ≥ 4. However, this obstruction to construct
solitonic solutions can be avoided in various different ways, for example, by adding
higher derivative terms as in the Skyrme model[15][4], allowing time-dependence of the
solution, relaxing the localisation assumption, or considering curved backgrounds [16].

1.2.2. Domain Walls, Cosmic Strings, and Monopoles

In this section we present the most relevant characteristic of topological defects for our
discussion.

Domain Walls: Since energy should be finite, the total area of a Domain Wall should
be finite, constraining the wall to be curved–reason why they are also referred to as
bubbles8. In the case of the real Goldstone model in (d + 1) dimensions spacetime, the
kink profile 1.20 gives a solution to the field equations ϕk(x1), which depends only
on one coordinate. This solutions represent an infinite planar Domain Wall, which
would have infinite energy. However, if the curvature of a bubble, R, is much bigger
than the size of the kink, R � rk, then the field profile in the transition region can be

approximated by ϕk(r). As a consequence, the total energy, Mk = 2
√

2
3

m3
h

λ , should be
interpreted as the Domain Wall tension σ. For d = 2 it has units of energy per unit
length, while for d = 3 it has units of energy per unit area.

Further, the area of the Domain Wall tends to decrease until the bubble collapses
producing highly radiative processes [17]. Zel’dovich et al. concluded that for weakly
coupled regime, λ < 1, the Domain Walls are so heavy that their existence would lead
to a radical change of the cosmological evolution of the Universe[13]. If there is no
mechanism that leads to the disappearance of domains at a sufficiently early stage of
the evolution of the Universe, the domains would lead to conclusions which are in
contradiction with observations. Current observations of the CMB have constrained the
Domain Wall surface tension to be σ < 3.85× 10−9kg/m2, which corresponds to an
energy scale of formation for Domain Walls of 0.93MeV [2].

8It is also possible that bubbles have boundaries, in the sense that they can terminate on other bubbles, or
other topological defects, as it is discussed in [10]
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Vortex Lines and Cosmic Strings
The vortex lines are part of the spectrum of theories whose vacuum manifold is not

simply connected, for the abelian-Higgs model with scalar field potential 1.2. The string
solutions are known as the Nielsen-Olesen cortex lines[18]. At large distances from the
core

ϕ ∼ νeinθ ,

where n is an integer number, and θ is the polar angle. Meanwhile, the vector potential
approaches

Aµ ∼
1
ie

∂µlnϕ.

The energy density decreases exponentially away from the core. For n = 1, the width
of the string is determined by two different scales: the vector core size m−1

v , and the
scalar core size m−1

h . Along the vector core, there is a magnetic field B corresponding to
a total magnetic flux

ΦB =
2πn

e
, (1.23)

which is proportional to the topological charge, or winding number,

n =
1

2πν2

∮
dxi ϕ∗∂i ϕ, (1.24)

In the weakly coupling regime, the total string mass per unit length is approximately
µ ∼ ν. For GUTs with ν ∼ 106GeV, this corresponds to µ ∼ 1022g cm−1. In consequence,
the strings have large energy density, and large tension. Thus, if the string is curved,
it tends to contract acquiring relativistic velocities. The cosmological implications and
dynamics are discussed in much detail in [4]

Monopoles
Monopoles arise in theories such that π2(M) 6= 0. In the case of a model with

symmetry breaking G → H, the vacuum manifold isM = G/H, and the condition for
monopoles existence is π2(G/H) ∼= π1(H) 6= 09 An example of monopole solutions
is given by the t’Hooft-Polyakov monopole. It arises in a model with a SU(2) gauge
symmetry, with a Higgs field in a triplet representation, ϕa, such that The VEV of the
Higgs field breaks the gauge group to U(1). Far from the core of the monopole, the
Higgs field configuration approximates a ‘hedgehog’ configuration

ϕa = νxa,

while the the vector field Aµ aligns such that the energy functional is minimized. As a
result a radial magnetic field remains:

Bi =
xi

exjxj ,

9Here G is assumed to be a simply connected Lie group.
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corresponding to a total magnetic flux,

ΦB =
4π

e

which corresponds to a magnetic charge g = 4π
e . In general, the magnetic charge gM

is an integer multiple of g, gM = ng. It is possible to show that n is the degree of the
mapping f : S2 →M characterising the Higgs field at spatial infinity, so it corresponds
to a topological charge. As a consequence, the magnetic charge gM is topologically
conserved.

Similar to the string case, the monopole has two characteristic lengths: rv ∼ m−1
v and

rs ∼ m−1
h , corresponding to the vector and scalar core, respectively. In the weak coupling

regime, λ
e2 → 0, the monopole mass can be estimated to be bigger than the BPS bound[4]

MM ≥
4πν

e
=

mv

αe
,

where αe =
e2

4π , and the inequality is saturated for λ = 0. It follows that in the in weak
coupling regime, the Compton wavelength of the monopole λM = MM

−1 ≤ αem−1
v � rv.

Hence, to high accuracy monopoles can be treated as classical objects. For further details
we refer the reader to chapter 9 of [3].

1.3. The cosmological monopole problem

In GUT, where a gauge group G10 is broken to H = SU(3)×U(1), we have that

π2(M) ∼= π2(G/H) ∼= π1(H) ∼= π1(SU(3)×U(1)) ∼= Z.

Thus monopole configurations are a common feature of GUTs. In general, monopoles
can have magnetic charges corresponding to several different unbroken generators.
However, for realistic monopoles, the colour-magnetic field is screened at ΛQCD. Thus
monopoles in GUTs, are usually refereed to as magnetic monopoles, and are expected to
have a mass of order MM ∼ MX/αg ∼ 1016GeV. The concentration of this heavy relic–
also known as ’t Hooft-Polyakov monopoles–in the early universe was first estimated by
Zeldovich and Khlopov[19], and by Preskill [20] to be unacceptably large in comparison
to observational bounds11. This tension indicated an incompatibility between the
standard cosmology and GUT. This discrepancy is known as the cosmological monopole
problem. Below we review some of the possible solutions to this problem.

In the inflationary universe scenario[21], there was a period of exponential expansion,
and the observable universe aroused from a region which initially was smaller than

10G is assumed to be a simply connected Lie Group. If G is not simply connected, then the universal
covering group of G should be considered. This condition excludes the SM group SU(3)× SU(2)×U(1),
reason why there are no stable monopoles within it.

11See section 14.3.3 of [4].
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the causal horizon. Thus, topological defects that formed before inflation are diluted
until the universe is thermalized at a certain temperature T. In this way, less than one
monopole per present horizon scale is left. This solution works only if the reheating
temperature after inflation does not exceed the GUT scale, 1016GeV. The present upper
bound on the inflationary vacuum energy density is very close to the GUT scale[22].
This guarantees that the monopole problem can be solved by inflation. Langacker & Pi
suggested another mechanism in which monopoles and anti-monopoles are connected
by flux tubes, or strings[23]. The string pulls the pair together, and in consequence the
annihilation efficiency is enhanced. However, this mechanism is highly sensible to the
details of the Higgs structure of a specific model. Another, more radical, solution relies
on non-restoration of the grand unified symmetry[24]. In this case, there was never a
phase transition in which monopoles were produced. Lastly, another possible solution
to the monopole problem was proposed by Dvali, Liu, and Vachaspati [25] in which
the interaction between Domain Walls and magnetic monopole leads to the monopole
erasure and the subsequent Domain Wall decay. We will describe this mechanism in
more detail in the following chapter.
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2. Erasure of Defects

2.1. Sweeping Away the Monopole Problem

The basic idea of this mechanism is that Domain Walls sweep away the magnetic
monopoles and subsequently decay [25]. This mechanism requires that the phase
transition that produces magnetic monopoles also produces Domain Walls. A Domain
Wall accelerates and moves through space. then, when a monopole encounters a wall, it
unwinds, and dissipates in the wall. In this way, the walls sweep away the monopoles
from the universe. If the Domain Walls were stable, the monopole problem may have
been replaced by a Domain Wall problem. However, at lower energy scale the walls can
be unstable and hence collapse. This can be achieved in two different ways: the discrete
symmetry responsible for the walls is chosen to be approximate, or, instanton effects
violate discrete symmetry and destabilize the walls. The previous requirements ensure
that Domain Walls do not dominate the universe but live long enough to solve the
monopole problem. This mechanism was firstly discussed in the SU(5) Grand Unified
Theory[25]. In this GUT[5], the adjoint scalar field, Φ, has the following potential

V(Φ) = −1
2

m2TrΦ2 +
h
4
(
TrΦ2)2

+
λ

4
TrΦ4 +

γ

3
mTrΦ3.

The dimensionless parameter γ characterizes an explicit violation of the Z2 symmetry:
Φ→ −Φ. In the case γ = 0, the scalar field Φ acquires a vacuum expectation value Φ0,
and the spontaneous symmetry breaking

SU(5)×Z2 → [SU(3)C × SU(2)L ×U(1)Y] /Z6 (2.1)

occurs. Φ0 is proportional to ν = m/
√

λ′, where λ′ = h + 7λ/30, and λ are assumed to
be positive. In the case γ 6= 0 the discrete symmetry Z2 is explicitly broken. However, if
γ is small enough to have an approximate discrete symmetry, the VEV Φ0 still leads to
the symmetry breaking pattern 2.1.

In both cases–γ = 0, and γ 6= 0–Z2 Domain Walls interpolating between Φ0 and −Φ0,
and SU(5) monopoles arise during the phase transition associated to the symmetry
breaking 2.1. If the Domain Walls sweep away the monopoles, and subsequently decay
safely, one requires that:

• The Domain Walls never dominate the universe.

• The Domain Walls percolate, and there is a period during which their evolution is
tension dominated1

1If the Domain Walls do not percolate, they will all be finite and will collapse without sweeping through
the whole volume of the universe.
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2. Erasure of Defects

Imposing this conditions, the following constraints on the parameters of the Higgs
scalar potential, λ′, and γ, were found[25]

10−19λ′
−1/2 . γ . 10λ′

1/2.

In the case γ = 0, the Z2 symmetry is expected to be broken by instanton contributions,
if it is anomalous under a strongly coupled gauge group[26]. This violation leads to
instability of the Domain Walls, and the requirement that they never dominate the
universe can be meet. In this way, this mechanism is a plausible solution to the
cosmological monopole problem. An important consequence of this resolution is that it
allows inflation to occur before, during, or after the GUT phase transition. On the other
hand, this mechanism suggests that interactions of topological defects produced during
a phase transition can lead to defect ‘erasure’.

A detailed investigation of the interaction of magnetic monopoles and Domain Walls
in the SU(5) model has been carried out by Brush, Pogosian, and Vachaspati [27][28]
[29]. Following their discussion, a stable Domain Wall can have different orientations in
the internal field space. After studying the interaction via numerical simulation, they
found two different possibilities depending on the relative orientation in internal space.
In the first case, the wall and the monopole resides in different non-overlapping blocks
of field space. Thus, the interaction is weak, and only leads to a time delay or advance
as the monopole goes through the wall. In the second case, the monopole resides in
blocks of field space that overlap with those in which the wall resides. Thus, when the
monopole hits the wall it unwinds, and its energy is transformed into radiation. These
results suggest a scenario in which a Domain Wall allows certain monopole ‘polarization’
to pass through but not others. It is then possible that these interactions could lead to
a universe that is free of magnetic monopoles. However, due to the several types of
Domain Walls and monopoles that can arise, and the complexity in the dynamics, the
evolution of defects after the grand unified phase transition remains uncertain.

2.2. DLV Mechanism

In general, the Dvali-Liu-Vachaspati solution to the cosmological monopole problem
proposes that defect interactions can lead to the Erasure of defects during a phase tran-
sition. The defects erasure mechanism–or DLV mechanism–is supported by different
investigations. We list some of them below

Domain Walls and Monopoles in the SU(5) GUT:
The interactions of domain walls and monopoles in the SU(5) GUT were consider by

Vilenkin et al. in [27][28] [29]. Their results allowed them to conclude that, according to
the classical evolution of the fields, a monopole can unwind within the Domain Wall,
and its magnetic flux gets confined in the core of the wall. In this case the Domain Wall
size is of order O(mh

−1), and–depending on the orientation in internal field space–the
SU(5) symmetry can be fully restored inside its core. Thus, the unwinding process
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2.2. DLV Mechanism

takes place inside the core of the wall. However, due to the several types of Domain
Walls and monopoles that can arise, and the complexity in the dynamics, the evolution
of defects after the grand unified phase transition remains uncertain.

