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Second Supervisor: Prof. Dr. Peter Pickl





Acknowledgements

This thesis would have never been possible without the great sup-
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1 INTRODUCTION

1 Introduction

Consider a Newtonian system of N identical particles interacting via a spher-
ically symmetric pair potential φ ∈ C2

b (Rd) in d dimensions, which might be
either attractive or repulsive. Here, C2

b (Rd) shall denote the set of functions
on Rd with bounded and continuous derivatives up to order 2. The Hamil-
tonian of such a system has the form

HN(X) =
N∑
i=1

p2
i

2mN

+
∑
i<j

φ(qi − qj) (1)

with X = (x1, . . . , xN) ∈ R6N , xi = (qi, pi) ∈ R6, leading to the equations
of motion

q̇i =
∂H

∂pi
=

pi
mN

ṗi = −∂H
∂qi

= −
N∑
j=1

∇qiφ(qi − qj). (2)

Note that, since φ is symmetric and thus ∇φ(0) = 0, we can omit the
restriction i 6= j in the sum. Substituting φN = 1

N
φ for the potential and

setting mN = 1, one obtains

dqi
dt

= pi

dpi
dt

=
d2qi
dt2

= − 1

N

N∑
j=1

∇qiφ(qi − qj). (3)

These are the equations of motion for N classical particles interacting
through the potential 1

N
φ. It is this dynamics from which the Vlasov equa-

tion can be derived. Note that the coupling becomes weaker with growing N .

In a more general setting the Hamiltonian looks like

Hβ
N(X) =

N∑
i=1

p2
i

2m
+
∑
i<j

φβN(qi − qj), (4)

where

φβN(q) = N−1+βφ(Nβ/dq) (5)
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1 INTRODUCTION

in dimension d for spherically symmetric φ ∈ C2
b (Rd). Hence the support

of φβN shrinks with N for positive β. The case described above obviously
corresponds to β = 0 and m = 1. Usually the potential energy is expected to
scale in the same way in N as the kinetic energy. This motivates the factor
of N−1 in the expression for φβN .

In general, the Newtonian equations of motion for N interacting particles
are practically impossible to solve. One way to circumvent this problem and
obtain at least some kind of solution is to change the level of description.
Instead of the microscopic N -body problem, one considers an equation for a
continuous mass density which effectively still describes the same situation
but from a macroscopic point of view. It is intuitively clear that this coarse
grained description gets more appropriate as the number of particles N in-
creases, becoming exact in the limit N →∞. The crucial observation in the
case where the potential scales with 1/N , i.e. the β = 0 case, is that the
force

q̈i = − 1

N

N∑
j=1

∇qiφ(qi − qj) , i = 1, . . . , N (6)

looks like the empirical mean of the continuous function ∇φ(qi−·) of the
random variables qj. In the limit N →∞, one might expect this to be equal
to the expectation value of ∇φ, given by the convolution1

−ft ∗ ∇φ(qi) = −
∫
∇qiφ(qi − q)ft(q, p)dqdp, (7)

where ft(q, p) for q, p ∈ R3 denotes the mass density at q with momen-
tum p at time t. In replacing the empirical mean by its expectation value,
we switch from the N -body problem to an effective external force problem:
Instead of summing up all interaction terms, one expects a single particle to
”feel” only the mean field produced by all particles together. But if there is
only an external force ṗ acting, then the time evolution of ft is dictated by
the continuity equation on R6:

∂tft +∇qft · q̇ +∇pft · ṗ = 0 (8)

Inserting for ṗ the expectation value (7) yields

∂tft +∇qft · q̇ −∇pft · ft ∗ ∇φ = 0. (9)

1Young’s inequality assures that the convolution f ∗ ∇φ exists for f ∈ L1(R6) if ∇φ is
bounded: ‖ft ∗ ∇φ‖∞ ≤ ‖ft‖1‖∇φ‖∞
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2 THE COUNTING MEASURE

This equation is known as the Vlasov equation, a partial non-linear differ-
ential equation which has a unique global solution in the space of probability
densities if ∇φ is bounded and Lipschitz continuous (see [3]). The question
is how the replacement of (6) by (7) can be rigorously justified from micro-
scopic dynamics. To put it differently, how well does a solution of the Vlasov
equation approximate an actual configuration evolving in time according to
Newton’s equation of motion?

2 The Counting Measure

We can add to the Hamiltonian an external potential Vt(q):

Hβ
N(X) =

N∑
i=1

p2
i

2mN

+
∑
i<j

φβN(qi − qj) +
N∑
i=1

Vt(qi) (10)

Since an external force has the same effect on all particles, independently
of their distribution, this should not affect the derivation of a hydrodynamic
equation. Since we will in the following only consider differences between
exact Newtonian and mean field dynamics, this external potential will not
appear anymore.

For the mass density ft, one has the continuity equation on 1-particle
phase space Γ1 ∼= R6 containing points x = (q, p)

∂tft(x) +∇qft(x) · dq
dt

+∇pft(x) · dp
dt

= 0. (11)

From this one obtains the approximating mean field equation by replacing
the interaction part of the force with its expectation value. Hence, instead
of summing up all interaction terms, one expects a single particle to ”feel”
only the mean field produced by all particles together. It is clear that, for
different scaling parameters2 β, this procedure leads to different hydrody-
namic equations. In the next section we will investigate the case β = 0 as an
example of the method that we shall present in the following.

If one looks at the mean field approximation from the perspective of
a law of large numbers, one possibility to justify the replacement in the
continuity equation would be to argue that the random variables xi ∈ R6 are

2Recall:

φβN (q) = N−1+βφ(Nβ/dq)
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2 THE COUNTING MEASURE

distributed identically and independently (i.i.d.). Formally, this means that
the N-particle density3 F is a product of the 1-particle densities:

F(X) =
N∏
i=1

f(xi) (12)

forX = (x1, . . . , xN) ∈ R6N and xi = (qi, pi) ∈ R6. This situation is called
molecular chaos. The question of justifying the mean field approximation
can now be reformulated: If, initially, the random variables xi ∈ R6 were
distributed according to

F0(X) =
N∏
i=1

f0(xi), (13)

will this product structure survive the time-evolution? Moreover, in which
sense will it survive, i.e. in which sense

Ft(X) ≈
N∏
i=1

f̃t(xi) (14)

for solutions f̃t of the effective equation?

Remark 2.1. It is crucial that the L1-norm is not a suitable notion of distance
in this context: Think of a situation in which some m out of N particles are
not i.i.d.. Then the distributing function would be of the form

Ft = gt(x1, . . . , xm)
N∏

i=m+1

f̃t(xi).

We would say that this is close to a product if m was small. The L1-
distance from a product distribution would be given by

∫ ∣∣∣Ft(x1, . . . , xN)−
N∏
i=1

f̃t(xi)
∣∣∣dx1 . . . dxN

=

∫ ∣∣∣gt(x1, . . . , xm)−
m∏
i=1

f̃t(xi)
∣∣∣dx1 . . . dxm,

3Here, we will exclusively deal with situations where the distributing measure is abso-
lutely continuous.
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2 THE COUNTING MEASURE

which does not tell us anything about the value of m. The m ”bad” par-
ticles might be distributed according to a function whose support is disjoint
or has very little intersection with the support of f̃⊗mt :

supp(gt) ∩ supp(f̃⊗mt ) ≈ 0,

then ∫ ∣∣∣Ft(x1, . . . , xN)−
N∏
i=1

f̃t(xi)
∣∣∣dx1 . . . dxN = 2.

independently of m. Therefore the L1-distance does not tell us what we
want to know and we have to find a for our purposes more appropriate notion
of distance.

