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We consider the question of the quantization of the black hole area. It is suggested

that the physical Hilbert space of quantum microstates of the black hole horizon

area can be related with the state space built by the generators of two dimensional

diffeomorphism transformations. The spatial constraints of general relativity are,

therefore, expanded on a toroidal spacelike surface. The properties of the resulting

algebra are explored, and the highest-weight representation space for this algebra

is constructed. We argue that the operators of the two dimensional diffeomorphism

algebra should be included in the set of operators which are needed for an algebraic

description of a quantum black hole. The degeneracy of the black hole horizon area

might then be associated to the degeneracy of the operator which is diagonal in

the highest-weight representation space. A formal expression for the degeneracy is

derived, and its asymptotics might give the correct degeneracy to reproduce the

Bekenstein-Hawking entropy formula for black holes.
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Introduction

As challenging as it may be, the problem of the unification of general relativity

and quantum mechanics will only be truly solved in combination with some ob-

servational confirmation. A theory without experimentally verified predictions will

always remain “just a theory”. The question of how we are going to know whether a

theory of quantum gravity is correct is still an open one. The Planck scale at which

the effects of quantum gravity should become relevant is far beyond the reach of

current experimental devices. Even the LHC, which is going to reach 10TeV scale,

is still 1015 orders of magnitude below the Planck scale. Thus, even if one has a

mathematically consistent theory of quantum gravity there is no obvious way to

test it. This gives rise to a natural question: are there any quantum gravity effects

observable at the energies accessible today?

Quantum gravity effects can be very important for black holes. Thus, these are

natural candidates to look for possible hints or consistency checks. The question

we wish to address in this work is the quantization of the area of black holes. We

will begin by briefly recalling what quantum effects are relevant for the black hole

physics and what macroscopically observable consequences a discrete area spectrum

could have.

1.1 Quantum Effects in Black Holes

The quantum effects, which are relevant for black hole physics are vacuum polar-

ization and particle creation in the presence of an external field [1]. If the external

field is strong and can be described classically it is called a classical background.
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1. INTRODUCTION

This background changes the vacuum fluctuations of quantum fields by shifting

their zero-point energy levels. Hence, the vacuum is “deformed”. The shift of the

energy levels can be measured and this is called the vacuum polarization effect. If,

on the other hand, the amount of energy which the quantum field receives from the

background field is larger than the difference between the energy levels of the oscil-

lator modes of the quantum field, then we have particle production in an external

field.

A prominent example of particle creation is the Schwinger effect in quantum

electrodynamics, where a positron-electron pair is produced in a strong static elec-

tric field. The fact that the “virtual particles” have opposite charge is crucial, as

in the external electric field they are moving in opposite directions. In such a way

they are separated and can gain a sufficient amount of energy to become real.

In black hole physics both particle production and vacuum polarization effects

are important. The vacuum polarization corresponds to the appearance of local

terms which modify the gravitational action. In the case of external gravitational

field this modification becomes relevant if the curvature of the spacetime approaches

the Planck curvature RPl = c3

~G ∼ 1065cm−2. However, for black holes of mass

M � MPl the curvature reaches the Planck scale only “deep inside” the event

horizon. Hence, the vacuum polarization effects seem to be negligible outside the

black hole.

Let us now consider the possibility of particle creation by a graviational field.

The fact that the total energy of the created particle pair has to be zero in grav-

itational field would imply that one of the particles has negative energy. While

negative-energy states can exist in a nonstatic gravitational field, it seems to be

impossible to convert a virtual particle-antiparticle pair into a pair of real particles

in a static gravitational field. However, Hawking predicted [2] that nonrotating

black holes emit radiation with a black body thermal spectrum of temperature

TH =
κ

2π
(1.1)

and thus evaporate. This implies a probability w ∼ exp(−E/kTH) of finding an

emitted particle with energy E. This probability corresponds to that of particle

pair production as a result of vacuum quantum fluctuations in a gravitational field

of strength κ. The quantity κ is called the black hole surface gravity and it is equal

2



1.2 Thermodynamics of a Quantum Black Hole

to 1/(4M) for nonrotating black holes. Hawking radiation is therefore an example

of a purely quantum effect which should be detectable for an observer outside the

black hole.

In order for a black hole to have significant Hawking radiation within the lifetime

of our universe its initial mass has to be smaller than ∼ 1015g (compare with the

solar mass M� = 2 · 1033g). Such black holes are called primordial black holes as

they could have been formed only in the early universe. In the present-day universe

these black holes could radiate with sufficiently high temperature to be detected.

However, there is currently no evidence for the existence of primordial black holes,

and therefore no observational verification of the Hawking effect has been found.

Nevertheless, it seems that Hawking radiation is indeed one of the most impor-

tant predictions for quantum effects in gravity which could in principle be observ-

able today. Still, the real nature of Hawking radiation at the quantum level is not

yet unambigously established. This is because, in order to derive the continuous

thermal spectrum for black hole radiation, we are considering quantum fluctua-

tions of matter fields on a classical black hole background. However, in a theory of

quantum gravity, quantum fluctuations of the black hole horizon should be taken

into account. This indicates that the character of the Hawking radiance spectrum

could be modified even for large black holes. In order to investigate these possible

modifications of the Hawking radiation due to the effects of quantum gravity, we

turn now to the thermodynamics of black holes.