Monopoles and Domain Walls in O(3) sigma model:
The interaction between monopoles, and Domain Walls was studied in a O(3) linear

sigma model[30]. In this study, Alexander et al. simulated the interaction, and found that
the monopole unwinds on the wall while the winding number spreads out on the surface.

Skyrmions and Domain Walls in O(3) sigma model:
Additionally, the interaction of Skyrmions with Domain Walls was considered in

the nonlinear vector O(3) sigma model spontaneously broken to O(2)× Z2 in (2 + 1)
dimensions[15]. In this model, waves carrying a topological charge can propagate on
the wall. It was found that Skyrmions and Domain Walls attract each other leading to
the absorption of Skyrmions by the walls and the creation of topological waves. Besides,
under appropriate initial conditions, a Domain Wall can emit Skyrmions. In [31], a
generalization to (3 + 1) dimensions was considered. Similar to the lower-dimensional
case, Kudryavtsev et al. showed that there is an attractive interaction between Skyrmions
and Domain Walls, and established the existence of bound states between the defects.
Further, these states are stable or unstable depending on the form of the mass term in
the theory. If a bound state is unstable, its evolution leads to the capture of the Skyrmion
which is then turned into topological waves that spread out on the wall.

Vortices and Domain Walls in 3He:
The interactions of topological defects have been studied also in 3He [32][33]. A-phase

vortices and Domain Walls separating the A and B phases of 3He have been investigated
and observed experimentally. It is found that singular vortices do not penetrate from
one phase into the other. The measurements show that the vortices experience a force
from the advancing interface and are pushed as a vortex layer in front of it. A critical
velocity has been identified, at which a vortex will leave the layer and will penetrate
through the interface, transforming thereby into a new structure[34]. This behaviour
exhibit the fact that that a A-phase vorticity is not able to cross the AB interface and is
accumulated on the A-phase side of the interface such that it coats the interface with a
dense vortex layer[35].

Vortices and Coulomb Vacuum Layers in φ6-Model:
The interactions of Vortices and Coulomb Vacuum Layers in φ6-Model lead to the

unwinding of vortices. We discuss in the following sections and chapters, how the
DLV-mechanism is confirmed for different parameters of the theory. In addition, within
the φ6-model, one can investigate the dynamical behaviour of the fields in the core of a
Coulomb Vacuum Layer, inside which the full symmetry is restored. In this way, we are
able to study the DLV-mechanism in detail in a finite size region in which the unwinding
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2. Erasure of Defects

process is allowed.

2.2.1. The φ6 Model

We will discuss the interaction of topological defects in the φ6-Model, we start by intro-
ducing the Lagrangian, and the different phases of the model. Following, we describe
the spectrum of perturbations, and topological defects of the of model. In the following
chapters, we describe the Vortices, Coulomb Vacuum Layers, their interaction and how
it leads to the erasure of defects–the Vortices–bearing out the DVL-mechanism.

The Model
We consider a model with a G gauge symmetry which is spontaneously broken by

a Higgs field, φ. We require the existence of topological defects–including Domain
Walls–in the spectrum of the model, corresponding to different homotopy groups of the
vacuum manifold. The Domain Walls may not necessarily be stable, but we required
that they can form finite-size configurations that asymptotically interpolates two broken
phases, such that it has a core inside which the full symmetry group G is restored.

Lets consider the spacetime to have (2 + 1) dimensions2. Further, let G = U(1) be
the gauge group. We denote the corresponding gauge field by Aµ. The Higgs field is a
complex scalar field, φ. After the Higgs acquires a VEV 〈φ〉 determined by the minimum
of the scalar field potential V(ϕ), we require that the Coulomb and the Higgs phase can
be present simultaneously. In addition we require that it is possible to construct Domain
Wall configurations interpolating between this two phases. In addition, in the Higgs
phase, there arise other topological defects–vortexes in (2 + 1) dimensions, or strings in
(3+ 1) dimensions. Consequently, the shape of the potential V(φ) is constrained to have
a degenerate minimum at φ0 = 0 and at φ1 = ν 6= 0. An example of a potential with
such behaviour is shown by (e) of figure 1.2–it corresponds to the finite temperature
effective potential at critical temperature Tc.

The minimal-degree polynomial potential V(φ) that fulfils the previous considerations
turns out to be the sextic potential

V(φ) = λ2φφ∗(φφ∗ − ν2)2. (2.2)

The corresponding gauge invariant Lagrangian density is

L[φ, Aµ] = −
1
4

FµνFµν + (Dµφ)∗Dµφ−V(φ), (2.3)

where the gauge field strength is Fµν = ∂µ Aν − ∂ν Aµ, and the covariant derivative is
Dµ = ∂µ − ieAµ. We refer to this model as the φ6 model. Although the φ6 and the
abelian-Higgs models are similar, we remark here an important difference. The potential
2.2, shown in figure 2.1, has a minimum at φ = 0, allowing the existence of the Coulomb

2Equivalently, we consider translation invariance in one direction of a (3 + 1) spacetime.

26



2.2. DLV Mechanism

0.2 0.4 0.6 0.8 1.0 1.2

0.02

0.04

0.06

0.08

0.10

0.12

Figure 2.1.: Scalar field potential V(φ) 2.2

phase after the Higgs condensates and acquires a VEV, while the potential 1.2 does not
allow this possibility. In addition, in (2 + 1) dimensions, the φ6 model is renormalizable.

The field equations for φ and Aµ, calculated from the Lagrangian 2.3, are respectively

�φ +
∂V(φ)

∂φ∗
= 0, (2.4)

∂µFµν = jν, (2.5)

where � = DµDµ, and is jµ = −i (φ∗Dµφ− (Dµφ)∗φ) is the Noether current associated
to the U(1) symmetry. The coupled system of partial differential equations 2.4 and 2.5
is non-linear, and general analytical solutions are not known. However, the spectrum of
vacuum excitations, and numerical approximations to different solutions can be found
as we describe bellow.

2.2.2. Spectrum of the Model

We start by discussing sepctrum of vacuum excitations. We proceed as we did before
for the abelian-Higgs model. Due to Noether’s theorem, and the invariance of the
Lagrangian under time translation, the total energy is conserved. The energy functional
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is given by

E[φ, Aµ] =
∫

d2x
[

1
2

F0iF0i +
1
4

FijFij

+ (D0φ)∗D0φ + (Diφ)
∗Diφ + V(φ)

]
,

(2.6)

where the indices i, j run over 1 and 2. A ground state of this model is a field configu-
ration

(
φ(v), A(v)

µ

)
which minimises the energy functional 2.6. The first four terms of

the integrand of 2.6 are non-negative. To minimise the energy, these four terms should
vanish. It implies that A(v)

µ is pure gauge.
The Higgs field φ will acquire a certain vacuum expectation value (VEV) 〈φ〉, such that

V(〈φ〉) is a (local) minimum of the potential. It is important to repeat a previous remark:
〈φ〉 does not need to be constant over all the spacetime. Moreover, if the spacetime
points x and y are causally disconnected, then 〈φ(x)〉 and 〈φ(y)〉 are independent. For
now we consider the case in which 〈φ〉 is constant, and consider perturbations about it
in order to determine the spectrum of excitations of the model. Since V(φ) ≥ 0, then
〈φ〉 being a (local) minimum of the potential implies that V(〈φ〉) = 0. Thus the VEV
has the following two possibilities:

〈φ〉 =


0, Coulomb or Symmetric Phase,

νeiα, Higgs or Broken Phase,
(2.7)

where α = α(x) is arbitrary. To appreciate this fact, we have plotted the scalar field
potential 2.2 in the figure 2.2.

In the first possibility, 〈φ〉 = 0, perturbations of the fields around the VEV determine
the following spectrum:

• A charged boson–corresponding to the complex field φ. Its mass is mφ = λν2, and
it carries two degrees of freedom.

• A massless real gauge boson–corresponding to the gauge field Aµ–carrying two
degrees of freedom.

We notice that the spectrum corresponds to a Coulomb or symmetric phase. In the
figure 2.2, this phase corresponds to the blue region.

On the other hand, the second possibility, 〈φ〉 = νeiα, determines a Higgs or broken
phase–corresponding to the orange region of the figure 2.2. More precisely the phe-
nomena of spontaneous symmetry breaking or Higgs mechanism occurs, and the gauge
boson becomes massive. The spectrum of the theory can be found as we discussed for
the abelian-Higgs model. It is always possible to perform a gauge transformation such
that we fixed the gauge to be unitary, i.e. 〈φ〉 = ν. Let’s consider a perturbation of φ
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Figure 2.2.: Scalar field potential 2.2. The minimum of V(φ)–achieved when V(φ) = 0–is
degenerate. The blue dot corresponds to the minimum at 〈φ〉 = 0, while
the dashed line represents the minimum at 〈φ〉 = νeiα. These minima
correspond to a Coulomb, and a Higgs phases of the model, respectively.
The solid black line corresponds to the scalar field potential when φ is
constrained to be a real field.

about its VEV, namely φ =
(

ν + h√
2

)
eiθ . Here h and θ are real fields. Rewriting the

potential in terms of h and θ we find:

V(φ) ≡ V(h) = 2λ2ν4h2 + 3
√

2λ2ν3h3 +
13
4

λ2ν2h4 +
3
√

2
4

λ2νh5 +
1
8

λ2h6.

In order to bring the Lagrangian to the canonical form we introduce the field

Bµ = Aµ −
1
e

∂µθ,

and change the field variables (φ, Aµ) to (h, Bµ). Thus the Lagrangian 2.3 becomes

L[h, Bµ] = −
1
4

BµνBµν + e2ν2BµBµ +
1
2

∂µh∂µh + 2λ2ν4h2 + Lint, (2.8)

where Bµν = ∂µBν − ∂νBµ, and the interaction part of the Lagrangian is

Lint =3
√

2λ2ν3h3 +
13
4

λ2ν2h4 +
3
√

2
4

λ2νh5 +
1
8

λ2h6

+
√

2e2νBµBµh +
1
2

e2BµBµh2.

From the canonical form 2.8, we get that the spectrum of the model in the Higgs
phase is composed by:
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• A neutral Higgs boson–corresponding to the scalar field h. Its mass is mh = 2λν2,
and it carries one degree of freedom.

• A massive vector boson–corresponding to the vector field Bµ. Its mass is mv =√
2eν, and it carries three degree of freedom.

By way of conclusion of this section, we observe that the scalar field potential 2.2 can
also be understood as a polynomial approximation to the finite temperature effective
potential–at the critical temperature Tc–of a model undergoing a first order phase
transition. In the φ6 model, Coulomb and Higgs phases can arise in different regions
of space–the phase of certain region being determined by the VEV of the scalar field
φ. Qualitatively, this behaviour is the same for the abelian-Higgs model, with effective
potential 1.17, at T = Tc.

The finite temperature effective potential at Tc–shown by (e) of figure 1.2–can be
approximated by a sextic potential, V6(ϕ), as it is shown in figure 2.3. The corresponding
parameters λ and ν (see equation 2.2) can be constrained by the following two conditions.

• Firstly, we imposed that the VEV of ϕ is the same for both potentials–the effective,
and the sextic potential–implying that the minima of the potentials coincides. The
norm of the field at the non-zero minimum of the effective potential can be found
numerically3. Then, this value constraints the parameter ν to be

ν = aσ,

where a is a dimensionless parameters depending on ν0 (see equation 1.15).

• Secondly, we impose that the height of the potential barrier separating the different
minima, ∆V, is the same for the effective, and the sextic potential. For Veff(ϕ, Tc),
∆Veff can be computed numerically in terms of µ2

0σ2, while for V6(ϕ) we obtained

∆V6 =
4
27

λ2ν6,

and it is achieved at |ϕ| = 1√
3
ν. Equating both heights, and solving for λ, one gets

λ = b
µ0

σ2 ,

where b is a dimensionless parameter depending on ν0.

Finally, the masses of the Higgs boson, and the Gauge boson can be estimated as
mh ∼ µ0, and mv ∼ eσ. Figure 2.3 shows an explicit example of these estimations.

So far we have shown that there exist two different phases in the φ6 model. If they
are realised simultaneously in regions of space that are causally disconnected, different
topological defects would be formed due to the Kibble mechanism. We recall that one
of the motivations for considering the φ6 model was the existence of defects. In the
following section we will show that Domain Walls, and vortices are part of the model
spectrum.