The strategy for answering the above questions consists of two steps:
First, look for a measure α that tells us how many particles are ”nice”, i.e.
i.i.d., in a way that α ≈ 0 if most particles are ”nice” and α ≈ 1 if most
of them are ”bad”. This will represent the desired notion of distance from
product distribution. Then, secondly, try to prove a statement of the kind:
If that measure was small in the beginning, then it will remain small for all
times. This second step will most likely involve an application of Gronwall’s
lemma, which we will now state and prove:

Theorem 2.1. (Gronwall’s lemma) Let f and c denote real-valued functions
defined on [0,∞ ) and let f be differentiable on (0,∞). If f satisfies

d

dt
f(t) ≤ c(t)f(t),

then

f(t) ≤ e
∫ t
0 c(s)dsf(0).

Proof. Define a function g by

g(t) = e
∫ t
0 c(s)ds

for t ∈ [0,∞ ) . Then

d

dt
g(t) = c(t)g(t).

It holds
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2 THE COUNTING MEASURE

d

dt

f

g
=
f ′g − fg′

g2
≤ cfg − cfg

g2
= 0

on (0,∞) and therefore

f(t)

g(t)
≤ f(0)

g(0)
= f(0)

since g(0) = 1 and g(t) > 1 for all t ∈ (0,∞).

For finite particle numbers N , all our results will contain error terms de-
pending on N . We therefore need the following

Corollary 2.1. Let f denote a continuous real-valued function on [0,∞ )
and let f be differentiable on (0,∞). If f satisfies for positive constants c1

and c2

d

dt
f(t) ≤ c1f(t) + c2,

then

f(t) ≤ ec1tf(0) +
(
ec1t − 1

) c2

c1

.

Proof. Define

g(t) := f(t) +
c2

c1

,

then

d

dt
g(t) =

d

dt
f(t) ≤ c1f(t) + c2 = c1g(t)

and thus by Gronwall’s lemma

g(t) ≤ ec1tg(0),

which implies

f(t) = g(t)− c2

c1

≤ ec1tf(0) +
(
ec1t − 1

) c2

c1

.
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2 THE COUNTING MEASURE

If a given physical system admits for a mean field approximation, then it
is clear that a relation of the form

α̇t ≤ cαt + o(N) (15)

must holds for a constant c: At a given time t, the growth of αt will be
caused by two different processes: There will be interactions within the i.i.d.-
part of the particles and there will be interactions of not i.i.d. particles with
ones that were i.i.d., thereby ”infecting” some of the ”good” particles. In-
teractions among independently distributed particles occur statistically and
are controllable by the law of large numbers. Interactions of ”bad” particles
with ”good” ones on the other hand are what really causes the growth of αt
beyond statistical fluctuations. To control them we need an inequality like
(15).

The measure αt, if reasonably defined, shall tell us the amount of particles
which are not i.i.d. at time t. Then the subsequent growth of this amount
has to be bounded by a multiple of this amount, if a mean field description
is to make any sense. By Gronwall’s lemma, it follows from (15) that

αt ≤ ectα0 + o(N).

This is intuitively clear, since the amount of particles which are not i.i.d.
should grow exponentially in time.

Starting with a product distribution at time t = 0 corresponds to α0 = 0.
Then the time-evolved measure will be αt ∼ o(N) and after carrying out the
limit N → ∞, it would hold αt = 0 for all times. Then we would say that
the product structure of F survives the time-evolution. In other words, we
would have shown the propagation of molecular chaos. Still, there remains
the technical difficulty to find the right measure α such that the constant c is
as small as possible. Note that it is one advantage of the method to be able
to give an error estimate of the mean field approximation, depending on the
particle number N .

Of course, due to the pair interaction, the independence will be destroyed
through time-evolution. More precisely, during each small time interval ∆t,
because we consider only pair interactions, not more than two particles will
fall out of molecular chaos.4 Nonetheless, for appropriate scaling β one hopes
for this effect to be weak compared to the mixing, such that molecular chaos
survives the better the larger the number of particles is.

4The probability that two particles interact is of order ∆t, thus the probability of
having two interacting pairs is of order (∆t)2 and is therefore negligible to first order in
∆t
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2.1 Construction of the ”Counting Measure”2 THE COUNTING MEASURE

The proximity of Ft to a product density can, of course, only become
exact in the limit N →∞. In fact, Ft itself cannot be expected to converge,
since there will always be some few particles which fell out of the product
distribution. Instead, one can hope that its s-particle correlation functions
F st will converge to an s-fold product of solutions of the mean field equation
f̃t. As will turn out, their L1-distance will be bounded by a multiple of α,
thus tending to zero as N → ∞. To obtain this result, the symmetry of Ft
under exchange of particles will be absolutely crucial.

Another way of formulating the desired result is that the following dia-
gram commutes: For f0 ∈ L1(R6), f̃t ∈ L1(R6) and Ft ∈ L1(R6N)

f0
MeanField //

⊗N
��

f̃t
⊗s // f̃⊗st

f⊗N0 = F0 Newton
// Ftreducing

// F st

L1

OO
(16)

2.1 Construction of the ”Counting Measure”

At a given time t, the N -particle density Ft can be decomposed in the fol-
lowing way5:

Definition 2.1. For a solution ft : R6 −→ R of the Vlasov equation, an
N -particle density Ft : R6N −→ R and k ∈ {0, . . . , N}, we define functions
gkt : R6N −→ R by the following conditions (C):

gkt (X) = gkt (x1, . . . , xN) = χkt (x1, . . . , xN)
N∏

i=k+1

ft(xi)

and

Ft =

(
N∑
k=0

gkt

)
sym

:=
1

N !

∑
σ∈Sn

N∑
k=0

χkt,σ(x1, . . . , xN)
N∏

i=k+1

ft(xσ(i)), (17)

and

5Such a decomposition always exists: Any function F can be written in such a way
because the functions χ can be chosen to be such that (17) is true.
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2 THE COUNTING MEASURE2.1 Construction of the ”Counting Measure”

∫
χkt,σ(x1, . . . , xN)dxσ(1) . . . dxσ(k) = ck > 0 such that

N∑
k=0

ck = 1

The sets

Mk
ft :=

{
gkt : R6N −→ R

∣∣∣conditions (C) are fulfilled
}

we call different sectors for distinct k’s.
Note that

Mk
ft ⊂M

l
ft

for k < l, which shows that this decomposition of Ft is not unique.

Remark 2.2. In the following, we will make the symmetry property of Ft
explicit only where it is needed and ignore it in the rest of the cases, writing

Ft =
N∑
k=0

gkt with gkt = χkt (x1, . . . , xN)
N∏

i=k+1

ft(xi)

such that ∫
χkt (x1, . . . , xN)dx1 . . . dxk = ck and

N∑
k=0

ck = 1

Nevertheless, Ft will always be understood to be symmetric.
The ck’s are independent of xk+1, . . . , xN by definition and independent of

time due to Liouville’s theorem. The function χkt itself depends on xk+1, . . . , xN ,
which reflects the idea that those particles which are not i.i.d. depend on the
positions and momenta of those particles which are, but in such a way that
integrating over the non-i.i.d.-coordinates gives a constant.