1.2 Thermodynamics of a Quantum Black Hole

Even prior to the discovery of black hole radiation Bekenstein postulated that

a black hole possess a certain entropy. This conclusion originated from the “no

hair conjecture” [3] which states that a stationary black hole is described only

by few parameters: its mass M , angular momentum J , charge Q, and area A =

A(M,J,Q). Therefore, if a black hole absorbs matter with certain entropy, then

from the point of view of an outside observer the total entropy of the universe

would decrease. This would in turn violate the second law of thermodynamics

unless the black hole would itself have entropy. Hawking’s theorem [4] that the area

of a classical black hole is non-decreasing lead Bekenstein [5] to conclude that the

black hole entropy should be proportional to its surface area. The proportionality

3



1. INTRODUCTION

coefficient S = A/4 was fixed only after the prediction of Hawking radiation [6].

This was done by using the following expression, which relates the characteristic

parameters of a non-extremal black hole [7]:

M2 =
A

16π

(
1 +

4πQ2

A

)2

+
4πJ2

A
. (1.2)

Differentiating this relation leads to the analogue of the first law of thermodynamics

for black holes

dM =
κ

16π
dA+ ΩdJ + φdQ, (1.3)

Here Ω is the angular velocity and φ is the electric potential of the black hole. In

the prefactor of dA one can recognize the expression for the Hawking temperature

(1.1) and read off the proportionality coefficient.

Returning to the quantum description of a black hole, we know that in quantum

mechanics both angular momentum and charge can only take discrete values. In

combination with equation (1.3) this could be considered as the first indication that

the mass and the area of black hole should take discrete values as well. Moreover,

the area eigenvalues should be uniformly spaced as an = αl2Pln where α is some

universal constant [6].

Another justification for a discrete horizon area spectrum was proposed by

Mukhanov [8]. He assumed that a black hole is quantized and that every black hole

with mass M can be associated with some macrostate at energy level n. In analogy

with statistical mechanics one can define the entropy of a particular black hole

macrostate as the logarithm of the number of its possible internal configurations

g(n):

S = ln g(n). (1.4)

The degeneracy g(n) can be identified with number of different ways to reach the

level n, starting from the ground state n = 0 and then going up the staircase of

energy levels in all possible ways. This gives

g(n) = 2n−1.

For equidistant area levels this leads to the Bekenstein-Hawking entropy formula,

and thus justifies the initial assumption that the area spectrum is discrete.

4



1.3 Observational Consequences of Discrete Area Spectrum

1.3 Observational Consequences of Discrete Area

Spectrum

For a nonrotating black hole with zero electric charge, its mass is related to the

area as M2 = A/(16π). Hence, a discrete area spectrum implies a discrete mass

spectrum M ∼
√
n. It follows that the spectrum of Hawking radiation is not

continuous but is instead a line spectrum [8; 9]. Moreover, the energy spacing

between consecutive levels corresponds to the frequency ω0 = (8πM)−1 ln 2 for

M �MPl. The full emission spectrum is then given by spectral lines at frequencies,

which are multiples of ω0, whose envelope is the Hawking thermal spectrum. For

primordial black holes this gives a sharp, observable line spectrum as a direct

consequence of a discrete and uniform black hole horizon area spectrum.

There is, however, no general agreement on the spacing of the area levels. Sev-

eral authors (see [10] and references therein) have suggested a non-uniform level

spacing. In particular, using the loop quantum gravity approach to black hole

physics, Rovelli and Smolin [11; 12] initially proposed the area spectrum

A ∼
∑
i

√
ji(ji + 1). (1.5)

The index ji takes integer and half-integer values and labels a spin-ji link, which

refers to a possible surface separating two adjacent volume quanta labeled by i.

In distinction from the Bekenstein-Mukhanov black hole emission spectrum, the

quantum loop area spectrum implies that the spacing between spectral lines is

infinitesimal and effectively reproduces the Hawking’s thermal spectrum. However,

this result and the degeneracy of an area eigenvalue depends very much on the

convention about which spin-ji links are considered to be physically distinguishable

and thus have to be taken into account in the sum (1.5). Fully indistinguishable

links (see ref.[13] for precise meaning of this) fail to reproduce the area-entropy

relation, i.e. one gets S ∼ At with t < 1. Moreover, the minimal change in the

area is no longer restricted to the Planck area.

After introducing the notion of fully distinguishable links, they were able to

reproduce the Bekenstein-Hawking entropy law with an equidistant area spectrum

Aj = j + 1/2 [13]. This agrees with the result of Bekenstein and Mukhanov.

5



1. INTRODUCTION

1.4 Quantum Black Holes as Atoms. Outlook

Since there has been no experimental evidence for either semiclassical Hawking

radiation or the line spectrum of black holes, the question of whether the spec-

trum of horizon area is equidistant or not still does not have a definite answer,

and further work to determine of the correct area quantization is necessary. In

this work we will use the conjecture of Bekenstein that small black holes can be

described in a similar manner as elementary particles in quantum mechanics [10].