3It is possible to find the minimum and maximum of the effective potential using the Lambert W function,
also called the product logarithm. However, for our discussion, an explicit expression is not required.
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Figure 2.3.: Finite temperature effective potential and its polynomial approximation.
The effective potential at critical temperature Tc, Veff(φ, Tc), is given by the
equation 1.17, while the polynomial approximation, V6(φ), is given by 2.2. In
the plot ν0 = 0.25, and the critical temperature corresponds to Tc = 0.095eσ.
The parameters in V6(φ) are constraint to be ν = 0.61σ λ = 2.73 µ0

σ2 . The
corresponding Higgs boson mass, and vector boson mass are mh = 2.01µ0,
mv = 0.86eσ.

2.2.3. Topological Defects in the φ6-Model

As we described in section 1.2, the classification of the possible topological defects that
can appear during a phase transition of a certain model is determined by the topology
of its vacuum manifold M, and its homotopy groups[4]. We proceed in such way to
classify the defects in the φ6 model.

The Topology of the Vacuum ManifoldM
The equation 2.7 determines the vacuum manifold M of the theory, up to gauge

transformations. More explicitly, let G = U(1) be the gauge group, and φ0 = 〈φ〉 the
VEV of the Higgs field. The corresponding unbroken subgroup–or little group–of G
respect to φ0 is4

Hφ0 = {g ∈ G|gφ0 = φ0},

and the quotient group G/Hφ0 corresponds to the different field configurations that
are not equivalent under gauge transformations. Since φ0 can take different values, we
discuss them separately.

If φ0 = 0, one finds that H0 = U(1), and the quotient group is

MC ≡ G/H0 = 1.

Instead, if φ0 = νeiα, one finds that Hνeiα = {I}, where I is the identity element of the G
group. Since α is arbitrary, we identify Hν ≡ Hνeiα . The quotient group in this case is

MH ≡ G/Hν = U(1).

4Here gφ0 is the action of g over the field φ0.
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Finally, the vacuum manifold can be identified with the disjoint union

M≡MC∪̇MH.

These two disconnected components correspond to the Coulomb phase, and the Higgs
phase, respectively. This correspondence can be appreciated graphically in figure 2.2.
MC is homeomorphic to the point φ = 0–corresponding to the blue dot –whileMH is
homeomorphic to the circumference S1 given by φ = νeiα–corresponding to the dashed
line.

Now, we compute the homotopy groups of the vacuum manifold, πn(M). For n = 0,5

π0(M, ν) = {[ f0], [ f1]}, (2.9)

where f0, and f1 are maps from the 0-sphere–S0 = {−1, 1}–toM given by

f0(1) = ν, f0(−1) = ν,

f1(1) = ν, f1(−1) = 0,

and [cν], [ fν] are the corresponding homotopy classes. Each homotopy class [ f ] ∈
π0(M, ν) correspond to a different connected component of M. In consequence
π0(M, 0) and π0(M, ν) can be identified with each other.

π0(M) ≡ π0(M, 0) ≡ π0(M, ν)

For n = 1, we compute the first homotopy group–also known as fundamental group–
for each connected componenet ofM, separeately:

π1(MH) ≡ π1(M, ν)

= π1(G/Hν)

= π1(U(1))

= Z.

(2.10)

π1(MC) ≡ π1(M, 0)

= π1(G/H0)

= π1(1)

= 0.

(2.11)

Lastly, for n ≥ 2,
πn(MC) = 0

πn(MH) = 0.
(2.12)

5Strictly speaking π0(M, x) is not a group but the set of homotopy classes,[ f ], of maps f : S0 →M with
base point x.
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Domain Walls and Vortex Lines in the φ6 Model

The criteria for topological defects existence in terms of the homotopy groups of M,
dictates that in the φ6 model different topological defects are part of the spectrum of the
model. The classification of these defects is as follows.

• By equation 2.9, |π0(M)| = 2. Thus, there can exist static field configurations that
depend on one space dimension and asymptotically approach two different phases.
We will refer to this configurations as (ν, 0)-Domain Walls. We remark here that
the (ν, 0)-Domain Walls in the φ6 model are different to the kink solutions in
φ4 Goldstone model. While a kink interpolates between two Higgs phases with
different VEV 〈φ〉, a (ν, 0)-Domain Wall interpolates between the Higgs, and the
Coulomb phases.

• By equation 2.10, π1(MH) = Z. Thus, there can exist static field configurations
that approach asymptotically the Higgs Phase with non-zero winding number. These
configurations are known as Vortices in (2 + 1) dimensions, and Strings–or Vortex
Lines–in higher dimensions. On the other hand, by equation 2.11, π1(MC) = 0,
and then there are not vortex configurations in the Coulomb phase

• By equation 2.12, πn(Mh) = πn(Mc) = 0, for n ≥ 2, and consequently there are
not monopoles nor textures in the spectrum of the φ6 model.

In the following chapters we will elaborate on each of these topological defects in the
φ6 model. In chapter 3, we discuss properties of the (ν, 0)-Domain Walls, and present
analytical solutions for the field configurations. In addition, vortex configuration are
discussed in chapter 4. Although analytical solutions for the vortex field configurations
are not know, we present approximate solutions to them.

Finally, the motivations to study this model become clearer. We required that the
Domain Walls can form a finite-size configuration that asymptotically interpolates two
broken phases with a core inside which the full symmetry group U(1) is restored.
Strictly speaking, such configurations are not topologically protected. To avoid misun-
derstandings, we will refer to this configuration as a Coulomb vacuum layer. As a first
approximation, a Coulomb vacuum layer can be achieved as a concatenation of two
(ν, 0)-Domain Walls: one interpolating between the Higgs and the Coulomb phase, and
a second one interpolating between the Coulomb and the Higgs phase. As a result,
inside the core of a Coulomb vacuum layer the full symmetry is restored as required,
while asymptotically in interpolates two Higgs phases.

We studied the interaction of vortices and Coulomb vacuum layers by a numerical
simulation of the classical evolution of fields. Our results bear out the erasure of defects
mechanism proposed by Dvali-Liu-Vachaspati. In the following chapters, we describe
in detail the Coulomb vacuum layers, the vortices, and their interactions. In chapter 5
we present our results, and discuss how the vortex unwinding occurs in the core of the
Coulomb Vacuum layer.
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3. Domain Walls and Coulomb Vacuum
Layers

In the φ6 model, described by the Lagrangian,2.3, there are two different phases: a Higgs
phase, and a Coulomb phase. If they are realised simultaneously in two neighbour
regions of space a (ν, 0)-Domain Wall would be formed.

A first approximation to the field profiles configuration, (φ, Aµ), in the transition
region between the two phases can be obtained by finding the field configuration
that minimises the energy functional 2.6, and maintains the asymptotic behaviour
interpolating the two phases.

-1.0 -0.5 0.5 1.0

0.02

0.04

0.06

0.08

0.10

0.12

Figure 3.1.: Scalar field potential 2.2 for a real scalar field φ. This plot corresponds to the
solid black line of figure 2.2. Observe that the vacuum manifold is restricted
toMDW = {−ν, 0, ν}

More precisely, let’s assume for now that the field φ = φ(t, x, y) depends only on the
coordinate x. Moreover, let’s assume that the Domain Wall does not carry electric charge.
Therefore, we can fix Aµ = 0, and φ to be real. Therefore, the scalar field potential is
constrained as it is shown in figure 3.1. Redefining the field φ as φ = χ√

2
, where χ is a

real field, the Lagrangian 2.3 becomes

LDW =
1
2

∂µχ∂µχ− λ2 χ2

2

(
χ2

2
− ν2

)2

. (3.1)

With these considerations, the canonical Lagrangian 3.1 corresponds to a model in
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3. Domain Walls and Coulomb Vacuum Layers

(1 + 1) dimensions for a real scalar field χ and potential

Vχ ≡ λ2 χ2

2

(
χ2

2
− ν2

)2

.

We are interested in finite energy, and static field configurations of χ(x), with the
following asymptotic behaviour approaching two different phases:

lim
x→−∞

χ(x) = 0

lim
x→∞

χ(x) =
√

2ν
(3.2)

The field equation 2.4 becomes

χ′′ =
dVχ

dχ
, (3.3)

where prime denotes derivative respect to x. Solutions to equation 3.3 have been studied
by Vakhid et.al [36]. These solutions are precisely found when the Bogomolny bound–or
BPS condition–is saturated, as we show bellow. The energy functional 2.6 is rewritten in
terms of χ as

E[χ] =
∫

dx
[

1
2

χ′2 + V
(

χ√
2

)]

=
∫

dx

1
2

(
χ′ ±

√
2V
(

χ√
2

))2

∓ χ′

√
2V
(

χ√
2

)
≥ ∓

∫
dxχ′

√
2V
(

χ√
2

)
.

(3.4)

When the bound is saturated, one gets:

χ′ = ±

√
2V
(

χ√
2

)
= ±λχ

(
χ2

2
− ν2

)
.

(3.5)

Solving 3.5 for χ(x)√
2

, one finds the field profiles

φDW(x) = ±ν

√
1
2
(1± tanh (λν2x))

= ±ν

√
1

1 + e±2λν2x
.

(3.6)

There are four different solutions, and the reason is the following. When one restricts
φ to be a real field, the vacuum manifold is reduced toMDW = {−ν, 0, ν} (see figure
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3.1). Then, the possible asymptotic behaviours of a Domain Wall are: (0, ν), (0,−ν),
(−ν, 0),(−ν, 0), where we used the notation1 (φ−, φ+). Using the same convention, and
recalling that mh = 2λν2, we will refer to the different Ansätze

φ(±ν,0)(x) ≡ ±ν

√
1

1 + emhx , (3.7)

φ(0,±ν)(x) ≡ ±ν

√
1

1 + e−mhx , (3.8)

as the (±ν, 0)-Domain Wall, and (0,±ν)-Domain Wall profiles, respectively. The asymp-
totic behaviour 3.2 corresponds to the (0, ν)-Domain Wall profile. This profile is plotted
in figure 3.2.
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Figure 3.2.: (0, ν)-Domain Wall profile, φ(0,ν)(x).

Highlight the fact that the solutions approach exponentially fast the VEV of the
corresponding asymptotic phase. The energy density (the integrand of the left hand
side of equation 2.6) for a real field φ(t, x) is

E [φ(t, x)] = ∂tφ
2 + ∂xφ2 + V(φ). (3.9)

For a (0, ν)-Domain Wall, it reduces to

ε(x) ≡ E [φ(0,ν)(x)] = φ′(x)2 + V(φ(x))

= 2λ2ν6 e2λν2x(
e2λν2x + 1

)3

=
m3

h
4λ

emhx

(emhx + 1)3 .

(3.10)

1φ± ≡ limx→±∞ φ(x). Compare to equation 1.22
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3. Domain Walls and Coulomb Vacuum Layers
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Figure 3.3.: (0, ν)-Domain Wall energy density 3.10

The energy density 3.10 has a maximum at x = − log(2)m−1
h , corresponding to two

times the maximum of the scalar field potential, εmax = 8
27 λ2ν6 =

m3
h

27λ . Notice that

ε(x) ∼
m3

h
4λ

emhx, for x → −∞, and

ε(x) ∼
m3

h
4λ

e−2mhx, for x → ∞.

Thus, ε(x) is significantly different from zero only if |x − log(2)m−1
h | . rDW ∼ m−1

h ,
where the size of the (0, ν)-Domain Wall, rDW, is of order m−1

h . Integrating ε(x), we get
the total energy

MDW =
m2

h
8λ

.

In the weakly coupled regime, λ � mh, thus mh � MDW. Then, the Compton wave-
length corresponding to the energy of the (0, ν)-Domain Wall–λDW = Mk

−1–is much
smaller than the classical size of the Wall–rDW–i.e.

rDW

λDW
∼ mh

λ
� 1.

A similar discussion would follow for the (0,−ν), (ν, 0), and (−ν, 0)-Domain Walls.
One finds that the size, and the total energy of the Walls is the same for all the
four topological sectors. Consequently, we will treat a Domain Wall essentially as
a classical object. These results should not be surprising since, in general, Domain
Walls are analogous to the Kink solutions of the Goldstone Model, and thus these field
configurations are expected to be highly massive in the weakly coupled regime[12].