The measure6 αt is supposed to tell us the relative amount of particles
that are not distributed independently. For this purpose, we take a weighted
sum of the integral over the functions gkt :

α = inf
Ft=

∑
gkt

N∑
k=0

k

N

∫
gkt dX (18)

6Again we remark that we mean measure in the sense of a counting device and not in
the sense of measure theory.
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2.1 Construction of the ”Counting Measure”2 THE COUNTING MEASURE

with the abbreviation dX = dx1 . . . dxN . The decomposition of the N -
particle density Ft =

∑N
k=0 g

k
t is not unique, one could always put Ft = χNt ,

yielding α = 1 although it should possibly be much smaller. We want to
give Ft as much product structure as possible. Therefore we have to put as
much of its integral mass as possible into functions gkt with low k-values. To
achieve this, we take for α the infimum of the weighted sum over all possible
decompositions.

We take the integral over the gkt ’s because we want to benefit from the vol-
ume conservation of the Hamiltonian flow on phase space and from linearity
of the integral in our derivation. This will become explicit when computing
the time derivative of α below.

For technical reasons, we will have to allow for negative parts of the
functions χkt :

χkt = (χkt )
+ + (χkt )

−

in such a way that still ck =
∫
χkt dX > 0. This is possible since we can

always put Ft = χNt with
∫
χNt dX = cN = 1 > 0. But it is crucial that all

functions over which we integrate in (18) are positive, otherwise we could get
α = 0 for a non-product state: e.g.

Ft =
∏

ft︸ ︷︷ ︸
g0

+Ft −
∏

ft︸ ︷︷ ︸
gN

,

then we would find

α =
0

N
+
N

N

∫
(Ft −

∏
ft)dX = 0,

the positive and negative parts of (Ft−
∏
ft) exactly compensate due to

Liouville’s theorem.
Obviously

∫
(gkt )+dX ≥

∫
gkt dX = ck. But, since we are dealing with

probability densities, we want to have just the integral mass of the gkt ’s,
given by the ck’s, in the positive parts of the gkt ’s. Therefore we shift some
integral mass of (gkt )+ over to the negative part, thereby constructing new
functions:

Definition 2.2. Let (gkt )g be defined in such a way that it fulfills

(gkt )g ≥ 0 and

∫
(gkt )gdx1 . . . dxN = ck

In addition

16



2 THE COUNTING MEASURE2.1 Construction of the ”Counting Measure”

(gkt )n := gkt − (gkt )g (19)

such that ∫
(gkt )ndx1 . . . dxN =

∫ (
gkt − (gkt )g

)
dX = 0. (20)

These conditions are realized by7

(χkt )
g := (χkt )

+ ck∫
(χkt )

+dx1 . . . dxk
, (21)

where the coordinates xk+1, . . . , xN are kept fixed. From this we get

(gkt )g := (gkt )+ ck∫
(χkt )

+dx1 . . . dxk
, (22)

which is obviously positive.

We are now in a position to define the counting device which shall tell us
how good Ft can be approximated by a product f⊗Nt :

Definition 2.3. Let Ft ∈ L1(R6N) be the N -particle density and let ft ∈
L1(R6) be a solution of the mean field equation in question. Then we define

α(Ft, ft) := inf
Ft=

∑
gkt ,g

k
t ∈Mk

ft

[
N∑
k=0

k

N

∫
(gkt )gdX︸ ︷︷ ︸

=:ck

+
N∑
k=0

‖(gkt )n‖1

]
(23)

Suppose that at some time t the N -particle density is given by

Ft =
∑

gkt =
∑

(gkt )g +
∑

(gkt )n. (24)

Then, developing these gkt ’s a time interval ∆t further, we get

Ft+∆t = Ft ◦ Φ−∆t =
∑

(gkt )g ◦ Φ−∆t +
∑

(gkt )n ◦ Φ−∆t. (25)

The whole construction is such that one has to find a new decomposition
at each time t. We will construct a decomposition of Ft+∆t by time-evolving
the single gkt ’s and decomposing in such a way that the corresponding α is
not too large:

7We could have started with this, but we wanted to keep the definition as general as
possible and what we really need is that

∫
(gkt )g = ck.
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2.1 Construction of the ”Counting Measure”2 THE COUNTING MEASURE

Let Φ and Φ̃ denote the Hamiltonian flows of the microscopic and the
mean field dynamics. The exact dynamics develops (gkt )g ∈Mk

ft
into (gkt )g ◦

Φ−∆t ∈Mk+2
ft

to first order in ∆t:

(gkt )g ◦ Φ−∆t = (gkt )g +
N∑
i=1

∇qi(g
k
t )g · q̇i∆t+

N∑
i=1

∇pi(g
k
t )g · ṗi∆t (26)

and with

ṗi = − 1

N

N∑
j=1

∇qiφ(qi − qj)

we see that ∇pi(g
k
t )g is multiplied with ∇qiφ(qi−qj), resulting in a loss of two

i.i.d. particles for i, j ∈ {k + 1, . . . , N}. But giving (gkt )g ◦ Φ−∆t a prefactor
of k+2

N
in the counting device would be too coarse since there still remain

parts for which only k coordinates are not i.i.d.. If we look at the exact time
evolution as mean field evolution plus a perturbation, i.e.

(gkt )g ◦ Φ−∆t = (gkt )g ◦ Φ̃−∆t + ∆
(
(gkt )g ◦ Φ−∆t

)
,

where the perturbation is defined by this equation, then it is clear that all
parts of (gkt )g◦Φ−∆t for which k+2 particles are ”bad” are in the perturbation
∆
(
(gkt )g ◦ Φ−∆t

)
. Liouville’s theorem implies that∫

(gkt )g ◦ Φ−∆tdX =

∫
(gkt )g ◦ Φ̃−∆tdX =

∫
(gkt )gdX = ck (27)

and hence ∫
∆
(
(gkt )g ◦ Φ−∆t

)
dX = 0.

This means that ∆(gkt )g◦Φ−∆t has as much negative as positive integral mass.
But in the definition of α we demand positivity of each term. Therefore we
put for 0 < θk < 1

(gkt )g ◦ Φ−∆t = ∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t︸ ︷︷ ︸

∈Mk+2
ft

+ (1− θk)(gkt )g ◦ Φ̃−∆t︸ ︷︷ ︸
∈Mk

ft

(28)
with θk such that the first term, which will get a prefactor of k+2

N
in α, is

positive for typical fluctuations of the exact dynamics around the mean field
orbit. For stronger fluctuations this term can still be negative, which will be

18



2 THE COUNTING MEASURE2.1 Construction of the ”Counting Measure”

dealt with by writing

∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t =

(
∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t

)g
+

(
∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t

)n
and absorbing the (·)n-part into the second sum in α (together with (gkt )n ◦
Φ−∆t). We could have shifted all the negative parts of the perturbation over
to the second sum in α by writing ∆

(
(gkt )g ◦ Φ−∆t

)
= ∆

(
(gkt )g ◦ Φ−∆t

)g
+

∆
(
(gkt )g ◦ Φ−∆t

)n
, but then the estimates for this term would become too

bad. Heuristically, the introduction of θk allows us to draw a line between
typical and untypical fluctuations.