He claimed that a black hole is fully characterised by a closed set of quantum op-

erators
{
Q̂, Ĵ

2
, Ĵz, Â

}
and some creation operators R̂λs for black holes in their

various states. Using purely algebraic methods he was able to derive the algebra of

the creation and area operators. However, no physical justification of the origin of

either of the operators Â or R̂λs was given. The operator Q̂ classically originated

as the electric charge of the black hole, whereas in quantum mechanics it is con-

verted into the generator of U(1) gauge transformations. Since general relativity

is invariant under diffeomorphism transformations, the corresponding generators

should also be included among the operators needed for a complete description of

a black hole quantum state.

Motivated by this observation, we will investigate the properties of the algebra

of the diffeomorphism constraints Hα, which arise in the covariant form of general

relativity [14]. We will review the methods of the Hamiltonian formalism in chapter

2. As we will discover, the two dimensional diffeomorphism algebra of spacelike

constraints can be regarded as a two dimensional extension of the Virasoro algebra.

The latter is of great importance in string theory and conformal field theory(CFT)

where it is the algebra of the generators of conformal transformations. The role of

diffeomorphisms in string theory and CFT will be discussed in chapters 3 and 4.

In chapter 5 we will present the algebraic description of black holes, suggested by

Bekenstein in the light of knowledge from string quantization.

A detailed discussion of quantum extensions of two dimensional diffeomorphism

algebra will be provided in chapter 6. In analogy with conformal field theory we

will consider the highest-weight representation space of the diffeomorphism algebra

on a closed two dimensional spacelike surface. We will consider the possibility to

identify the area and creation operators in Bekenstein’s description with some of

6



1.4 Quantum Black Holes as Atoms. Outlook

the operators present in the diffeomorphism algebra of general relativity. Summary

and conclusions will be given in chapter 7.

7



1. INTRODUCTION

8



2

Constrained Hamiltonian systems

The usual approach to describe the dynamics of a classical field theory is the ac-

tion principle. The invariance of the action under some group of local symmetry

transformations leads to severe restrictions on the allowed form of the Lagrangian

density. This makes it possible to guess the Lagrangian even if the explicit nature

of the theory is not known. The quantum theory is then derived by the approach

of canonical quantization. It seems, however, that the symmetries which are ap-

parent in the Lagrange formalism tend to “disappear” on the way to the Hamilton

formalism. Moreover, the explicit distinction between spatial and time coordinates

in the canonical form of the action looks rather artificial for diffeomorphism in-

variant theories such as general relativity. However, the local symmetries seem to

also be explicit in the Hamiltonian formalism [15], which is much more suitable for

quantization. The aim of this chapter is to rewrite the action of general relativity

in canonical form and to derive the constraints which both generate the dynamics

of general relativity and account for the diffeomorphism invariance of the Einstein

action. We will, therefore, begin with a quick review of the basics of the Hamilton

formalism with constraints and reveal the role of reparametrization invariance in

this formalism.

9



2. CONSTRAINED HAMILTONIAN SYSTEMS

2.1 The Hamilton Formalism and Constraints

2.1.1 Action in Canonical Form

Let us start with the classical action

S =

∫
dt L(q, q̇, t), (2.1)

where q = {q1, . . . , qn} denotes the set of generalized coordinates, and n is the

number of degrees of freedom. This yields the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
. (2.2)

After introducing conjugated momenta,

pi ≡
∂L

∂q̇i
, (2.3)

and defining the Hamiltonian as

H(p, q) = piq̇
i − L(q, q̇, t) (2.4)

the equations of motion become

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.5)

These are first order differential equations, which leads to the Hamilton formalism

sometimes being referred to as the first order formalism. Introducing the classical

Poisson bracket for some functions f(q, p), g(q, p) of canonical variables q and p

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂g

∂qi
∂f

∂pi
(2.6)

enables us to rewrite equations (2.5) as Heisenberg equations

q̇i =
{
qi, H

}
, ṗi = {pi, H} . (2.7)

10



2.1 The Hamilton Formalism and Constraints

The Poisson bracket of the generalized coordinates with their conjugated momenta

is {qi, pj} = δij. This can be straightforwardly translated into equations for quan-

tum operators by replacing the canoncial variables q, p with non-commuting quan-

tum operators satisfying the equal-time commutation relation [qi, pj] = i~δij. From

this it follows that the classical Poisson bracket can be substituted with quantum

commutator according to the rule

[. . . ] = i~ {. . . } . (2.8)

It thus seems that for quantizing a theory all we need is a Hamilton function.

Here we return to the question of whether the Hamiltonian reflects all the sym-

metries of the Lagrangian we started with. An important contribution in this

direction is due to Dirac [16] who developed the quantum theory of constrained

Hamiltonian systems, in which the canonical variables obey the constraint equa-

tions Cα(q, p) ≡ 0. These reflect the presence of a local symmetry in the system,

and, thus, the algebra obeyed by the constraints is the algebra of the generators

of the symmetry transformations. In the canonical formalism these constraints are

taken into account by adding them to the Hamiltonian:

HT (q, p) = H(q, p) + NαCα, (2.9)

where Nα = Nα(q, p) are Lagrangian multipliers.