The solutions 3.6 are not invariant under spatial translations, nor boost transforma-
tions. However, the transformed field configurations

φ(x0,u)(t, x) = φDW(γu((x− x0)− ut)), (3.11)
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3.1. Coulomb Vacuum Layer: the (±ν, 0,±ν) Domain Wall

are also solutions to the field equation 2.4, where u represents the velocity of the Wall,
and γu = (1− u2)−

1
2 is the correspondent Lorentz factor. The total energy becomes

M(x0,u) = γu MDW. We will refer to these solutions as boosted Domain Walls.

3.1. Coulomb Vacuum Layer: the (±ν, 0,±ν) Domain Wall

One of the motivation to study the φ6 model, is the possibility of constructing a field
configuration interpolating between two different Higgs phases with a core inside which
the symmetry is restored, i.e. the core is in the Coulomb phase. To show that such
field configurations are realizable, lets consider again a real (charge less) scalar field φ.
Then if a (±ν, 0)-Domain Wall, and a (0,±ν)-Domain Wall are concatenated, then the
symmetry is restored in the region between the two Domain Walls. The Ansätze for
these configurations are given by:

φ(±ν,0,±ν)(x) = φ(±ν,0)

(
x +

l
2

)
+ φ(0,±ν)

(
x− l

2

)
, (3.12)

where l is the distance between the Domain Walls. We will refer to these field configura-
tions as a Coulomb Vacuum Layer, or a (±ν, 0,±ν)-Domain Wall. Figure 3.4 shows the
Coulomb Vacuum Layer profiles corresponding to l = 40m−1

h .
Dynamical Stability of (±ν, 0,±ν)-Domain Walls
Notice that the Ansätze 3.12 is just an approximate solution to the field equation 2.4.

Therefore, it is expected to be unstable under time evolution. The dynamical evolution
of (±ν, 0,±ν) Domain Wall profiles have been investigated by Vakhid et al. in [36]. They
used the collective coordinate approximation, and numerical simulations to study the
classical stability of the Ansätze.

There are two conclusions of [36] that are relevant for our discussion. The first one
is respect to the dynamical evolution of the (ν, 0, ν)-Domain Wall2.It is energetically
favourable for the (ν, 0), and the (0, ν)-Domain Walls to attract each other, and eventually
they collide. As a consequence, the Coulomb Vacuum Layer is unstable, but the two
colliding Walls can form a long-lived bound state (referred to as bion). We have
reproduced these phenomena by solving the field equation 2.4 numerically. An example
of the found solutions is shown in figure 3.5.

The second relevant conclusion is respect to the dynamical evolution of the (−ν, 0, ν)

Domain Wall3. In this case, the two Walls repel each other till they get a limit speed, and
the parameter l increases infinitely. We also reproduced these phenomena numerically,
and an example of the results is shown in figure 3.6.

In general, the unstable behaviour of a Coulomb Vacuum Layers is independent of its
core size, l. However, the time scale during which a Layer is stable is proportional to l.
Moreover, we found that, if 40m−1

h . l, the Domain Wall can be considered to be stable
for time scales of order O(102m−1

h ). Figure 3.7 shows this behaviour. We conclude this

2A similar discussion applies to the evolution of the (−ν, 0,−ν) Domain Wall.
3A similar discussion applies to the evolution of the (ν, 0,−ν) Domain Wall
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3. Domain Walls and Coulomb Vacuum Layers
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Figure 3.4.: Coulomb Vacuum Layer profiles, with a core size l = 40m−1
h

section with this important fact, which will be relevant for the interaction of Coulomb
Vacuum Layer with vortices.

3.1.1. Complex Coulomb Vacuum Layers: the (eiαν, 0, ν) Domain Wall

If we restrict to (1 + 1) dimensions, and we assume the field φ to be real, the topological
defects are the (±ν, 0) or (0,±ν) Domain Walls. It is possible to generalise this Domain
Walls if the field φ is complex. In this case there would be a phase α determining the
asymptotic relative phase of the field φ in the broken phase. Then, using the same
convention as before, there could be produced (eiαν, 0) or (0, eiαν)-Domain Walls. We
study the time evolution of the (eiαν, 0) or (0, eiαν)-Domain Walls for the case of global,
and gauge symmetry. In the case of global U(1) symmetry, the field configuration that
minimises the energy is the one which has constant phase α. On the other hand, in the
case of U(1) gauge symmetry, the difference in phase between the two broken phases,
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3.1. Coulomb Vacuum Layer: the (±ν, 0,±ν) Domain Wall
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Figure 3.5.: Dynamical evolution of the (ν, 0, ν) Domain Wall. We observe the creation
of a bion after the collision of the two Walls. (a) shows the time evolution of
the field profile, while (b) shows the time evolution of the energy density.
For this simulation, we have fixed the parameters ν = 1, and λ = 1/2,
corresponding to mh = 1. At t = 0, the core size of the Coulomb Vacuum
Layer is l = 15m−1

h .
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Figure 3.6.: Dynamical evolution for the (−ν, 0, ν) Domain Wall. (a) shows the time
evolution of the field profile, while (b) shows the time evolution of the
energy density. For this simulation, we have fixed the parameters ν = 1, and
λ = 1/2, corresponding to mh = 1. At t = 0, the core size of the Coulomb
Vacuum Layer is l = 15m−1

h

can be rotated away, and the time evolution becomes similar to the time evolution of
a (ν, 0, ν)-Domain Wall. According to our simulations, we can extend our previous
results for complex scalar fields: a Coulomb Vacuum Layers can be considered stable
for O(102m−1

h ), if l > 40m−1
h . The results of the performed simulations can be found in

the following web page https://github.com/jusvalbuenabe/TMP-Valbuena
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3. Domain Walls and Coulomb Vacuum Layers
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Figure 3.7.: Dynamical evolution of a metastable Coulomb Vacuum Layer. At t = 0, the
core size of the Coulomb Vacuum Layer is l = 40m−1

h . The time evolution of
the field profile, and the energy density of (ν, 0, ν)-Domain Wall are shown
in (a) and (b), respectively. Similarly, (c) and (d) show the time evolution of a
(−ν, 0, ν)-Domain Wall. For these simulations, we have fixed the parameters
ν = 1, and λ = 1/2, corresponding to mh = 1. At t = 0, the size of the Layer
is l = 40. We observe that, for time scales of order O(102m−1

h ), the Coulomb
Vacuum Layers can be considered as stable.
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3.2. Domain Walls in (d + 1)-Dimensions

3.2. Domain Walls in (d + 1)-Dimensions

In general, the problem with extending a Domain Wall solution to (d + 1) dimensions is
that the energy would become infinite. However at the moment of the phase transition
it is still possible that the VEV of the Higgs field inside a finite region is in a certain
phase while outside it is in another phase. The boundary of these two regions would be
a hyper surface of dimension d− 1, and it would be stable if its mean curvature is 0,
as it is discussed by Kibble in [11]4. Let’s assume that the hyper-surface separating the
two regions is not stable, and that it can be approximated by hyper-sphere of radius
R >> m−1

h . Then the field profile would depend only on the radial coordinate r, and the
transition region between the two different phases can be approximated by a Domain
Wall profile:

φ(r) = φDW(r− R).

The energy (per unit area)–or tension–of a (0, ν) Domain Wall is given by the energy
functional

σDW =
∫ ∞

−∞
dz
(

∂zφDW
2 + V(φDW)

)
=

1
2

λν4

=
m2

h
8λ

.

(3.13)

In (1 + 1) dimensions, 3.13 corresponds to the total mass of the Domain Wall, MDW ,
while in (2 + 1) dimensions, it corresponds to the tension per unit length of the Domain
Wall. The total energy of the Domain Wall is then the Domain Wall tension times the
area of the hypersphere times the Lorentz factor due to the velocity of the wall:

E = γσDWSn−1Rn−1,

where Sn−1 = 2πn/2

Γ(n/2) , and γ =

(
1−

(
dR
dt

)2
)−1/2

. At a certain moment, the bubble will

have a maximum radius R0 and, since its mean curvature is non-0, it will start shrinking.
As a first approximation to this process, we can assume the energy of the Domain Wall
is conserved, i.e. we neglect radiative effects. Then we have that

E0 = σDWSn−1Rn−1
0 = γσDWSn−1Rn−1

Notice that this can be generalised to any type of Domain Wall in arbitrary dimensions
i.e. this relation is independent of σDW . It follows then that Rn−1

0 = γRn−1, which in

4In some curved backgrounds, as the a Schwarzschild-Rindler-anti–de Sitter spacetime, it is possible to
find metastable configurations as discussed in [16]
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Figure 3.8.: Solutions to equation 3.14 for d = 1, 2, 3, 4

turns implies (
1−

(
dR
dt

)2
)

=

(
R
R0

)2(d−1)

. (3.14)

The solutions to the equation 3.14, for d = 1, 2, 3, 4, assuming R(t = 0) = R0, are shown
in the figure 3.8.

In (2 + 1) dimensions, the Domain Wall is a curve, and the bubble configuration
would correspond to a circle of radius R. In this case the solution to equation 3.14 is
R(t) = R0 cos

(
t

R0

)
. For small time scales ∆t compared to the curvature radius R, where

m−1
h � R < R0 = E0

σDW
, the change of the radius is

∆R
R

=
∆t
R

(
1− R

R0

)
,

while the change of the Domain Wall velocity is

∆Ṙ = −∆t
R0

(
R
R0

)
.

Although, the field configuration is unstable, for time, and length scales much smaller
than R, but greater than m−1

h –i.e. scales in the vicinity of the hypersphere–it is reasonable
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Figure 3.9.: Cauchy data for a boosted (−ν, 0, ν)-Domain Wall. Here mh = 1, l = 40,
v = 0.8, and x0 = −40. The square mesh has side length LDW = 140 and the
corresponding total energy is is mDW = 116.6.

to approximate the field configurations by an extended boosted Domain Wall moving
with a relativistic velocity v5. It is then reasonable to use the boosted profile

φ(t, x, y) = φ(±ν,0,±ν)(γ(x− vt− x0))

as an ansatz to approximate the field profile of a (±ν, 0,±ν)-Domain Wall in (2 + 1)-
dimensions.

to define our Cauchy data φCD. At t = 0,

φCD(0, x, y) = φ(±ν,0,±ν)(γ(x− x0))

∂tφCD(0, x, y) = −vγ∂xφ(±ν,0,±ν)(x)

where γ = 1√
1−v2 is a Lorentz factor and x0 is the initial position of the Domain Wall.

Since we consider neutral Domain Walls we have Ai = 0 and ∂t Ai = 0. An example of
such Cauchy data is shown in figure 3.9.

5Notice that, as shown in figure 3.8c, if R < 0.8R0 then v = |Ṙ| > 0.6. For higher dimensions the Domain
Wall’s speed increases faster and it becomes relativistic at bigger radius.
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Figure 3.10.: Field configuration φ(t, x) for the boosted (−ν, 0, ν)-Domain Wall. Here
mh = 1, l = 40, v = 0.8 and x0 = −40. Observe that the change in the
width of the Coulomb vacuum layer, ∆l is negligible in comparison to l.
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Figure 3.11.: Time evolution of the total energy for the boosted (−ν, 0, ν) Domain Wall.
Here mh = 1, l = 40, v = 0.8 and x0 = −40. The total energy for this
configuration is expected to be γEDW = 116.66. For time scales O(100m−1

h ),
we observe that this configuration is metastable

We discussed the Domain Wall classical stability in (1 + 1) dimensions in terms of
the stability of the parameter l. Since we are interested in Domain Walls that are stable
during the interaction whit the vortex, we will consider l big enough such that the
change of the with, ∆l, is negligible during the interaction time. This can be estimated
numerically as shown in figure 3.5 and 3.6. For time scales of order O(102m−1

h ) we
found that 40m−h 1 / l is an acceptable bound. We confirm this estimation in (2 + 1)
dimension proceeding similarly as in (1 + 1)-dimensions. As a stability criteria, we
study the evolution of the total energy

mDW = 2σDW LDW = λν4LDW ,

where LDW is the length of the Domain Wall. Figure 3.10 shows the time evolution of
the Domain Wall section for y = 0, and figure 3.11 time evolution of the total energy,
mDW . The initial conditions we used are shown in figure 3.9. We conclude that that our
bound–40m−1

h / l–applies also to (2 + 1) dimensions.
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4. Vortex Lines

As it was disccussed in the sections 1.2.2, and 2.2.3, vortex lines–or cosmic strings–arise
in models in which the vacuum manifoldM is not simply connected. This is the case of
the φ6-model, with Lagrangian 2.3, and π1(MH) = Z (see equation 2.10). Consequently,
vortex lines are part of the spectrum of the φ6-model, and they arise in the Higgs
phase. Each homotopy class of π1(MH) corresponds to a different winding number, n,
of different vortex solution. These solutions are similar to the the Nielsen-Olesen [18]
vortex lines that arise in the abelian-Higgs model. Lets discuss now the corresponding
field profile configurations.