Remark 2.3. At this point we can already identify a constraint of the new
strategy: If (gkt )g ◦ Φ̃−∆t = 0 on some set, we cannot ”take anything from it”
by writing a convex combination as in (28) and the procedure fails. Eventu-
ally, this will translate into the condition that∇pft ≤ c(t)ft for some function
c(t) which is bounded on compact time intervals, as will become more explicit
in due course.

At time t, α is given by

α(Ft, ft) = inf
Ft=

∑
gkt ,g

k
t ∈Mk

ft

∑ k

N

∫
(gkt )gdX +

∑
‖(gkt )n‖1 (29)

Suppose the decomposition is such that8

(∆t)2 + α(Ft, ft) =
∑ k

N

∫
(gkt )gdX +

∑
‖(gkt )n‖1 (30)

for some (small) ∆t. At time t + ∆t, because it includes the infimum over
the decompositions at this time, α(Ft+∆t, f̃t+∆t) will be smaller than the α
we constructed by time-evolving and suitably decomposing the right hand
side of (30), which is given by

8We do not know if the infimum is actually attained. The decomposition here is chosen
to be such that its corresponding α (without an infimum in front) is by (∆t)2 larger than
the infimum of it over all decompositions.
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2.1 Construction of the ”Counting Measure”2 THE COUNTING MEASURE

α̃(Ft+∆t, f̃t+∆t) :=
N∑
k=0

k + 2

N

∫ (
∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t

)g
dX

+
N∑
k=0

k

N

∫
(1− θk)(gkt )g ◦ Φ̃−∆tdX

+
N∑
k=0

∥∥∥(∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t

)n
+ (gkt )n ◦ Φ−∆t

∥∥∥
1

=
N∑
k=0

(
k + 2

N
θkck +

k

N
(1− θk)ck

)
(31)

+
N∑
k=0

∥∥∥(∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t

)n
+ (gkt )n ◦ Φ−∆t

∥∥∥
1

≤
N∑
k=0

k

N
ck +

N∑
k=0

‖(gkt )n‖1 +
2

N

N∑
k=0

θkck

+
N∑
k=0

∥∥∥(∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t

)n
+ (gkt )n ◦ Φ−∆t

∥∥∥
1

It follows that

α̃(Ft+∆t, f̃t+∆t)− α(Ft, ft)
∆t

≤ (32)

≤ ∆t+
1

∆t

[
2

N

N∑
k=0

θkck +

+
N∑
k=0

∥∥∥(∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t

)n ∥∥∥
1

]
and hence we have

α̇(t) ≤ lim
∆t→0

α̃(t+ ∆t)− α(t)

∆t
≤ (33)

≤ lim
∆t→0

1

∆t

[
2

N

N∑
k=0

θkck +

+
N∑
k=0

∥∥∥(∆
(
(gkt )g ◦ Φ−∆t

)
+ θk(g

k
t )g ◦ Φ̃−∆t

)n ∥∥∥
1

]
.
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Remark 2.4. Observe that this derivation heavily relies on volume conser-
vation: Throughout the computation we use line (27), implying the time-
independence of the ck’s. In a way, also the introduction of θ reflects the
idea that volume is preserved by the Hamiltonian flow:

∫
θk(g

k
t )gdX = θkck

stands for that amount of integral mass which typically moves from a sector
Mk

ft
to Mk+2

ft
, see line (31) above.

This is as far as we can get without specifying θk which depends on the
scaling behavior of the interaction. Later we will give the right expression for
θk for an interaction potential with scaling property φN = 1

N
φ and then derive

the Vlasov equation. But first we will show that propagation of molecular
chaos implies convergence of the marginals of the N -particle density towards
products of solutions of the mean field equation. From that, we will also
derive convergence of empirical densities towards solutions of the mean field
equation.

But for the sake of argument, assume εk was such that for N →∞

α̇(t) ≤ c1α(t) + c2, (34)

where c2 stands for the error term that should go to zero as N goes to
infinity. Then an application of Gronwall’s lemma would imply

α(t) ≤ ec1tα(0) + (ec1t − 1)
c2

c1

(35)

and since α(0) = 0 if we assume all particles to be i.i.d. initially, it would
follow α(t) ≤ o(N) for all t, leading to α(t) = 0 in the limit N →∞.

For finite N , the estimation for α will include an error term decreasing
with N . One advantage of the presented method is thus that the result is not
just a statement for the limit N →∞, but it is actually possible to establish
the speed of convergence in the particle number N .

If one succeeds in proving an equation of the type (15), one can show that
the s-marginal of the symmetric N -particle density Ft, defined as

F st :=

∫
Ftdxs+1 . . . dxN (36)

converges in L1-norm to an s-fold product of solutions ft of the mean field
equation:

Theorem 2.2. Let Ft : R6N −→ R+ denote the time-dependent probability
density of N particles evolving according to Newton’s equations of motion
with interaction potential φβN as above and let ft : R6 −→ R+ be a solution of
the mean field equation in question. If for α as defined above holds
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α(Ft, ft)
N→∞−→ 0, (37)

then the marginals of Ft converge:

F st
L1−→

s∏
i=1

ft(xi) ∀t ∈ R+ ∀s ∈ N (38)

as N →∞.

Remark 2.5. By definition it is possible to choose for each N a decomposition
of Ft such that

α(Ft, ft) +
1

N
=

N∑
k=0

k

N
ck + ‖(gkt )n‖1.

To see this, observe that the integral mass of Ft can be freely distributed
over the gkt ’s (yielding the values of the ck’s) as long as the right hand side
stays larger than α, which carries the infimum over all decompositions of Ft.
Since limN→∞ α = 0, sending N →∞ on both sides yields

lim
N→∞

(
N∑
k=0

k

N
ck + ‖(gkt )n‖1

)
= 0.

This means that in the limit there exists a decomposition of Ft which
minimizes

∑
k
N
ck + ‖(gkt )n‖1 if the counting measure vanishes. We will need

this for the following proof.

Proof. Pick a decomposition of Ft such that

α(Ft, ft) +
1

N
=
∑ k

N
ck + ‖(gkt )n‖1.

We make use of the symmetry of Ft and reorder the permutations σ into
permutations σ′ for which the first s particles are distributed according to ft
and permutations σ′′ for which this is not the case:
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2 THE COUNTING MEASURE2.1 Construction of the ”Counting Measure”

F st :=

∫
Ftdxs+1 . . . dxN

=
N−s∑
k=0

[
1

N !

∑
σ′

ft(x1) · · · ft(xs)
∫
χkt,σ′(x1, . . . , xN)×

×
∏

i=k+1,σ′(i)6=1,...,s

f̃(xσ′(i))dxs+1 . . . dxN

+
1

N !

∑
σ′′

∫
χkt,σ′′(x1, . . . , xN)

N∏
i=k+1

ft(xi)dxs+1 . . . dxN

]

+
N∑

k=N−s+1

1

N !