The constraints arise, for example, in cases when the conjugated momenta pi

are not mutually independent and thus there exist several linear combinations of

momenta which are zero even if the corresponding momenta themselves do not

vanish. Constraints arising this way are called primary constraints. Dirac gave

a neat example to explain the origin of such constraints. Consider a Lagrangian

which is a homogeneous function of the first degree in velocities:

q̇i
∂L

∂qi
= L.

From here it follows that the Hamiltonian H = piq̇
i−L is zero and thus there are no

dynamics. But let us count the degrees of freedom. We started with n coordinates

qi, but, because of the specific form of Lagrangian, the conjugated momenta can

only depend on the ratios of velocities. Out of n variables only n − 1 ratios can

11



2. CONSTRAINED HAMILTONIAN SYSTEMS

be built, which leaves one combination C1(p, q) of q’s and p’s equal to zero. This

can now be multiplied by an arbitrary function N1, and the total Hamiltonian is

HT = N1C1. Hence, we have included some extra information in our Hamiltonian

as a direct consequence of a certain symmetry of the original Lagrangian.

2.1.2 Action in Parametrized Form

As we have seen so far, starting from a classical action principle and passing to the

first order formalism we were able to obtain a quantum theory. The subtle point

which we have neglected so far is whether the resulting quantum theroy is still

Lorentz invariant. Although we started with a classically Lorentz invariant theory,

the equations of motion in Hamiltonian form (2.7) are not manifestly covariant.

The reason for this is that by referring to one absolute time, we break the four

dimensional Lorentz symmetry. In order to ensure relativistic invariance, let us

treat the “absolute time” t as another generalized coordinate which “evolves” as a

function of some “new time” τ . Then a system with n degrees of freedom described

by n coordinates qi, becomes a system of n+1 degrees of freedom with qn+1 = t(τ).

As a result the action becomes

S =

∫
dt L(q, q̇, t) (2.10)

=

∫
dτ L∗(q, q′, qn+1, qn+1′, τ),

where q′ ≡ dq/dτ . Rewriting the action in canonical form leads to

S =

∫
dτ
dt

dτ

(
n∑
i=1

pi
dqi

dτ

dτ

dt
−H(q, p)

)

=

∫
dτ

(
n∑
i=1

piq
i′ − qn+1

′H(p, q)

)
.

After identifying pn+1 = −H(q, p) the last term can be absorbed in the sum.

This relation between the new conjugated momenta and the Hamiltonian can be

rewritten as a constraint

C0(q, p) ≡ pn+1 +H(q, p) = 0

12



2.1 The Hamilton Formalism and Constraints

and taken into account in the action as

S =

∫
dτ

(
n+1∑
i=1

piq
i′ −N0C0(q, p)

)
, (2.11)

where q and p now denote the set of n + 1 variables and N0 is the Lagrange

multiplier. From here it is obvious that we now have obtained the reparametrization

invariance of the “time” variable τ → τ̃(τ). This will give an extra factor dτ/dτ̃

in front of the Lagrange multiplier N0. But, as long as N0 = N0(τ) is an arbitrary

function of the parameter τ only, the “time” reparametrization corresponds to a

trivial redefinition of the Lagrange multiplier Ñ0(τ̃) = dτ
dτ̃

N0(τ). Thus, we have

rewritten the action (2.10) in a manifestly covariant form.

In the case that there are m extra constraints like, for example, the primary

constraints introduced in the previous section they can also be taken into account

in the action:

S =

∫
dτ

(
n+1∑
i=1

piq
i′ −

m∑
α=0

NαCα

)
. (2.12)

This is called the action in parametrized form. Note that the Hamilton function of

a theory whose action is expressed in parametrized form, according to (2.4), is just

a combination of constraints

HT (q, p) =
m∑
α=0

NαCα(q, p).

In such a case we say that the Hamilton function is weakly zero. The resulting

equation of motion for a general function of dynamical variables, g(q, p), is then

dg(q, p)

dτ
≈

{
g,

m∑
α=0

NαCα(q, p)

}
. (2.13)

The curly equality sign means that the constraints have to be set to zero after

the equation of motion is solved. The reparametrization τ → τ ′(τ) leaves the

equation of motion unaffected and thus it is obvious that the resulting theory is

now covariant.
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2. CONSTRAINED HAMILTONIAN SYSTEMS

2.2 The Covariant Form of General Relativity

2.2.1 Diffeomorphism Invariance of General Relativity

The Einstein-Hilbert action for the gravitational field is

S = − 1

16πG

∫
d4x
√
−gR. (2.14)

The equations of motion obtained by varying the action with respect to the metric

gαβ are

δS =

∫
d4x

δS

δgαβ
(x)δgαβ(x) = − 1

16πG

∫
d4x
√
−g(Rαβ −

1

2
gαβR)δgαβ. (2.15)

By setting this variation to zero one obtains ten equations for the seemingly inde-

pendent components of the metric:

Gαβ ≡ Rαβ −
1

2
gαβR = 0, (2.16)

where Gαβ is the symmetric Einstein tensor. These equations are highly non-linear

and impossible to solve for the general case. The theory of general relativity is

manifestly invariant under the general coordinate transformation xµ → x̃µ(xν).