4.1. Topological Charge: the Winding Number

A map g : Sm → Sm, θ 7→ g(θ), is characterised by an integer number, n, that represents
the number of times the domain wraps around the range of f . n is known as the degree
of g. In the case m = 1, n is known as the winding number, and corresponds to the
homotopy class of g: n = [g] ∈ πm(Sm) = Z. For details, we refer the reader to chapter
7 of [3]. Other useful bibliography can be [37] or [38].

n =
1

2πiν2

∮
dxiφ∗∂iφ,

and magnetic flux

n =
e

2π

∫
Bd2x,

B confinement

4.2. Field Profile Configuration

We look for field configurations with finite energy, that asymptotically approach the
Higgs Phase, and winds around M n times. As a first approach, we look for static
cylindrical-symmetric solutions (φ, Aµ) in the temporal gauge A0 = 0. The energy
functional 2.6 then becomes

E[φ, Aµ] =
∫

d2x
[

1
4

FijFij + (Diφ)
∗Diφ + V(φ)

]
(4.1)

The requirement that 4.1 is finite, and that asymptotically the system is in the Higgs
phase, implies that

|φ| → ν, as r → ∞.
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4. Vortex Lines

Then, for sufficiently large radius r, the modulus of φ approximates ν, but the phase of
φ may depend on the polar angle θ:

Arg(φ) = g(θ).

The corresponding winding number1 of g is invariant under smooth gauge transforma-
tions. Moreover, the winding number is a topological number characterizing the field
configuration, and it is an integral of motion[3]. In fact, the winding number can be
written as

n = lim
r→∞

1
2πiν2

∮
Cr

dxi 1
2
(φ∗∂iφ− φ∂iφ

∗) (4.2)

where Cr is the circle of radius r, and centered at the origin. The gauge invariance is now
explicit. On the other hand, one can show that two field configurations with the same
winding number differ by a phase factor with winding number zero[3]. Consequently,
field configurations with a fixed winding number n are (asymptotically) equivalent up
to a smooth gauge transformations. For a given configuration with winding number
n, we can perform a gauge transformation such that the argument of φ is chosen to be
g(θ) = nθ. This means that asymptotically, for a fixed polar angle θ, the scalar field
approaches the Higgs phase (equation 2.7) as:

φ→ νeig(θ) = νeinθ , as r → ∞. (4.3)

In addition, the finiteness of 4.1 implies that, asymptotically, |Diφ| must decrease
faster than 1

r . Since

∂iφ→ (νeinθ)

(
− in

r
εijnj

)
,

where εij is the antisymmetric tensor with ε12 = 1, and ni =
xi
r ; then

Ai →
1
e

∂ig(θ) = −
n
er

εijnj, as r → ∞. (4.4)

Notice that, the asymptotic behaviour of Aµ is pure gauge, and that Fij decreases faster
than 1

r2 .
The asymptotic conditions 4.3, and 4.4 are invariant under spatial rotations and global

phase transformations of φ. Therefore, the most general–up to gauge transformations–
invariant ansätze for the field profiles are:

φ(r, θ) = νeinθ F(r), (4.5)

Ai(r, θ) = − n
er

εijnj A(r), (4.6)

1A map g : Sm → Sm, θ 7→ g(θ), is characterised by an integer number, n, that represents the number of
times the domain wraps around the range of f . n is known as the degree of g. In the case m = 1, n is
known as the winding number, and corresponds to the homotopy class of g: n = [g] ∈ πm(Sm) = Z. For
details, we refer the reader to chapter 7 of [3]. Other useful bibliography can be [37] or [38]).
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4.2. Field Profile Configuration

where F(r), and A(r) are smooth numerical functions that have the following asymptotic
behaviour:

F(r)→ 1,

A(r)→ 1.

Moreover, the requirement that the fields are smooth at 0 implies that:

F(0) = 0,

A(0) = 0.

Substituting the ansätze 4.5, and 4.6 in the field equations 2.4, and 2.5, we find the
following system of equations for A(r) and F(r):

0 =− rF′′(r)− F′(r) +
(1− A(r))2

r
n2F(r)

+
m2

h
4

rF(r)
(

F(r)2 − 1
) (

3F(r)2 − 1
) (4.7)

0 = −A′′(r)
r

+
A′(r)

r2 − m2
v

r
(1− A(r))F(r)2 (4.8)

Solutions to the equations 4.7, and 4.8 determine the field profiles 4.5, and 4.6, which
we will refer to as the Vortex Profiles. Analytical solutions for F, and A are not known
so far, but approximate solutions for small and large r can be found as we discussed
bellow.

4.2.1. Behaviour for r → ∞

For the limit r → ∞, we redefine the functions A, and F as A(r) = 1 − a(r), and
F(r) = 1− f (r). Then, the equations 4.7, and 4.8 can be linearized–by taking the leading
order terms in a, and f –as:

f ′′(r) +
f ′(r)

r
−m2

h f (r) = 0

a′′(r)− a′(r)
r
−m2

va(r) = 0

These equations can be solved in terms of the modified Bessel functions of the second
kind Kn(z). The solutions are then:

F(r) ≈ 1− K0(mhr) ≈ 1−O
(

e−mhr
√

r

)
A(r) ≈ 1−mvrK1(mvr) ≈ 1−O

(√
re−mvr) (4.9)
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4. Vortex Lines

However, the asymptotic approximation 4.9 is valid if mh ≤ 2mv. If mh > 2mv, a more
accurate analysis is required. Expanding 4.7, and 4.8 up to second order in a, and f , the
equations 4.7, and 4.8 become:

f ′′(r) +
f ′(r)

r
−m2

h f (r) +
9
2

m2
h f (r)2 +

n2a(r)2

r2 = 0 (4.10)

a′′(r)− a′(r)
r
−m2

va(r) + 2m2
va(r) f (r) = 0 (4.11)

As discussed by Perivolaropoulos in [39], if mh > 2mv the last term of 4.10 is not small
compared to the other terms of the equation. In consequence, to study the asymptotic
behaviour of the vortex solution, we consider the following ansatz:

f (r) =
(

c f0 +
c f1

r
+O

(
1
r2

))
rα f e−γ f r

a(r) =
(

ca0 +
ca1

r
+O

(
1
r2

))
rαa e−γar

(4.12)

where ca0 , ca1 , c f0 , c f1 are non-zero constant coefficients and αa, γa and α f , γ f determine
how fast a and f approach 0, respectively. As we discuss in the appendix A.2, the
constants ca0 , and ca1 constraint c f0 , c f1 , and we conclude that the functions A and F can
be asymptotically approximated in terms of two parameter family of solutions.

Depending on the values of mh of mv, the φ6-model can be in two different regimes,
and the asymptotic approximations for A and F are different–as we present below.

• Regime mh ≤ 2mv:

A(r) = 1− ca0

√
re−mvr,

F(r) = 1− c f0

e−mhr
√

r
,

(4.13)

where ca0 and c f0 are the independent parameters. The core of the vortex has two
characteristic lengths: m−1

h and m−1
v . The first corresponds to the size of the scalar

field profile, while the second corresponds to the size of the vector field profile.

• Regime mh > 2mv:

A(r) = 1−
(

ca0

√
re−mvr + ca1

e−mvr
√

r

)
,

F(r) = 1−
(

c f0

e−2mvr

r
+ c f1

e−2mvr

r2

)
,

(4.14)

where

c f0 =
c2

a0
n2

m2
h − 4m2

v
,
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4.3. Numerical Approximations to the Vortex Profiles

c f1 =
2ca0(ca0 mv + ca1(m

2
h − 4m2

v))n2

(m2
h − 4m2

v)
2

.

In this regime, ca0 , and ca1 are the independent parameters. We highlight that the
characteristic lengths of the scalar, and the vector field profiles of the vortex are
(2mv)−1, and m−1

v , respectively. Thus, their size are not independent from each
other and are of order O(m−1

v ).

4.2.2. Behavior for r → 0

For the limit r → 0, A(r) and F(r) can be approximated by polynomials:

F(r) =
N

∑
i=1

biri,

A(r) =
N

∑
i=1

ciri,

where ci, and bi are constant coefficients for i = 1, . . . , N, and N is sufficiently large.
Substituting this ansatz in 4.8 and 4.7, and requiring the leading order to be zero, we
find the following approximations for A and F for different winding numbers n:

F(r) = brn +
b
(
m2

h − 8cn2)
16(n + 1)

rn+2,

A(r) = cr2 − b2m2
v

4n(n + 1)
r2n+2,

(4.15)

where b, and c are independent parameters, and depend on n. Moreover, note that b
has different dimensionality for different n. Note also that F has an n-th order zero at 0.
We conclude that, for r → 0, it is also truth that A and F can be approximated by two
parameter family of solutions, as we discussed in the limit r → ∞. This conclusion is
crucial for finding numerical approximations to the field profiles, as we discuss in the
next section.

4.3. Numerical Approximations to the Vortex Profiles

For intermediate values of r, explicit solutions to the equations 4.8 and 4.7 are not
known, but approximate solutions can be obtained numerically. We have found these
solutions for different parameters of the theory, using the shooting method that we
describe in the appendix A.3. Figure 4.1 shows an example of the numerical solutions
A, and F, and the asymptotic analytical approximations.

Proceeding as it is described in the appendix, we found the numerical approximations
to the functions A, and F for different parameters of the theory, (mv, mh, n). In what
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Figure 4.1.: Analytical approximations to the Vortex profile functions F and A. The
approximations are given by the equation 4.13 for r → ∞, and the equation
4.15 for r → 0. In this example, mh = 1, mv = 1 and n = 1. We found
that the independent parameters are b = 0.346, c = 0.163, ca0 = 3.23, and
c f0 = 6.86.
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Figure 4.2.: Numerical approximations to the Vortex profile functions A, and F, when
mh = 1, and mv = 1. Here, the dependence of the core size on the winding
number, n, can be observed. Note also that the asymptotic behaviour of A(r)
and F(r) does not depend on n, as it is expected from equation 4.13.

follows we have set ν = 1 unless stated otherwise. We present some of the approxima-
tions that we found for different masses regimes. We refer the reader to the chapter 5
for more details in the numerical simulation of the time evolution.

Regime mh ≤ 2mv:

Figure 4.2 shows the numerical approximations for the case mh = 1, and mv = 1, while
figure 4.3 shows the case mh = 1, and mv = 10. Different colors correspond to different
winding numbers n = 1, 2, 3, 4. The analytical approximations for r → 0 , and r → ∞,
and the corresponding numerical coefficients are presented in the tables A.1 and A.2.

Regime mh > 2mv

The figure 4.4 shows the numerical approximations for the case mh = 1, and mv = 0.1,
for n = 1, 2, 3, 4. The asymptotic behaviour and the corresponding numerical coefficients
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Figure 4.3.: Numerical approximations to the Vortex profile functions A, and F, when
mh = 1, and mv = 10, for different winding numbers n.

are presented in the table A.3.
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Figure 4.4.: Vortex Profiles for mh = 1, and mv = 0.1. Comparing this profiles to the
profiles shown in figure 4.2, the gauge core size increases, as it expected,
approximately 10 times. On the other hand, note that the scalar core size is
bigger than the one found in the previous regime increases with n

4.3.1. Numerical Stability

The vortex solutions 4.5, and 4.6 are static, and stationary solutions to the field equations
2.4, and 2.5. These solutions are topologically protected. Thus, they are classically
stable under small perturbations. On the other hand, the numerical approximations
to the vortex solutions are not exact solutions, and can be treated as perturbations of
the vortex field configuration. We are interested in the classical evolution of the vortex
configuration, thus it is necessary to determine how stable the approximated solutions
are.