∑
σ

∫
χkt,σ(x1, . . . , xN)

N∏
i=k+1

ft(xi)dxs+1 . . . dxN .

The relative frequency for the permutations σ′ is

N − k
N

· · · N − k − s+ 1

N − s+ 1
=

(N − s)!
N !

(N − k)!

(N − k − s)!
< 1,

whereas for the permutations σ′′ the relative frequency can be estimated
from above as9

(N − s)!
N !

s−1∑
i=0

(
s

i

)
k!

(k − s+ i)!

(N − k)!

(N − k − i)!
≤

s−1∑
i=0

(
s

i

)(
k

N

)s−i(
N − k
N − s

)i
≤ c(s)

(
N

N − s

)s
k

N

for c(s) =
∑s−1

i=0

(
s
i

)
. We therefore have

F st ≤ ft(x1) · · · ft(xs) (40)

+

(
N

N − s

)s
c(s)

N∑
k=0

k

N

∫
χkt,σ′′(x1, . . . , xN)

N∏
i=k+1

ft(xi)dxs+1 . . . dxN

+
N∑

k=N−s+1

1

N !

∑
σ

∫
χkt,σ(x1, . . . , xN)

N∏
i=k+1

ft(xi)dxs+1 . . . dxN

9Note that they sum up to one:

(N − s)!
N !

s∑
i=0

(
s

i

)
k!

(k − s+ i)!

(N − k)!

(N − k − i)!
= 1 (39)
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With

N∑
k=N−s+1

N

k

k

N

1

N !

∑
σ

∫
χkt,σ(x1, . . . , xN)

N∏
i=k+1

ft(xi)dxs+1 . . . dxN

≤ N

N − s+ 1

N∑
k=0

k

N

1

N !

∑
σ

∫
χkt,σ(x1, . . . , xN)

N∏
i=k+1

ft(xi)dxs+1 . . . dxN (41)

in the last line above it follows that

‖F st − ft(x1) · · · ft(xs)‖1 ≤
(

N

N − s

)s
c(s)

N∑
k=0

k

N
ck +

N

N − s+ 1

N∑
k=0

k

N
ck

≤
[(

N

N − s

)s
c(s) +

N

N − s+ 1

]
︸ ︷︷ ︸

N→∞−→ c(s)+1

(
α(Ft, ft) +

1

N

)

N→∞−→ 0

by assumption and hence

F st
L1

−→ ft(x1) · · · ft(xs).

Remark 2.6. Under the conditions of the theorem, the L1-convergence

F st
L1

−→ ft(x1) · · · ft(xs) (42)

for all t and s implies w∗-convergence of the corresponding measures:

F st dX
w∗−→

s∏
i=1

ft(xi)dxi (43)

Weak convergence of the empirical density

µ
X(t)
N :=

1

N

N∑
i=1

δxi(t)

towards weak solutions of the Vlasov equation µ(t) was shown, among oth-
ers, by Neunzert and Braun and Hepp (see [1],[2],[3]). The key equation in
Neunzert’s proof is

dBL(µ
X(t)
N , µ(t)) ≤ ectdBL(µ

X(0)
N , µ(0)) (44)
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for the bounded Lipschitz distance dBL (see e.g. [3]). We will show
that for absolutely continuous measures, this result follows from the L1-
convergence of the marginals towards products of solutions of the Vlasov
equation:

Corollary 2.2. Let µ
X(t)
N describe the positions and momenta of N particles

and let µft(dx) = ft(x)dx for f : R× R6 → R. Then the L1-convergence

F1
t −→ ft and F2

t −→ ft ⊗ ft (45)

implies

µ
X(t)
N

dBL−→ µft (46)

in mean with respect to PFt.

Proof. The crucial observation is that the metric dBL is defined for functions
g which are Lipschitz continuous with constant 1:

D := {g : R→ [0, 1], |g(x)− g(y)| ≤ |x− y|}.

A partition of phase space Γ1 ∼= R6 into cells ∆i of sidelength δ is very
useful, because the test functions g vary at most by δ on such a cell:

dBL(µ
X(t)
N , µft) := sup

g∈D

∣∣∣ ∫ µ
X(t)
N (dx)g(x)−

∫
ft(x)g(x)dx

∣∣∣
= sup

g∈D

∣∣∣∑
i

∫
∆i

µ
X(t)
N (dx)g(x)−

∫
∆i

ft(x)g(x)dx
∣∣∣

≤
∑
i

sup
g∈D

∣∣∣ ∫
∆i

µ
X(t)
N (dx)g(x)−

∫
∆i

ft(x)g(x)dx
∣∣∣

Now g ∈ D and hence, as already explained, there exists δ > 0 such that
|g(x)− g(y)| ≤ δ for all x, y ∈ ∆i and, in addition, g(x) ≤ 1 for all x:

dBL(µ
X(t)
N , µft) ≤

∑
i

(1 + δ)
∣∣∣ ∫

∆i

µ
X(t)
N (dx)−

∫
∆i

ft(x)dx
∣∣∣

≤ 2δ +
∑
i

∣∣∣µX(t)
N (∆i)− µft(∆i)

∣∣∣
Integrating this with respect to PF and noting that
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∫
F(X)dBL(µ

X(t)
N , µft)dX =

∫
Ft(X)dBL(µXN , µ

ft)dX

since F(X) = Ft(X(t)) by definition, we obtain by dominated conver-
gence

∫
Ft(X)dBL(µXN , µ

ft)dX ≤
∑
i

∫
Ft(X)

∣∣∣µXN(∆i)− µft(∆i)
∣∣∣︸ ︷︷ ︸

=:λ

dX + 2δ. (47)

Using Cauchy-Schwarz’s inequality, we get

λ ≤
(∫
Ft(X)dX

(
µXN(∆i)− µft(∆i)

)2
)1/2

=

(∫
Ft(X)dX

((
µXN(∆i)

)2 − 2µXN(∆i)µ
ft(∆i) +

(
µft(∆i)

)2
))1/2

=

(
1

N

∫
∆i

F1
t (x)dx+

N(N − 1)

N2

∫
∆i

∫
∆i

F2
t (x, y)dxdy (48)

− 2

∫
∆i

F1
t (x)dx

∫
∆i

ft(x)dx+

(∫
∆i

ft(x)dx

)2
)1/2

≤

(
1

N

∫
∆i

F1
t (x)dx− 1

N

∫
∆i

∫
∆i

F2
t (x, y)dxdy

+

∫
∆i

∫
∆i

∣∣∣F2
t (x, y)− ft(x)ft(y)

∣∣∣dxdy
+ 2

∫
∆i

∣∣∣F1
t (x)− ft(x)

∣∣∣dx ∫
∆i

ft(x)dx

)1/2

N→∞−→ 0

and since the left hand side of (47) is independent of δ, sending δ to zero
implies

lim
N→∞

∫
Ft(X)dBL(µXN , µ

ft)dX = 0. (49)

Note that to get line (48), we used the symmetry of Ft under particle
exchange.
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3 DERIVATION OF THE VLASOV EQUATION

Remark 2.7. This obviously implies for all κ > 0

PN
({
X = (x1, . . . , xN)

∣∣∣dBL(µ
X(t)
N , µft) > κ

})
N→∞−→ 0 (50)

since

∫
Ftχ{ dBL(µ

X(t)
N

,µft )

κ
>1

}dx1 . . . dxN ≤
1

κ

∫
FtdBL(µ

X(t)
N , µft)dx1 . . . dxN ,

(51)

which tends to zero for all κ.