The physical origin of this invariance is clear, as the change of the spacetime coor-

dinate system simply corresponds to “renaming the points” of the manifold, which

consists of events. It is clear that this does not change the physics, just as “re-

naming of the streets” does not change the buildings in the city. Hence, the local

symmetry of the general relativity Lagrangian is its invariance under infinitesimal

local diffeomorphism transformations:

xµ → x̃µ = xµ + ξµ(x). (2.17)

A very important feature of general relativity is that the equations of motion

for matter do not need to be postulated separately, but follow from the Bianchi

identities, Gα
β;α = 0, satisfied by the Einstein tensor. The Bianchi identities can

be derived explicitly from the properties of the Riemann tensor, but they also

follow from the diffeomorphism invariance of the Lagrangian of general relativity.

To see this consider the infinitesimal transformation law of the metric under the

14



2.2 The Covariant Form of General Relativity

transformation (2.17):

gαβ(x)→ g̃αβ(x) = gαβ(x)− gαβ,λ ξλ + gβλξ;α
λ + gαλξ;β

λ , (2.18)

⇒ δgαβ = ξα;β + ξβ;α. (2.19)

Note that the argument x is the same on both sides. Thus we compare the metric

at different points of the manifold, which have the same coordinate values in both

coordinate systems {xµ} and {x̃µ}. Under this transformation the action changes

as

δS = − 1

16πG

∫
d4x
√
−gGαβδg

αβ

= − 1

16πG

∫
d4x
√
−gGαβ(ξα;β + ξβ;α)

= − 1

8πG

∫
d4x
√
−gG;β

αβξ
α (2.20)

= 0,

and from this it follows that Gα
β;α = 0. Hence, we have derived the Bianchi identities

by exploiting the invariance of the action under diffeomorphisms, and without

explicitly referring to the properties of Ricci scalar.

2.2.2 The Hamilton Formalism

As we have seen, one consequence of the invariance of general relativity under

general coordinate transformations is that the number of independent components

of metric is reduced from ten to six. Hence, there are only six dynamical variables

in general relativity, and these will appear with first order time derivatives in the

canonical form of the action. To rewrite the Lagrangian of general relativity in the

first order form we use the Hilbert-Palatini formalism. In this one treats the metric

and the connection as independent variables and thus the Lagrangian is linear in

first derivatives of g and Γ.

We will begin with the action

S =

∫
d4x
√
−gR (2.21)

15



2. CONSTRAINED HAMILTONIAN SYSTEMS

where we adapt the sign and units conventions of [14]. Furthermore, we will use

Planck units throughout the rest of our work. In the spirit of previous chapter

we see that the action is written in an already reparametrization invariant form

with no particular role associated to the time coordinate. This implies that the

total Hamiltonian of general relativity vanishes weakly and can be expressed as

linear combination of the constraints, which reflect the diffeomorphism invariance

of the theory. There are four allowed diffeomorphism transformations associated

with each spacetime direction, and, hence, we expect four constraints arising on

the way to the Hamilton formalism. In order to find these we will exploit gauge

freedom to choose a particularly convenient coordinate system.

2.2.2.1 Splitting the Spacetime in 3+1

Let us slice the spacetime into a one-parameter family of spacelike hypersurfaces.

The use of this specific spacetime decomposition does not, of course, impair the

general invariance of the theory under arbitrary coordinate transformations. Us-

ing this splitting we will rewrite the action of general relativity in parametrized

form (2.12), where the Hamiltonian and time parameter are again introduced as a

conjugated pair of generalized coordinates.

Consider two such subsequent spacelike hypersurfaces Σt and Σt+dt with t =

const and t + dt = const respectively. The geometry of the “earlier” hypersurface

is described by the 3-dimensional metric

γij(t, x, y, z)dxidxj;

the metric on the “later” hypersurface is

γij(t+ dt, x, y, z)dxidxj.

In order to fix the geometry of the spacetime one has to specify the rules by

which the points on different equal-time slices are connected. This enables one to

calculate the proper interval ds2 between two spacetime points xµ = (t, xi) and

xµ + dxµ = (t+ dt, xi + dxi) by using the Pythagorean theorem:

ds2 = γij(dx
i + Nidt)(dxj + Njdt)− (N0dt)2.
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2.2 The Covariant Form of General Relativity

This yields to 3+1 decomposition of the metric tensor

(gαβ) =

(
−N2 + NiN

i Ni

Ni γij

)
(2.22)

The covariant lapse and shift variables are given by

Ni = γijNj, N0 = N0 = N

and the inverse of the metric is

(
gαβ
)

=
1

N2

(
−1 Ni

Ni N2γij −NiNj

)
. (2.23)

For the proper volume element the determinant will be needed

g = det(gαβ) = −N2γ, with γ ≡ det(γij).