To determine the stability of the approximated solutions, we proceed to simulate
numerically the time evolution of the fields φ, and Aµ. We used the approximate vortex
profiles as initial condition. Following, we determined the stability of a solutions in
terms of the stability of the vortex mass, mvo, and its winding number, n. mvo, and n
are conserved quantities. However, numerically these quantities may vary over time
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4. Vortex Lines

in a finite region. If the relative errors of mvo, and n decrease over time, and they are
smaller than the numerical relative error of the simulation2, then we consider that the
corresponding approximate solutions is stable under time evolution. We describe bellow
the details of this criteria.

The Vortex Mass:
mvo is obtained by replacing 4.5, and 4.6 in 2.6, and integrating the energy density over

all space. Under time evolution, mvo is constant. Moreover, since the field configuration
is static, if the energy integral is done over a finite region, its value is also constant. We
perform the energy integral numerically at different times, and for a finite region inside
which the vortex is localised. We denote by mvo(t) the value of the integral at time t.
The mean value of mvo(t) over time is

〈mvo(t)〉 =
1
t

∫ t

0
dt′mvo(t′).

If the relative error

∆mvo(t) =

√√√√ 〈mvo(t)〉2 − 〈mvo(t)2〉
〈mvo(t)〉2

decreases over time, then the energy is approximately conserved inside the region of
integration, and we conclude that the mvo is stable under time evolution. On the contrary,
if ∆mvo increases, it means that mvo is not constant on the region of integration, and thus
we can conclude that approximated solution is not static. The second requirement–for
which ∆mvo ∼ O(10−3)–is motivated by the acceptable numerical error of our simulations.
In general, however, this requirement can be improved.

The Winding Number:
n can be computed by two different methods. In the first method, n is computed in

terms of the field φ–by equation 4.2. In the second method, n is computed in terms of
the magnetic field, B, while using the fact that the n is proportional to the magnetic
flux[3]. We can rewrite the ansatz 4.6 as

Ai(r, θ) =
n
e

A(r)∂iθ.

The corresponding magnetic field, has norm

B(r, θ) =
n
er

∂r A(r). (4.16)

Thus, using the Stokes theorem, the winding number can be computed as

n = lim
r→∞

e
2π

∮
Cr

dxi Ai(x, y)

=
e

2π

∫
d2xB(x, y).

(4.17)

2The numerical relative error for our simulations is O(10−3)
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Figure 4.5.: Vortex field configuration for the field φ–equation 4.5. Here n = 1, mh = 1,
mv = 1, and n = 1. The vector at the point (x, y) has components
(Re(φ(x, y)), Im(φ(x, y))). Consequently, the direction of each vector repre-
sents the phase Arg(φ(x, y)), while the colour represents the norm |φ(x, y)|.

Numerically, the first method can be carried out if the integral is computed over a
circumference Cr of radius r sufficiently large. For the second method, the integral
4.17 can be computed over the region bounded by Cr. We used the second method to
determine the winding number at different times in terms of the magnetic flux. We
denote by n(t) the value of the numerical integral at time t, and its mean value over
time by 〈n(t)〉. Analogous to the discussion of the vortex mass, if the relative error ∆n(t)
decreases over time, then the magnetic flux is approximately conserved on the region of
integration, and we conclude that n is stable under time evolution. Finally, we used as
stability criteria whether or not the approximate solutions conserve mvo, and n in the
region inside which the vortex is localised

We recall the reader that our purpose is to study the vortex-unwinding while encoun-
tering a Coulomb vacuum layer, and the classical time evolution of the fields during
these process. As we will discuss in the next chapter, the time evolution of mvo(t), and
n(t) is different when the vortex interacts with a Coulomb vacuum layer.

Vortex Time Evolution

Bellow we present the results of the simulation for the vortex profile with n = 1, mh = 1
and mv = 1. Figures 4.5, and 4.6 show the vortex profiles for φ and Aµ, respectively.
These field configurations were used as the initial conditions of the fields, and ∂t Ai = 0,
and ∂tφ = 0 as initial conditions of the time derivative of the fields. The figure 4.7 shows
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0
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0.2

0.3

Figure 4.6.: Vortex field configuration for the field Aµ–equation 4.6. . Here e = 1/
√

2,
mh = 1, mv = 1, and n = 1.The vector at the point (x, y) has components
(A1(x, y), A2(x, y)). The colour represents the norm |Ai(x, y)|

the corresponding energy density, and magnetic field. The white circumference has
radius r = 10, and determines the region of integration of mvo(t), and n(t).
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Figure 4.7.: Energy density, E[φ, Aµ], and magnetic field, B, of a Vortex with winding
number n = 1. Here mh = 1, and mv = 1. The white circumference has
radius r = 10, and determines the region of integration, Cr.

Figures 4.8, and 4.9 show the field configurations of φ, and B at different times t of
the simulation. Figure 4.10 shows the total energy, mvo(t), and the relative error ∆mvo(t).
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4.3. Numerical Approximations to the Vortex Profiles

Figure 4.8.: Scalar field, φ, at different times t, for the time evolution of a Vortex with
winding number n = 1. Here mh = 1, and mv = 1.

Figure 4.9.: Magnetic field, B, at different times t, for a Vortex with winding number
n = 1. Here mh = 1, and mv = 1.

At tmax = 150, we obtained mvo(tmax) = 5.18, and ∆mvo(tmax) = 5.0× 10−3. Similarly,
figure 4.11 shows the winding number, n(t), and the relative error ∆n(t). At tmax = 150,
we obtained n = 1− 4.63× 10−4, and ∆n(tmax) = 3.4× 10−4. As mentioned before, the
bound for the relative error can be decreased, for instance, if we consider a bigger region
of integration Cr′ , with r′ = 480,the relative error decreases to O(10−7). According to
the criteria that we explained before, we conclude that, for the approximated solution,
the energy and winding number are stable in Cr.
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Figure 4.10.: Total energy, mvo(t), and relative error ∆mvo(t), at different times of a vortex-
evolution simulation. Here n = 1, mh = 1, and mv = 1. Observe how the
relative error decreases in time, indicating that the total energy is conserved
in the region of integration, C10.
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Figure 4.11.: Winding number, n(t), and relative error ∆n(t), at different times of a
vortex-evolution simulation. Here, mh = 1, mv = 1, and the winding
number of the initial conditions is n = 1. Observe how the relative error
decreases in time, indicating that the winding number, calculated from the
magnetic flux, is conserved in the region of integration, C10.
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5. Erasure of Vortex by a Coulomb Vacuum
Layer

In chapters 3, and 4, we presented the different Domain Walls, Vacuum Layers, and
Vortex solutions that are part of the spectrum of the φ6-model, 2.3. In this chapter, we
investigate the erasure of a vortex by a Coulomb Vacuum layer sweeping. We simulate
the collision of a Vortex with a (−ν, 0, ν)-Domain Wall, for different parameters of the
model, (mh, mv, n, l). Within this approach, one can observe how the collision leads to
the unwinding of the scalar field, and the dissipation of the magnetic flux in the core
of the Coulomb Vacuum Layer. As a consequence, the topological charge n decreases
dissipating in the core of the layer. We observed this same behaviour for different values
of the parameters of the model.

In the following link, the reader can find the results of our simulations:

https://github.com/jusvalbuenabe/TMP-Valbuena

In the following sections we describe the simulations, and results more in detail.
Firstly, we discuss the Cauchy problem, and how to solve the time evolution in gauge
theories, and in the φ6 model. Secondly, we describe the Cauchy Data we used to
approximate the initial conditions of the Vortex-Coulomb Vacuum Layer configuration.
Thirdly, we present the results of the simulations, and finally describe the erasure of
defects mechanism in the φ6-model.

The Cauchy Problem

In general the formulation of the Cauchy Problem in gauge theories is not trivial. The
reason is that the gauge redundancy allows the existence of different solutions to the
field equations with the same Cauchy data, or initial conditions. Then, if one wants to
avoid the ambiguity in the solutions, it is necessary to fix the gauge redundancy. The
time gauge, in which A0 = 0 for every time and position, is convenient for solving
time evolution problems. Thus, we use the time gauge to numerically solve the field
equations 2.4, and 2.5.

For the time gauge, the Cauchy data–(Ai, ∂t Ai, φ, ∂tφ)–or initial conditions must
satisfy the Gauss constraint

DiFi0 = j0 (5.1)

at t = 0. Then, the field equations can be integrated to evaluate Ai, and φ at t > 0.

59

https://github.com/jusvalbuenabe/TMP-Valbuena


5. Erasure of Vortex by a Coulomb Vacuum Layer

Proceeding in this way, after fixing the time gauge, the field equations 2.4, and 2.5
become:

∂2
t φ = ∂i∂iφ− 2ieAi∂iφ−

[
e2Ai Ai + ie∂i Ai

]
φ

−
[
λ2ν4 − 4λ2ν2 |φ|2 + 3λ2 |φ|4

]
φ,

∂2
t Ax = ∂2

y Ax − ∂x∂y Ay − 2e |φ|2 Ax + 2Im [φ∗∂xφ] ,

∂2
t Ay = ∂2

x Ay − ∂y∂x Ax − 2e |φ|2 Ay + 2Im
[
φ∗∂yφ

]
.

(5.2)

The integration of the system of partial differential equations 5.2 gives the time
evolution for a given Cauchy Data. General analytical solutions for this system are not
known. However, approximate solutions can be found by numerical simulations. We
implemented this approach using the finite elements method. The simulations allowed
us to study the Vortex, and Domain Walls stability separately, and their interactions.

5.1. The Vortex-Coulomb Vacuum Layer Configuration

Lets denote the vortex field configuration 4.5, and 4.6 by φvo(x, y), and Aivo(x, y),
respectively. On the other hand, the Coulomb vacuum layer configuration we will
consider is given by φ(−ν,0,ν)(x)–equation 3.12. We remark here that this Domain Wall
has not electric charge. To simulate the Vortex-Coulomb Vacuum Layer interaction, we
consider the following ansatz to approximate the initial conditions:

φvo-dw(x, y) = φ(−ν,0)

(
(x + Lvd) +

l
2

)

+

φ(0,ν)

(
(x + Lvd)− l

2

)
ν

 φvo(x, y),
(5.3)

Aivo-dw(x, y) =

φ(0,ν)

(
(x + Lvd)− l

2

)
ν

 Aivo(x, y), (5.4)

where Lvd is the initial distance between the cores of the vortex, and the Coulomb
vacuum layer. For Lvd → ∞, the fields configuration 5.3, and 5.4 reproduce asymptoti-
cally the required initial conditions. To observe this limit, consider a region of space
R = [−Lx, Lx]× [−Ly, Ly] such that

1
mh

< Ly � Lx � Lvd.

In the Limit Lvd → ∞, the field configuration for x > −Lx approaches the vortex
configuration

lim
Lvd→∞
x>−Lx

φvo-dw(x, y) = φvo(x, y),
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5.2. Time Evolution

lim
Lvd→∞
x>−Lx

Aivo-dw(x, y) = Aivo(x, y).

On the other hand, if x < −Lx, the field configuration approaches a (−ν, 0, eiαν)-
Domain Wall configuration centered at −Lvd, i.e.

lim
Lvd→∞
x�−Lx

φvo-dw(x, y) = φ(−ν,0)

(
x′ +

l
2

)
+ φ(0,ν)

(
x′ − l

2

)
eiα(x,y),

lim
Lvd→∞
x�−Lx

Aivo-dw(x, y) < Aivo(−Lx, y) ∼ 0,

where x′ = x + Lvd, and eiα(x,y) =

(
x+iy√
x2+y2

)n

. Moreover, if |y| � |x|, then eiα(x,y) ∼

(−1)n. Thus,

lim
Lvd→∞
x<−Lx
|y|<Ly

φvo-dw(x, y) = φ(−ν,0)

(
x′ +

l
2

)
+ φ(0,(−1)nν)

(
x′ − l

2

)

= φ(−ν,0,(−1)nν)(x′).

We conclude that the field configuration (φvo-dw(x, y), Aivo-dw(x, y)), in the limit Lvd →
∞, approaches a Vortex configuration near the origin, and a Coulomb vacuum layer
configuration for x ∼ −Lvd.

In addition, motivated by the fact that domain walls are, in general, very high
energetic objects moving through space, we consider an initial relativistic velocity, v, of
the Coulomb vacuum layer. To do it, we boost the domain walls profiles, i.e

φvo-dw(t, x, y) = φ(−ν,0)

(
γ

(
x′ − vt +

l
2

))

+

φ(0,ν)

(
γ
(

x′ − vt− l
2

))
ν

 φvo(x, y),

Aivo-dw(t, x, y) =

φ(0,ν)

(
γ
(

x′ − vt− l
2

))
ν

 Aivo(x, y),

(5.5)

where γ = 1√
1−v2 is the Lorentz factor. Figures 5.1, and 5.2 show an example of the

field configuration φvo-dw(t, x, y), and Aivo-dw(t, x, y) at t = 0, respectively. We checked
numerically that the fields configuration 5.5 satisfies approximately the Gauss constrain
5.1, allowing us to use it as initial conditions.