3 Derivation of the Vlasov equation

In the last section we explained how one can in principle derive an effective
mean field equation from microscopic dynamics using the ”counting measure”
α. However, we did this in very general terms and stopped at the point where
a specification of the parameters θk was inevitable. θk was introduced to
compensate for the negative parts in the difference (gkt )g ◦Φ−∆t−(gkt )g ◦Φ̃−∆t

at least as long as the dynamics stays within typical fluctuations. At this
stage it is quite clear that we expect these typical fluctuations to be of order√
N in total, i.e. 1/

√
N per particle, since we have the law of large numbers at

our disposal and the fluctuations from the mean field orbit are the deviations
from the expectation value.

Hence, θk(g
k
t )g ◦ Φ̃−∆t should be of the typical size of the difference be-

tween10

(gkt )g ◦ Φ−∆t = (gkt )g +
N∑
i=1

∇qi(g
k
t )g ·∆qi +

N∑
i=1

∇pi(g
k
t )g ·∆pi (52)

and

(gkt )g ◦ Φ̃−∆t = (gkt )g +
N∑
i=1

∇qi(g
k
t )g ·∆qi +

N∑
i=1

∇pi(g
k
t )g ·∆πi, (53)

where we defined

10Note that the following equations are only true to first order in ∆t.
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3 DERIVATION OF THE VLASOV EQUATION

∆pi = − 1

N

N∑
j=1

∇qiφ(qi − qj)∆t for i = 1, . . . , N (54)

and

∆πi =

{
− 1
N

∑N
j=1∇qiφ(qi − qj)∆t, for i = 1, . . . , k

−
∫
ft(q, p)∇qiφ(qi − q)dqdp∆t, for i = k + 1, . . . , N

(55)

for a solution ft of the Vlasov equation. Note that we ignored the part of
the force coming from an external potential, namely −∇qiVt(qi), because it
appears in both ∆pi and ∆πi and we only consider the difference ∆p−∆π.
The splitting of the ”mean field momenta” ∆πi is for technical reasons. We
could have let the k ”bad” particles evolve according to the expectation value
of the force, but it doesn’t matter so much since they are not i.i.d. and can
thus not be expected to act according to mean field dynamics.

We will in the following use the abbreviation

δK(qi − qj) := ∇qiφ(qi − qj)−
∫
∇qiφ(qi − q)ft(q, p)dqdp. (56)

For the difference between the two time evolutions we then have

∇p(g
k
t )g · (∆p−∆π) =

N∑
i=k+1

∇pi(g
k
t )g

1

N

[
k∑
j=1

(−δK(qi − qj)) (57)

+
N∑

j=k+1

(−δK(qi − qj))

]
∆t,

where one should keep in mind that the first k particles are not distributed
according to a product, whereas the last N − k particles are, therefore the
splitting into two sums. We need a bound for the set in N -particle phase
space ΓN on which (gkt )g ◦Φ−∆t−(gkt )g ◦Φ̃−∆t+θk(g

k
t )g ◦Φ̃−∆t is still negative.

We will now define θk and then show that this set is in fact exponentially
small in N .

Definition 3.1. For an interaction potential scaling as φN(q) = 1
N
φ(q)

with φ such that ∇φ is bounded, the parameter θk shall be defined for
k ∈ {0, . . . , N} and 0 < κ < 1

2
as

θk :=
∥∥∥∇pft
ft

∥∥∥
∞
‖∇φ‖∞k∆t+

∥∥∥∇pft
ft

∥∥∥
∞

(N − k)1/2+κ∆t (58)

28
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Remark 3.1. 1. The first term will, together with the prefactor 1/N , pro-
duce a new α in (32). The second term is, again with a prefactor 1/N ,
of order N−1/2+κ and will thus tend to zero for N →∞.

2. For the k ”bad” particles, the law of large numbers is of no use to derive
a bound for δK, the difference between the actual force and its mean
field approximation. In order to get a finite θk, we will therefore need
this to be bounded by assumption: sup δK <∞, which translates to a
bounded ∇φ.

3. The term ∇pi(g
k
t )g in (57) will in the following be divided pointwise

by (gkt )g, and since i = k + 1, . . . , N here, the p-differentiation is only
with respect to ”nice” coordinates. We can therefore divide the whole
fraction by (χkt )

g. This yields ∇pft
ft

in the expression for θk. This was
the reason for the maybe unexpected definition of ∆π, namely to let
the k ”bad” particles evolve according to the exact dynamics. The
condition that ∇pft

ft
is bounded is not as strong as it might seem at first

glance. We can show that those initial conditions f0 for which pointwise
∇pft ≤ c(t)ft on compact time intervals lie dense in L1(R6) ∩ C1(R6).

4. Note that, since θk carries a ∆t itself, it holds θk(g
k
t )g ◦ Φ̃−∆t = θk(g

k
t )g

to first order in ∆t.

For the set in question, we thus find to first order in ∆t11:

{
X = (x1, . . . , xN)

∣∣∣(gkt )g ◦ Φ−∆t − (gkt )g ◦ Φ̃−∆t + θk(g
k
t )g ◦ Φ̃−∆t < 0

}

=

{
X = (x1, . . . , xN)

∣∣∣N − k
N
∇pi(g

k
t )g

k∑
j=1

δK(qi − qj)∆t

+
N − k
N
∇pi(g

k
t )g

N∑
j=k+1

δK(qi − qj)∆t > θk(g
k
t )g

}

⊂

{
X = (x1, . . . , xN)

∣∣∣ 1

N

N∑
j=k+1

δK(qi − qj) > N−1/2+κ

}
=: Ωk.

For the second term in (32), we thus get (again to first order in ∆t):

11Keep in mind that coordinates qi for i = k + 1, . . . , N are i.i.d., while the others are
not.
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3 DERIVATION OF THE VLASOV EQUATION

∥∥∥((gkt )g ◦ Φ−∆t − (gkt )g ◦ Φ̃−∆t + θk(g
k
t )g ◦ Φ̃−∆t

)n ∥∥∥
1

(59)

= 2

∫
R6N

∣∣∣∣∣ ((gkt )g ◦ Φ−∆t − (gkt )g ◦ Φ̃−∆t + θk(g
k
t )g
)− ∣∣∣∣∣dX

≤ 2

∫
Ωk

(gkt )g
∣∣∣(gkt )g ◦ Φ−∆t − (gkt )g ◦ Φ̃−∆t

(gkt )g
+ θk

∣∣∣dX
≤ 2

[
(N − k)

∥∥∥∇pft
ft

∥∥∥
∞
‖∇φ‖∞∆t+ θk

] ∫
Ωk

(gkt )gdX.

The set Ωk contains those parts of phase space for which large deviations
from the mean field orbit occur. If the estimation above is not too coarse,
such a set should be small:

Lemma 3.1. Let the functions (gkt )g be defined as above and let ∇φ be
bounded. For Ωk as above holds∫

Ωk
(gkt )gdX ≤ cke

− N2κ

2E[δK2] r(δK,N) for 0 < κ <
1

2
, (60)

where r(δK,N)→ 1 as N →∞.