2.2.2.2 Constraints in ADM Formalism

In this section we are going to rewrite the action (2.21) of general relativity in the

first order form. When we say first order we mean that we are looking for a form

in which the generalized coordinates and momentum appear in the Lagrangian in

the combination pq̇, i.e. with first time derivatives. After varying the action with

respect to p and q one obtains first order equations of motion. Furthermore, we

will use Hilbert-Palatini method and treat the quantities g and Γ independently.

The end result for the Lagrangian density is:

L = πij γ̇ij −NαHα, (2.24)

where πij are momenta conjugated to γij and defined in terms of the extrinsic

curvature Kij,

πij = −γ1/2
(
Kij − γijK

)
Kij =

1

2
N−1 (Ni;j + Nj;i − γij,0) , K = γijKij,

17



2. CONSTRAINED HAMILTONIAN SYSTEMS

and Nα are the lapse and shift variables introduced above. Hα are the constraints

due to the diffeomorphism invariance of general relativity

H0 = Gijklπ
ijπkl −√γ(3)R (2.25)

Hi = −2γijπ
jl
|l , (2.26)

where

Gijkl =
1

2
√
γ

(γikγjl + γilγjk − γijγkl).

(3)R is the intrinsic curvature of a hypersurface of constant time t and the vertical

bar denotes the covariant derivative with respect to the 3-metric γij. After using

the generalized Poisson brackets

{
γij(x), πkl(y)

}
= δ

(k
i δ

l)
j δ(x, y) =

1

2
(δki δ

l
j + δliδ

k
j )δ(x, y), (2.27)

where x and y denote two different points on the spacetime manifold, we can derive

the following equal-time Poisson brackets for the constraints

{H0(x),H0(y)} = γij(x)Hj(x)
∂

∂xi
δ(x, y)− γij(y)Hj(y)

∂

∂yi
δ(x, y),

{Hi(x),H0(y)} = H0(x)
∂

∂xi
δ(x, y), (2.28)

{Hi(x),Hj(y)} = Hj(x)
∂

∂xi
δ(x, y)−Hi(y)

∂

∂yj
δ(x, y).

These then form a closed set of constraints, i.e. in the language of Dirac they are

first class constraints. The H0 constraint, being the generator of translations in

the time direction, describes the time evolution of the gravitational field, while Hi

generate diffeomorphism transformations on the hypersurface Σt.
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3

Diffeomorphisms and Physical

Quantum States in String Theory

In this chapter the role of the diffeomorphism invariance in string theory is in-

vestigated. We will begin with the classical theory and will show how the diffeo-

morphism constraints arise in both the Lagrange and Hamilton formalisms. We

then consider the canonical and light-cone gauge quantization of string theory and

explore how the classical constraints are resolved in these approaches. In the con-

clusion an explicit construction of the physical quantum string state space by the

use of vertex operators is presented. This chapter follows the books [17; 18].

3.1 Symmetries of the Polyakov Action

Consider a free bosonic string. Its trajectory in the target spacetime covers a two

dimensional hypersurface called a worldsheet. We parametrize this hypersurface

by one timelike coordinate τ and one spacelike coordinate σ taking values in the

range σ ∈ [0, 2π]. The worldsheet coordinates (τ, σ) are mapped to target space

coordinates Xµ(σ, τ), where µ = 0, ..., D − 1. Target space is assumed to be D-

dimensional, flat Minkowski space with the metric ηµν = (−1, 1, . . . , 1). The action

for the string has to be proportional to the area of the worldsheet. This is a two-

dimensional generalization of the action for a relativistic particle moving along

geodesics. Instead of minimizing the length of the worldline, the string minimizes

the area of its worldsheet.

19



3. DIFFEOMORPHISMS AND PHYSICAL QUANTUM STATES IN
STRING THEORY

In practice it is more convenient to work with the Polyakov action

S = −T
2

∫
d2σ
√
−ggαβ(σ, τ)ηµν(X)∂αX

µ∂βX
ν , (3.1)

Here gαβ(σ) is the metric on the string worldsheet. Since no time derivatives of the

metric appear in the Lagrangian, the equations of motion for gαβ are the constraints

in string theory. After imposing these constraints, the action reduces to the area of

the worldsheet. The proportionality constant T = 1
2πα′

is a parameter of dimension

[L]−2 and has a physical interpretation as the tension of the string, i.e. potential

energy per unit length. α′ is a conventional parameter called the Regge slope

parameter. The indices that α, β take values 0, 1 while µ, ν = 0, ..., D − 1.

The Polyakov action (3.1) is invariant under both global, D-dimensional, Poincaré

transformations and local diffeomorphism transformations on the string worldsheet.

This action can also be interpreted as describing D scalar fields Xµ(τ, σ) in a curved

two-dimensional spacetime. The invariance under general coordinate transforma-

tions enables us, by appropriate choice of gauge, to bring the worldsheet metric to

a conformally flat form:

gαβ → g̃αβ = e2Φηαβ.