5.2. Time Evolution

We simulate the interaction of a Coulomb Vacuum Layer with a Vortex, using as initial
conditions the field configuration that is shown in figures 5.1, and 5.2. In the simulation,
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Figure 5.1.: Vortex-Coulomb Vacuum Layer configuration φvo-dw(t, x, y) at t = 0. Here
ν = 1, mh = 1, l = 40, Lvd = 40, and v = 0.8. On the left, the norm |φ| is
plotted. Observe the Coulomb vacuum layer centered at x = −40, and the
vortex core at the origin. On the right, the phase Arg(φ) is plotted. Observe
the winding of the field φ around the origin. On the other hand, for x < −40,
the phase is approximately constant, and it is equal to π.
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Figure 5.2.: Vortex-Coulomb Vacuum Layer configuration Avo-dw(t, x, y) at t = 0. Here
ν = 1, mh = 1, l = 40, Lvd = 40, and v = 0.8. On the left, the vector at a
point (x, y) has coordinates (A1(x, y), A2(x, y)), while the norm |Ai(x, y)|
is represented by the background colour. Observe the Coulomb vacuum
layer configuration centered at x = −40, and the vortex configuration at the
origin. On the right, the corresponding magnetic field B(x, y) is plotted.

we observed the unwinding of the scalar vortex when it enters the Coulomb phase,
producing two perturbations that travel along the (0, ν)-Domain Wall. In addition,
the magnetic field gets unconfined in the Coulomb phase producing radiation modes
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5.2. Time Evolution

that are reflected by the (ν, 0)-Domain Wall. Subsequently most of this radiation is
confined to the core of the layer. Bellow we present these results, first describing the
time evolution for the field φ, and afterwards the evolution of Ai, and B.

|φ| evolution: Figure 5.3 shows the time evolution of the norm of the scalar field, |φ|.
Recall that in the Higgs phase, the degree of freedom corresponding to |φ| becomes
the degree of freedom of the neutral scalar field h. On the other hand, in the Coulomb
phase, |φ| is one of the two degrees of freedom of the complex field φ. Observe the
Wave modes corresponding to h, and |φ| that are generated as the Domain wall starts
to interact with the vortex. As the vortex encounters the Coulomb vacuum layer, two
perturbations on the (0, ν)-Domain Wall are produced, and they start propagating in
opposite directions along the wall. In figure 5.5, these two travelling perturbations can
be appreciated in a clearer way.

If a domain wall evolution is tension dominated, the evolution of perturbations on
the wall is effectively described by considering the thin-Wall approximation. Then the
total energy will be proportional to the length (or area in (3 + 1)-dimensions) of the
wall. The corresponding action is the Nambu-Goto action[4].

S = −σ
∫

dA,

where σ =
m2

h
8λ is the tension of the (ν, 0)-Domain Wall, and dA is the differential area of

the world-sheet. It can be shown that the speed of propagation of perturbations on the
wall is c = 1, as it is observed in our simulations.

Arg(φ) evolution: Figure 5.4 shows the time evolution of the phase of the scalar field,
Arg(φ). Recall that in the Higgs phase, the degree of freedom corresponding to Arg(φ)
becomes the longitudinal degree of freedom of the massive vector field Bµ, while in
the Coulomb phase Arg(φ) is one of the two degrees of freedom of the complex field
φ. As the vortex encounters the Coulomb vacuum layer, the norm of the scalar field
approaches zero, |φ| ∼ 0, and the phase, Arg(φ), becomes ill defined. Observe this
behaviour, at t = 33 in figure 5.4. As a consequence, the phase of the scalar field is
allowed to unwind in the Coulomb Vacuum Layer phase.

As the (ν, 0)-Domain-Wall approaches the original position of the vortex, at t = 70, the
phase at the origin, Arg(φ(t, 0, 0)), acquires a value corresponding to π. This coincides
precisely with the initial asymptotic phase at r → ∞–see figure 5.1. A more detailed plot
of the phase configuration near the origin is shown in figure 5.6.

B evolution: The time evolution of the field Ai provides the time evolution of the
magnetic field B, which is shown in figure 5.7. As the vortex enters the Coulomb
layer, the electric current jµ–that localises the magnetic field on the core of the vortex–
approaches zero. In fact, the electric current

jµ = −i (φ∗Dµφ− (Dµφ)∗φ)
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Figure 5.3.: Time evolution of |φ|. The colour represents the value of |φ(x, y)|. The
blue regions corresponds to the Coulomb phase, while the orange regions
correspondto the Higgs phase-compare to figure 2.2. Observe at t = 33, the
moment the vortex enters the Coulomb vacuum layer, and two perturbations
are generated on the wall. At subsequent times observe how these two
perturbations travel along the wall in oposite directions.

is proportional to the norm of the field |φ|. Since |φ| ∼ 0 in the core of the Coulomb
Vacuum Layer, then |jµ| ∼ 0. We observe this behaviour in our simulations, as it is
shown in figure 5.9. Consequently, the field equations, 2.5 become approximately the
Maxwell equations in (Coulomb) vacuum. Thus, the magnetic field dissipate in the
core of the layer while producing electromagnetic radiation. This behaviour is precisely
observed at t = 40 in figures 5.7, and 5.8. Afterwards, as the front of the electromagnetic
radiation encounters the (ν, 0)-Domain Wall, it gets reflected. To appreciate this result,
we plot the time evolution of the electromagnetic energy density in figure 5.10.

Energy density evolution: Figure 5.11 shows the time evolution of the total energy
density–2.6.The energy corresponding to the mass of the vortex is dissipated in the
Coulomb Vacuum layer by two mechanisms. The first one is the dissipation of energy on
the (0, ν)-Domain Wall carried by two travelling perturbations. The second contributions
is the dissipation of electromagnetic energy in the core of the wall.

The first contribution corresponds to the energy density of the scalar field:

Eφ = (D0φ)∗D0φ + (Diφ)
∗Diφ + V(φ),

while the second contribution corresponds to the electromagnetic energy

EEM =
1
2

F0iF0i +
1
4

FijFij.
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Figure 5.4.: Time evolution of the phase Arg(φ). The colours represent the phase value
measured in radians. The dark region corresponds to Arg(φ) = π. After the
Coulomb Vacuum Layer passes over the vortex at t = 70, a phase value π is
established at the origin. At t = 100, no winding is observed.

Figures 5.12, and 5.10 show the time evolution of Eφ, and EEM, respectively. Observe
that at t = 70, the energy density is almost constant along the the (0, ν)-Domain Wall,
and thus the dynamics of the wall is tension dominated, and its evolution is effectively
described by the Nambu-Goto action. On the other hand, the (ν, 0)-Domain Wall reflects
the electromagnetic wavefront, and it loses momentum due to the electromagnetic
pressure. Consequently, it is red-shifted respect to the (0, ν)-Domain Wall. Form the
previous results of our simulations, we conclude that the mvo is dissipated along the
Coulomb Vacuum Layer, after the Vortex has been swept.

5.2.1. Unwinding of the Vortex: Time evolution of n

To describe the unwinding process of the vortex we have numerically computed the
time evolution of the winding number n, by two different methods. As we described
before, the winding number is proportional to the magnetic flux ΦB–see equation4.17.
We used this first method to compute the winding number over a finite region Cr. As it
is shown in figure 4.11,for r = 10, n(t) is constant for the Vortex configuration we are
considering. On the other hand, as the vortex is swept away by the Coulomb vacuum
Layer, n10 decreases, and eventually tends to 0. Figure 5.14 shows precisely this time
evolution of n(t). From the simulation results described above, this behaviour is to be
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Figure 5.5.: Time evolution of field φ. The vector at a point (x, y) has components
(Re(φ(x, y)), Im(φ(x, y))). The norm |φ| is represented by the background
colour.

expected, since the magnetic field dissipates in the Coulomb vacuum, and its flux is not
localised around the origin anymore.

The second method we used to compute the winding number, is in terms of scalar
field. From equation 4.2, we define nφ as

nφ =
1

2πiν2

∮
Cr

dxi 1
2
(φ∗∂iφ− φ∂iφ

∗) ,

where r is a given finite radius. Figure 5.15 shows the time evolution of nφ(t), for r = 10.
We observe that nφ = 1 at t = 0, as it corresponds to the vortex configuration. As the
vortex approaches the Coulomb vacuum layer, nφ decreases and becomes negative. To
understand this behaviour, lets consider the case t ∼ 33. Notice that nφ(33) ∼ 0.5, and
that the (0, ν)-Domain Wall is localised approximately at x = 0–see figure 5.6. As a first
approximation, in the boundary of the region of integration Cr,

φ(t ∼ 33, x, y) ∼ Θ(−x)νeinθ ,

where Θ(x) is the step function. Thus, after replacing the approximation for φ, the
integral nφ(33) becomes n/2 = 0.5. As the Coulomb vacuum layer passes over the
origin, the winding number nφ is not well defined until the (ν, 0)-domain wall passes
over the origin. As we mentioned before, the phase near the origin becomes Arg(φ) ∼ π,
thus, as a first approximation, in the region of integration Cr:

φ(t ∼ 100, x, y) ∼ −νeiπ,
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Figure 5.6.: Time evolution of the field configuration φ near the vortex position. At t = 0,
the initial vortex configuration is observed. On the other hand, at t = 100, no
winding of the phase is observed. Compare this evolution to the evolution
of the vortex alone–it is shown in figure 4.8.

for t ∼ 100. Thus the winding number nφ ∼ 0. From the previous results, We conclude
that locally the vortex is unwinded once it is swweept by the Coulomb Vacuum Layer.

As a final remark, we observed this same behaviour of vortex unwinding in different
regimes of parameters of the φ6-model, different winding numbers n, and different
widths of the Coulomb vacuum layer l. The results of this simulations can be found in
the following web page:

https://github.com/jusvalbuenabe/TMP-Valbuena

Our results allow us to conclude that erasure of defects mechanism is born out in
the φ6-model at the classical level, and suggest that this mechanism for the vortex
unwinding is independent of the parameters of the model.
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Figure 5.9.: Time evolution of the electric current jµ. The vector at the point (x, y), has
components (j1, j2), while the background colour represents the norm |ji|
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Figure 5.10.: Time evolution of the electromagnetic energy density.
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Figure 5.14.: Time evolution of n(t), computed from the flux of the magnetic field B.
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Figure 5.15.: Time evolution of nφ, computed from the scalar field φ.
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Conclusions and outlook

The erasure of defects mechanism proposed by Dvali-Liu-Vachaspati mechanism is
born out, at the classical level, in the φ6 model. In this model, a Coulomb vacuum
layer sweeps away a vortex. The results of our simulation of the interaction between a
Coulomb vacuum layer, and a vortex allow us to conclude that the vortex unwinds for
all considered regimes of the parameter space. In addition, we have not observed any
partial unwinding, or transitions from one topological sector with high winding to a
lower one. It suggests the independence of the Dvali-Liu-Vachaspati mechanism from
the values of the parameters, and the winding number of the vortex.

The φ6-model is versatile enough to study the time evolution of the field configuration
in the core of a Coulomb Vacuum Layer, and it can be used as a first approximation
to more general models in which the interaction of topological defects is relevant. For
instance, in GUT that contain discrete symmetries, and the Higgs sector breaks the
unified group as well as the discrete group, allows the existence of non-stable Domain
Walls, and monopoles. If in the core of such a domain wall the whole symmetry group
is restored, then the Coulomb phase is realised. Thus when a monopole is swept by
a domain wall, it will unwind, in analogous evolution to the vortex unwinding in a
Coulomb vacuum layer in the φ6-model. We remark here that the gauge fields are
expected to be localised in the core of the domain wall, and that the energy of the
monopole will dissipate while heating the wall.

Further generalisations, and applications of the φ6-model include considering higher
dimensions. In (3 + 1) dimensions, The vortex solutions can be extended in the third
spatial dimension, and serve as a model for cosmic strings, or vortex lines in super
fluids. In the cosmological context, this model can be treated as a numerical experiment
to study the interactions of strings with domain walls, allowing the possibility now to
have strings ending on walls, or walls being bounded by strings.