Proof. Let χM denote the characteristic function of the set M . For i ∈
{k + 1, . . . , N} it holds for all s > 0

∫
Ωk

(gkt )gdx1 . . . dxN =

∫
R6N

(gkt )gχ{
1
N

∑N
j=k+1 δK(qi−qj)>N−1/2+κ

}dx1 . . . dxN

≤
∫
R6N

(gkt )g
exp(s

∑N
j=k+1 δK(qi − qj))

exp(sN1/2+κ)
dx1 . . . dxN

= e−sN
1/2+κ

∫
R6N

es
∑N
j=k+1 δK(qi−qj)

×
(
χkt
)g

(x1, . . . , xN)dx1 . . . dxk

N∏
l=k+1

ft(xl)dxl

= cke
−sN1/2+κ

∫
R6N

N∏
j=k+1

esδK(qi−qj)ft(xj)dxj

= cke
−sN1/2+κEft [esδK ]N−k

= cke
−sN1/2+κ

e(N−k) lnEft [esδK ]
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Using Taylor’s theorem and the mean value theorem, we obtain

esδK = 1 + sδK +
s2

2
δK2 +

∫ s

0

(s− ξ)2

2
(δK)3eξδKdξ

= 1 + sδK +
s2

2
δK2 + s

(s− ξ)2

2
(δK)3eξδK

for some ξ ∈ [0, s]. Since E[δK] = 012,

E[esδK ] = 1 +
s2

2
E[δK2] + s

(s− ξ)2

2
E[(δK)3eξδK ]

and thus

lnE[esδK ] ≤ s2

2
E[δK2] + s

(s− ξ)2

2
E[(δK)3eξδK ].

It therefore holds

∫
Ωk

(gkt )gdX ≤ ck exp

(
− sN1/2+κ + (N − k)

s2

2
E[δK2]

)
× (61)

× exp

(
(N − k)s

(s− ξ)2

2
E
[
(δK)3eξδK

])
≤ ck exp

(
− sN1/2+κ +N

s2

2
E[δK2] +N

s3

2
E
[
|δK|3es|δK|

])
.

Since this is true for all s, it also holds for the special choice

s =
N−1/2+κ

E[δK2]
(62)

We therefore get

∫
Ωk

(gkt )gdX ≤ cke
− N2κ

2E[δK2] exp

(
N−1/2+3κ

2E[δK2]3
E
[
δK2e

N−1/2+κ|δK|
E[|δK|3]

])
︸ ︷︷ ︸

=:r(δK,N)

(63)

This proves the lemma.

12In the following, E will alway denote the expectation value with respect to ft.
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The above leads to

N∑
k=0

∥∥∥((gkt )g ◦ Φ−∆t − (gkt )g ◦ Φ̃−∆t + θk(g
k
t )g ◦ Φ̃−∆t

)n ∥∥∥
1

(64)

≤
N∑
k=0

2
[
(N − k)

∥∥∥∇pft
ft

∥∥∥
∞
‖∇φ‖∞∆t+ θk

]
ckr(δK,N)e

− N2κ

2E[δK2]

≤
N∑
k=0

ck︸ ︷︷ ︸
=1

·const. ·N ·∆t · r(δK,N)e
− N2κ

2E[δK2]
N→∞−→ 0

and we have thus proven the

Lemma 3.2. Let the measure α be defined as above and let the interac-
tion potential be given by φN(q) = 1

N
φ(q) for symmetric φ such that ∇φ is

bounded. Furthermore let the N-particle density be given by Ft ∈ L1(R6N)
and let ft ∈ L1(R6)∩ C1(R6) be a probability density which solves the Vlasov
equation with initial condition f0. In addition, let ft be such that the point-
wise fraction ∇pft

ft
is bounded. Then for 0 < κ < 1

2

α̇t ≤ 2
∥∥∥∇pft
ft

∥∥∥
∞
‖∇φ‖∞αt (65)

+ 2
∥∥∥∇pft
ft

∥∥∥
∞
N−1/2+κ

+ 2
∥∥∥∇pft
ft

∥∥∥
∞

(
2N‖∇φ‖∞ +N1/2+κ

)
r(δK,N)e

− N2κ

2E[δK2] .

We make the abbreviations

λ1 := 2
∥∥∥∇pft
ft

∥∥∥
∞
‖∇φ‖∞

and

λ2 := 2
∥∥∥∇pft
ft

∥∥∥
∞
N−1/2+κ+2

∥∥∥∇pft
ft

∥∥∥
∞

(
2N‖∇φ‖∞ +N1/2+κ

)
r(δK,N)e

− N2κ

2E[δK2] .

Keep in mind that λ1 does not depend on the particle number N , whereas
λ2 is of order N−1/2+κ. An application of Gronwall’s lemma yields:
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Theorem 3.1. Under the conditions of the lemma, it holds

αt ≤ eλ1tα0 +
(
eλ1t − 1

) λ2

λ1

,

and thus in fact: If the particles are distributed independently at t = 0,
i.e. α0 = 0, then

αt ≤ O
(

1√
N

)
.

We will now investigate the requirement that ‖∇pf̃t‖ ≤ c(t)f̃t for some
positive c(t) which is bounded for finite t.13 First, we will show that those
initial conditions for which this requirement is fulfilled are dense in L1(R6)∩
C(R6). Secondly, we will show that the corresponding solutions of the Vlasov
equation still fulfill that requirement on compact time intervals.

Lemma 3.3. For f ∈ L1(R6) ∩ C(R6) define

f δ :=
1

n(δ)
f∗exp

(
− ‖ · ‖2

(1 + ‖ · ‖)δ

)
=

1

n(δ)

∫
f(y) exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
d3y,

(66)
where

n(δ) =

∫
exp

(
− ‖x‖2

(1 + ‖x‖)δ

)
d3x.

Then f δ fulfills14

‖∇xf
δ‖ ≤ 3

√
6

δ
f δ ∀δ > 0. (67)

Proof. We calculate

∂

∂xi
exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
= (xi − yi)

(
‖x− y‖2

δ(1 + ‖x− y‖)
− 2

δ(1 + ‖x− y‖)

)
×

exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
≤ 3

δ
exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
13Here, ‖ · ‖ denotes the euclidean norm.
14Since ‖∇pfδ‖ ≤ ‖∇xfδ‖, we can focus on the x-gradient to estimate the p-gradient.

This will be essential when proving that the boundedness is preserved during time evolu-
tion.
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and conclude

‖∇xf
δ(x)‖ =

(
6∑
i=1

(∫
f(y)

∂

∂xi
exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
d3y

)2
)1/2

≤
√

6
3

δ
f δ(x).

Lemma 3.4. The functions f δ as defined in (66) are dense in L1(R6)∩C(R6).