This choice of worldsheet metric is referred to as conformal gauge. Moreover, the

action is also locally Weyl invariant, i.e. the transformation

gαβ(τ, σ)→ Ω2(τ, σ)gαβ(τ, σ)

leaves it unchanged. Hence the conformal factor e2Φ drops out of the Polyakov

action which in conformal gauge becomes

S = −T
2

∫
d2σηαβ∂αX

µ∂βXµ. (3.2)

However, some reparametrization freedom is still left because requiring that ds2 =

e2Φ(dτ 2 − dσ2) does not uniquely fix the coordinate system. In fact, in the world-

sheet light-cone coordinates

σ± = τ ± σ, ∂± =
1

2
(∂τ ± ∂σ)

20



3.2 The Canonical Form of the Polyakov Action

the line element becomes ds2 = e2Φdσ+dσ−. Under conformal transformations

σ± → σ̃±(σ±) it transforms to ds2 = e2Φ̃dσ̃+dσ̃−. The prefactor has changed, but

the metric is still conformally flat. This residual symmetry plays an important role

in string theory. I will consider it in detail in section 3.5.1.

In conformal gauge the equations of motion for Xµ are

∂α∂
αXµ = 0. (3.3)

As we have assumed that the worldsheet metric is an independent field, then the

equation of motion for gαβ also has to be satisfied. Recalling the definition of the

energy-momentum tensor

Tαβ = − 2

T

1√
−g

δS

δgαβ
= 0,

it turns out that satisfying the equations of motion for gαβ classically corresponds

to setting Tαβ = 0. These are the constraints of string theory. In conformal gauge

the constraint equations are

C0 ≡ T00 = T11 =
1

2
(Ẋ2 +X ′2) = 0, (3.4)

C1 ≡ T01 = T10 = Ẋ ·X ′ = 0. (3.5)

Here Ẋ ≡ ∂X
∂τ

, X ′ ≡ ∂X
∂σ

, and the scalar product is denoted as X ·X = ηµνX
µXν .

3.2 The Canonical Form of the Polyakov Action

In this section we will treat string theory as a theory for D massless scalar fields

on a two dimensional background with metric gαβ. Instead of choosing conformal

gauge, we will use the 1+1 decomposition for the metric gαβ:

ds2 = −(N2 −N1N1)dτ 2 + 2N1dσdτ + γ11dσ
2, (3.6)

where N and N1 are the lapse and shift respectively. After introducing the momenta

conjugated to the scalar field Xµ:

πµ =
∂L

∂Ẋµ
=

√
γ11

N
(Ẋµ −N1Xµ

′), (3.7)
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the Polyakov action (3.1) in the first order Hamilton formalism takes the following

form

S =

∫
d2σ (πµẊ

µ −NαCα), (3.8)

where T ≡ 1, N0 = N√
γ

and N1 the lapse and the shift are Lagrange multipliers and

the constraints are

C0 =
1

2
(π2 +X ′2), C1 = πµX

′µ. (3.9)

Note that in the conformal gauge gαβ = ηαβ the conjugated momenta in (3.7)

reduce to πµ = Ẋµ and the constraints reduce to (3.4) and (3.5). The following

equal-time Poisson brackets for the constraints can be derived as

{Ci(σ), Ci(σ
′)} = C1(σ)

∂

∂σ
δ(σ, σ′)− C1(σ′)

∂

∂σ′
δ(σ, σ′),

{C0(σ), C1(σ′)} = C0(σ)
∂

∂σ
δ(σ, σ′)− C0(σ′)

∂

∂σ′
δ(σ, σ′) (3.10)

with i = 0, 1. These constraints are consequences of the diffeomorphism invariance

of the Polyakov action.

3.3 Mode Expansions

3.3.1 Constraints in Light-cone Worldsheet Coordinates

Consider a closed string which obeys the periodicity condition

Xµ(τ, σ) = Xµ(τ, σ + 2π).

In terms of the worldsheet light-cone coordinates equations of motion (3.3) can be

written as

∂+∂−X
µ = 0. (3.11)

The general solution for these equations can be written as a sum of left- and right-

moving modes

Xµ(τ, σ) = Xµ
L(σ+) +Xµ

R(σ−).
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The most general solution of equation (3.11) is then the following expansion in

Fourier series (the coefficients are adjusted to agree with common notations)

Xµ
L(σ+) =

1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n 6=0

1

n
α̃µne−inσ

+

,

Xµ
R(σ−) =

1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n6=0

1

n
αµne−inσ

−
, (3.12)

where xµ and pµ are the position and momenta of the center of mass of the string.

By demanding that πµ = Ẋµ and Xµ obey the canonical Poisson bracket one can

show that the Fourier coefficients αµn have the following Poisson brackets

{αµm, ανn} = {α̃µm, α̃νn} = imδm+nη
µν (3.13)

{αµm, α̃νn} = 0.

The requirement that XR and XL are real functions leads to further restrictions on

the Fourier components

αµ−n = (αµn)†, α̃µ−n = (α̃µn)†.