Although our results can be trusted for time scales O(100m−h 1), further studies are
necessaries to study the subsequent evolution of the domain walls after the magnetic
charge is dissipated in its core. In addition, if we free the requirement that the Coulomb
vacuum layer is metastable–l ∼ O(40m−h 1)–the interaction the vortex needs further
study. At the moment of writing this document simulations in this direction are being
realized. Further updates can be found in the following link https://github.com/
jusvalbuenabe/TMP-Valbuena
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A. Vortex Profiles Approximations

The Vortex Profiles 4.5, and 4.6,

φ(r, θ) = νeinθ F(r),

Ai(r, θ) = − n
er

εijnj A(r),

are determined by the dimensionless functions F(r), and A(r). In the following sec-
tions we discuss different analytical, and numerical approximations to these functions.
Moreover, we describe the procedure that we used to get the different approximations.

A.1. Analytical Approximations for r → 0

For the limit r → 0, A(r) and F(r) can be approximated by polynomials:

F(r) =
N

∑
i=1

biri,

A(r) =
N

∑
i=1

ciri,

where ci, and bi are constant coefficients for i = 1, . . . , N, and N is sufficiently large–
N > n + 2. Substituting this ansatz in 4.7, and 4.8, and requiring the leading order to
be zero, we find that bi = 0 for i < n + 2, and j 6= n, and cj = 0 for j < n and j 6= 2
(otherwise the leading order does not vanish). Thus

F(r) = bnrn + bn+2rn+2 +O(rn+3),

A(r) = c2r2 + c2n+2r2n+2 +O(r2n+3).
(A.1)

Replacing A.1 in 4.7, and 4.8 one gets

0 = −1
4

rn+1 ((m2
h − 8c2n2)bn − 16(n + 1)bn+2

)
+O(rn+3),

0 = −r2n−1 (b2
nm2

v + 4n(n + 1)c2n+2
)
+O(r2n+2),

respectively. Requiring the coefficients of the leading order term to vanish, on e gets the
constrains

b2+n =
b
(
m2

h − 8cn2)
16(n + 1)
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A. Vortex Profiles Approximations

c2+2n = − b2m2
v

4n(n + 1)

Consequently, we obtain the following approximations for A and F–for r → 0:

F(r) = brn +
b
(
m2

h − 8cn2)
16(n + 1)

rn+2,

A(r) = cr2 − b2m2
v

4n(n + 1)
r2n+2,

(A.2)

where b, and c are independent parameters.

A.2. Analytical Approximations for r → ∞

To study the asymptotic behaviour of the Vortex profiles as r → ∞, we approximate the
solutions to the equations 4.7, and 4.8 by the ansatz 4.12:

f (r) =
(

c f0 +
c f1

r
+O

(
1
r2

))
rα f e−γ f r,

a(r) =
(

ca0 +
ca1

r
+O

(
1
r2

))
rαa e−γar,

where c f0 , c f1 , ca0 , and ca1 are non-zero constant coefficients, while the pairs (α f , γ f ), and
(αa, γa) determine how fast the functions f and a approach 0, respectively. Replacing
the ansatz in equation 4.8 we obtain

0= rαa e−γar

(
ca0

(
γ2

a −m2
v
)
+

ca0 γa (1− 2αa) + ca1

(
γ2

a −m2
v
)

r

)

+ rαa+α f e−(γa+γ f )r

(
2m2

vca0 c f0 + 2m2
v

ca1 c f0 + ca0 c f1

r

)

+ rαa+2α f e−(γa+2γ f )r

(
−m2

vca0 c2
f0
+ m2

v

−ca1 c2
f0
− 2ca0 c f1 c f0

r

)

+ rαa e−γar (1 + rα f e−γ f r + r2α f e−2γ f r)O( 1
r2

)
.

(A.3)

The first term of the rhs of A.3 is its leading order term. Then, requiring that the
coefficients of rαa e−γar and rαa−1e−γar to be zero, we can conclude that: γa = mv and
αa =

1
2 .
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A.2. Analytical Approximations for r→ ∞

On the other hand, replacing the ansatz in equation 4.7 we obtain

0 = r2αa e−2γar

(
n2c2

a0

r2 +
2n2ca0 ca1

r3

)

+ rα f e−γ f r

(
c f0

(
γ2

f −m2
h

)
+

c f1

(
γ2

f −m2
h

)
− c f0

(
2α f + 1

)
γ f

r

+
c f0 α2

f + c f1

(
1− 2α f

)
γ f

r2 +
c f1

(
α f − 1

) 2

r3

)

+ r2α f e−2γ f r

(
9
2

m2
hc2

f0
+

9m2
hc f0 c f1

r
+

9m2
hc2

f1

2r2

)

+ r2αa+α f e−(2γa+γ f )r

(
−

n2c2
a0

c f0

r2 −
n2ca0

(
2ca1 c f0 + ca0 c f1

)
r3

)

+
(
1 + rα f e−γ f r) (r2αa e−2γar + rα f e−γ f r)O( 1

r4

)
+O

(
r3α f e−3γ f r) .

(A.4)

If mh < 2mv, the leading term of the rhs of A.4 is the second term. Requiring the
coefficients of rα f e−γ f r, and rα f−1e−γ f r to be zero, we obtain γ f = mh and α f = − 1

2 , as it
was stated in 4.9.

If when mh > 2mv, the leading term of the rhs of A.4 is now the first term. In this
case we might required the coefficients of r2αa−2e−2γar = r−1e−2mvr and r2αa−3e−2γar =

r−2e−2mvr to be zero. Since ca0 6= 0, the second term of A.4 must be such that it
compensates the first one. In other words, α f = 2αa − 2 = −1 and γ f = 2γa = 2mv.
With this result, the leading order of the rhs of A.4 is

e−γ f r

(
δ1

r
+

δ2

r2

)
.

where
δ1 = n2c2

a0
−
(
m2

h − 4m2
v
)

c f0 ,

δ2 = 2n2ca0 ca1 + 2mvc f0 −
(
m2

h − 4m2
v
)

c f1 .

Requiring δ1, and δ2 to vanish, one gets that c f0 , and c f1 depend on ca0 , and ca1 as follows:

c f0 =
c2

a0
n2

m2
h − 4m2

v
,

c f1 =
2ca0(ca0 mv + ca1(m

2
h − 4m2

v))n2

(m2
h − 4m2

v)
2

.

To summarize this section, we have found the following two regimes, in which the
functions A and F can be asymptotycally pproximated in terms of two parameter family
of solutions:
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A. Vortex Profiles Approximations

• Regime mh ≤ 2mv

A(r) = 1− ca0

√
re−mvr,

F(r) = 1− c f0

e−mhr
√

r
,

(A.5)

where ca0 and c f0 are the independent parameters. The core of the vortex has two
characteristic lengths: m−1

h which corresponds to the size of the scalar vortex, and
m−1

v which corresponds to the size of the vector vortex.

• Regime mh > 2mv

A(r) = 1−
(

ca0

√
re−mvr + ca1

e−mvr
√

r

)
,

F(r) = 1−
(

c f0

e−2mvr

r
+ c f1

e−2mvr

r2

)
,

(A.6)

where

c f0 =
c2

a0
n2

m2
h − 4m2

v
,

c f1 =
2ca0(ca0 mv + ca1(m

2
h − 4m2

v))n2

(m2
h − 4m2

v)
2

,

In this regime, ca0 , and ca1 are the independent parameters. We highlight that the
characteristic lengths of the scalar, and the vector profiles of the vortex are (2mv)−1

and m−1
v respectively. Thus, their size are not independent from each other.

A.3. Numerical Approximations

For intermediate values of r, explicit solutions to the equations 4.7 and 4.8 are not
known, but approximate solutions can be obtained numerically. We have found these
solutions for different parameters of the theory, using the shooting method that we
describe below.

In our method, we use the the initial conditions 4.15 at r = r1 ∼ O(10−3m−1
h ), to

numerically integrate the equations 4.7, and 4.8. The numerical values of the initial con-
ditions 4.15 at r = r1 are determined by the values of the independent parameters (b, c).
The numerical integration is done by the software Mathematica. Typically, the Wolfram
Language goes to considerable effort to pick the best integration method automatically,
and it chosses between several different methods known for doing particular types of
numerical integrations[40].

Subsequently, the parameters b, and c are varied until the numerical solutions ap-
proach 1 asymptotically. However–for r ∼ O(10m−1

h )–the solutions that are found
contain instabilities that produce divergent solutions. One example of such solutions is
shown in figure A.1.
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Figure A.1.: An example of numerical solutions to the equations 4.7, and 4.8, for mh =

1,mv = 1 and n = 1. The solutions are found by the numerical integration
of the initial conditions 4.15, where b = 0.346, c = 0.163, and r1 = 10−3m−1

h .
For 5 < r/m−1

h < 10, the solutions approach 1 asymptotically. However, for
r > 10, the solutions are divergent.

It is then necessary to do a second approximation to the solutions for r → ∞. We
use the asymptotic behaviour of A(r), and F(r), and the fact that both functions are
monotonically increasing. We firstly determine a second radius r2 ∼ O(10m−1

h ) for
which

min(A(r2), F(r2)) = 1−O(10−3),

A′(r2) > 0, and F′(r2) > 0.

Then, for r > r2, the solutions are approximated by the ansatz 4.13, or 4.14, depending
on the regime of the masses. The corresponding independent parameters–(ca0 , c f0),
or (ca0 , ca1)–are found by imposing continuity of A, and A′ at a radius rA & r2, and
continuity of F, and F′ at a different radius rF & r2. This four conditions determine
(ca0 , c f0 , rA, rF)–for mh ≤ 2mv–or (ca0 , ca1 , rA, rF)–for mh = 2mv.

Continuing with the example shown in the figure A.1, we present the analytical
approximations to the vortex profiles for r → 0 in the figure A.2, and for r → ∞ in the
figure A.3

Proceeding as it was described before we have found the Vortex profile for different
parameters of the theory, (mv, mh, n). In what follows we have set ν = 1 unless stated
otherwise. We present some of the vortex profiles that were found for the different
regimes.

A.3.1. Regime mh ≤ 2mv:

The figures 4.2 and 4.3 shows the vortex profiles obtained numerically for the cases
mh = mv = 1, and mh = 1 and mv = 10, respectively. The colors correspond to different
winding numbers n. The asymptotic approximations and the corresponding numerical
coefficients are presented in the tables A.1 and A.2, which can be found in the appendix.
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Figure A.2.: Analytical approximations–given by equation 4.15–to the vortex profiles
for r → 0. In this example mh = 1, mv = 1 and n = 1. We found that the
independent parameters are b = 0.346 and c = 0.162.
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Figure A.3.: Analytical approximations–given by equation 4.13–to the Vortex profiles
for r → ∞. In this example mh = 1, mv = 1 and n = 1. We found that the
independent parameters are ca0 = 3.23 and c f0 = 6.86.

A.3.2. Regime mh > 2mv

The figure 4.4 shows the vortex profiles obtained numerically for mh = 1 and mv = 0.1
for n = 1, 2, 3, 4. The asymptotic behaviour and the corresponding numerical coefficients
are presented in the table A.3, which can be found in the appendix.
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A.4. Figures
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Figure A.4.: Vortex Profile for mh = mv = 1. Here the dependence of the core size on n
can be observed. Note however how the asymptotic behavour of A(r) and
F(r) does not depend on n as it is expected if we refer to the equation 4.13
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Figure A.5.: Vortex Profiles for mh = 1 and mv = 10 for different winding number n

A.4. Figures
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0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

1.0

Figure A.6.: Vortex Profiles for mh = 1 and mv = 0.1. Comparing this profiles to the
profiles shown in figure 4.2 the gauge core increases, as it expected, 10
times. On the other hand, note that the scalar core size is bigger than the
one found in the previous regime increases with n
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Figure A.7.: Vortex Profiles for mh = mv.Here the shape of the core for A(r) and F(r)
for a given n can be compared. Note that the scalar vortex core is smaller
than gauge vortex core for n = 1 while they are practically the same size
for n = 2. For n ≥ 3 it is found that the scalar core slightly bigger.
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Figure A.8.: Vortex Profiles for mh = 1.0 mv = 10.0..
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Figure A.9.: Vortex Profiles for mh = 1.0 and mv = 0.1.
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