Proof. Since f is continuous, we have ∀ε > 0∃ξ > 0 : |f(x) − f(y)| < ε∀y ∈
Uξ(x). We split the integration in f δ into an integral over Uξ(x) and one over
its complement U c

ξ (x) and estimate from above using the continuity of f :

f δ(x) =
1

n(δ)

∫
Uξ(x)

f(y) exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
d3y (68)

+
1

n(δ)

∫
Ucξ (x)

f(y) exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
d3y

≤ (f(x) + ε)
1

n(δ)

∫
Uξ(x)

exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
d3y︸ ︷︷ ︸

A

+
1

n(δ)

∫
Ucξ (x)

f(y) exp

(
− ‖x− y‖2

(1 + ‖x− y‖)δ

)
d3y︸ ︷︷ ︸

B

For δ small enough, we have that A = 1− ε and B ≤ ε sup(f) and thus

f δ(x) ≤ f(x)− εf(x) + ε− ε2 + ε sup(f).

Similarly, we find that

f δ(x) ≥ (f(x)− εf(x))(1− ε)
and therefore

−ε ≤ f δ(x)− f(x) ≤ ε+ ε sup(f),

implying pointwise convergence of f δ to f for δ → 0. Since this implies
L1-convergence, the lemma is proven.

Next, we will show that the boundedness of the pointwise fraction ∇xf0
f0

for an initial condition f0 is preserved by the Vlasov dynamics:
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Lemma 3.5. Let f δt ∈ L1(R6) ∩ C1(R6) denote a solution of the Vlasov
equation with initial condition f δ0 .15 Let K = f δt ∗ ∇φ, the force term in the
Vlasov equation, be such that its Jacobian DK is bounded in operator norm.
Then there exists M > 0 such that

d

dt

∥∥∥∇xf
δ
t

f δt

∥∥∥ ≤M
∥∥∥∇xf

δ
t

f δt

∥∥∥ (69)

and therefore, by Gronwall and the lemma above,

∥∥∥∇xf
δ
t

f δt

∥∥∥ ≤ eMt
∥∥∥∇xf

δ
0

f δ0

∥∥∥ ≤ eMt3
√

6

δ
. (70)

Proof. At a given time t and a point (q0, p0), we look at a small displacement
h in p-direction, make use of the time evolution of the probability density ft
and expand in a suitable manner:

ft(q0, p0)− ft(q0, p0 + h) = ft+∆t(q0 + p0∆t, p0 +K(q0)∆t)

− ft+∆t(q0 + (p0 + h)∆t, p0 + h+K(q0)∆t)

= ft+∆t(q0 + p0∆t, p0 +K(q0)∆t)

− ft+∆t(q0 + (p0 + h)∆t, p0 +K(q0)∆t)

+ ft+∆t(q0 + (p0 + h)∆t, p0 +K(q0)∆t)

− ft+∆t(q0 + (p0 + h)∆t, p0 + h+K(q0)∆t)

It follows with the chain rule that

∇pft(q0, p0) = ∇qft+∆t(q0 + p0∆t, p0 +K(q0)∆t)∆t

+ ∇pft+∆t(q0 + p0∆t, p0 +K(q0)∆t)

and thus

d

dt
∇pft(q0, p0) = −∇qft(q0, p0).

Similarly, for a small displacement in q-direction, we find

15It is clear that the solution originating from the convolution fδ0 = f ∗ exp
(
− ‖·‖2

(1+‖·‖)δ

)
will not have the form of a convolution anymore.
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ft(q0, p0)− ft(q0 + h, p0) = ft+∆t(q0 + p0∆t, p0 +K(q0)∆t)

− ft+∆t(q0 + h+ p0∆t, p0 +K(q0 + h)∆t)

= ft+∆t(q0 + p0∆t, p0 +K(q0)∆t)

− ft+∆t(q0 + h+ p0∆t, p0 +K(q0)∆t)

+ ft+∆t(q0 + h+ p0∆t, p0 +K(q0)∆t)

− ft+∆t(q0 + h+ p0∆t, p0 +K(q0 + h)∆t)

and since K(q0 +h)∆t ≈ K(q0)∆t+DK(q0)h∆t, the chain rule this time
yields

∇qft(q0, p0) = ∇qft+∆t(q0 + p0∆t, p0 +K(q0)∆t)

+ DK(q0)∇pft+∆t(q0 + p0∆t, p0 +K(q0)∆t)∆t,

and hence

d

dt
∇qft(q0, p0) = −DK(q0)∇pft(q0, p0).

Putting both time-derivatives together, we obtain

d

dt
∇xft(q0, p0) = −

(
0 I3

DK(q0) 0

)
∇xft(q0, p0)

and because the matrix is bounded in operator norm by assumption, we
get (reintroducing the superscript δ)

d

dt

∥∥∥∇xf
δ
t

∥∥∥ ≤M
∥∥∥∇xf

δ
t

∥∥∥
Since the Vlasov equation reads d

dt
f δt = 0, we can pointwise divide by f δt

to obtain the desired result:

d

dt

∥∥∥∇xf
δ
t

f δt

∥∥∥ ≤M
∥∥∥∇xf

δ
t

f δt

∥∥∥
Corollary 3.1. With the foregoing, we can rephrase the theorem for solutions
of the Vlasov equation with initial condition f δ0 as defined in (66): Under
the conditions of the theorem, together with the additional requirement that
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K = f δt ∗ ∇φ be such that its Jacobian DK is bounded in operator norm, it
holds for all δ > 0 in the limit N →∞

α̇(Ft, f̃ δt ) ≤ eMt6
√

6

δ
‖δK‖∞α(Ft, f̃ δt ) (71)

and therefore

α(Ft, f̃ δt ) ≤ exp

(
6
√

6

δ
‖δK‖∞

∫ t

0

eMsds

)
α(F0, f

δ
0 ). (72)

Since α(F0, f
δ
0 ) = 0 only if F0(X) =

∏N
i=1 f

δ
0 (xi), we have hereby proven

the propagation of molecular chaos for all initial distributions of the form
F0(X) =

∏N
i=1 f

δ
0 (xi).

4 Conclusion

The method using a ”counting measure” in order to derive mean field equa-
tions from microscopic dynamics has proven very successful for quantum
mechanical systems. The Hartree equation (see [4]), which might be seen as
the quantum mechanical analogue of the Vlasov equation, as well as - more
importantly - the Gross-Pitaevskii equation (see [5]) have been derived using
a measure which tells us ”how much” an N -particle density has product form.
The purpose of this thesis was to test if this method could be modified in
such a way as to be applicable to classical systems. The major new technical
difficulty showing up in the transition from L2 to L1 was (little surprisingly)
the loss of a scalar product and thereby of a notion of orthogonality. Never-
theless, we succeeded in translating the method and were able to derive the
Vlasov equation, which might be called the simplest example provided to us
by physics. There already exist various rigorous derivations of the Vlasov
equation in the literature. With slightly stronger conditions on the initial
values of solutions of the Vlasov equation, these results could be reproduced
although we started from a very different perspective. Whereas all deriva-
tions that are known to us concentrate on proving convergence of discrete
point distributions towards solutions of the Vlasov equation with a suitable
notion of distance, we focussed on the product structure of the distributing
function. In order to assess the distance of that N -particle density from a
product, we constructed a measure which in the simplest cases just counts
the number of particles which fell out of the initial identical and independent
distribution. In proving that this measure remains small if it was small in the
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beginning, we derived the Vlasov equation in a - we think - more intuitive
way than has been done so far. Most surprisingly, it was possible to show
that the L1-distance of the s-marginal of the N -particle density from an s-
fold product of solutions of the Vlasov equation is bounded by a multiple of
that measure.
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