For later use and reference let us write down the expressions for Xµ(τ, σ) and its

derivatives explicitly:

Xµ(τ, σ) = xµ + α′pµτ + i

√
α′

2

∑
n6=0

1

n

(
αµne

−inσ− + α̃µne
−inσ+

)
, (3.14)

Ẋµ(τ, σ) =

√
α′

2

(∑
n

α̃µne
−inσ+

+
∑
n

αµne
−inσ−

)
, (3.15)

Xµ′(τ, σ) =

√
α′

2

(∑
n

α̃µne
−inσ+ −

∑
n

αµne
−inσ−

)
. (3.16)
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3. DIFFEOMORPHISMS AND PHYSICAL QUANTUM STATES IN
STRING THEORY

where αµ0 ≡ α̃µ0 ≡
√

α′

2
pµ. The constraints (3.4) in light-cone coordinates become

T+− = T−+ = 0, (3.17)

L(τ, σ) ≡ T−− =
1

2
(T00 − T01) = (∂−X)2 =

α′

2

∑
m,n

αn−m · αme−inσ
−

= 0, (3.18)

L̄(τ, σ) ≡ T++ =
1

2
(T00 + T01) = (∂+X)2 =

α′

2

∑
m,n

α̃n−m · α̃me−inσ
−

= 0.

Hence the light-cone constraints L, L̄ are related to “Minkowski worldsheet” con-

straints C0, C1 as

L =
1

2
(C0 − C1) (3.19)

L̄ =
1

2
(C0 + C1).

The above expansions can be written in a shorter form

L(τ, σ) = α′
∑
n

Lne−inσ
−

= 0,

L̄(τ, σ) = α′
∑
n

L̄ne−inσ
+

= 0 (3.20)

Here we have introduced the Virasoro modes Ln, L̄n. They are the Fourier coeffi-

cients of the above expansion, evaluated at time τ = 0,

Ln =
1

2

∑
m

αn−m · αm =
1

2πα′

∫ 2π

0

dσe−inσL(0, σ), (3.21)

L̄n =
1

2

∑
m

α̃n−m · α̃m =
1

2πα′

∫ 2π

0

dσeinσL̄(0, σ).

The Poisson brackets for Ln and L̄n can be calculated directly from definitions

(3.21) and Poisson brackets (3.13). This yields the Virasoro algebra

{Ln, Lm} = −i(n−m)Lm+n,{
L̄n, L̄m

}
= −i(n−m)L̄m+n, (3.22){

Ln, L̄m
}

= 0.
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As the Virasoro operators Ln and L̄n decouple, we will often consider only one copy

of these algebras.

The constraint equations (3.17) in terms of the Virasoro modes become:

Ln = L̄n = 0, ∀n.

3.3.2 Constraints in Minkowski Worldsheet Coordinates

We can similarly expand the constraints (3.4) in a Fourier series on the circle as

Ci(0, σ) =
+∞∑

n=−∞

(Ci)ne
inσ, (Ci)n =

1

2π

∫ 2π

0

dσ Ci(0, σ)e−inσ. (3.23)

From the Poisson brackets (3.10) it follows that the Fourier modes (Ci)n also obey

the Virasoro algebra

{(Ci)n, (Ci)m} = −i(n−m)(Ci)n+m, (3.24)

{(C0)n, (C1)m} = −i(n−m)(C0)n+m.

In distinction from the light-cone constraint algebra (3.22), the modes (C0,1)n do

not decouple. In terms of string oscillators the Fourier coefficients of C1, C0 at

τ = 0 can be expressed as

(C0)n =
1

2

∑
m

(α̃−n−m · α̃m + αn−m · αm), (3.25)

(C1)n =
1

2

∑
m

(α̃−n−m · α̃m − αn−m · αm).

Further we observe that the Fourier modes Ln, L̄n and (C0)n, (C1)n are not related

as in eq. (3.19). Instead they satisfy

(C0)n = L̄†n + Ln,

(C1)n = L̄†n − Ln.

This is due to the differences in the Fourier expansions (3.21) and (3.24). However,

the constraints C0, C1 are both more natural and easier to interpret because the

distinction between timelike and spacelike coordinates is preserved.
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3.3.3 Generators of Diffeomorphism Transformations

There is a straightforward interpretation of both sets of Virasoro operators Ln, L̄n

and (C0)n, (C1)n. This can be clearly seen by calculating the action of the gener-

ators Ln, L̄n on the target space coordinates Xµ:

{Ln, Xµ(τ, σ)} = einσ
−
∂−X

µ (3.26){
L̄n, X

µ(τ, σ)
}

= einσ
+

∂+X
µ (3.27)

Hence, the Virasoro operators Ln (L̄n) generate the residual diffeomorphism trans-

formations which preserve the conformal gauge. As σ− (σ+) is an angular variable

in the mode expansion of XL (XR) then it can also be said that Ln (L̄n) generate

diffeomorphisms on the circle.

Similarly, for the equal time constraints (C0)n, (C1)n we have

{(C0)n, X
µ(τ, σ)} = e−inσ

(
Ẋµ cosnτ − iX ′µ sinnτ

)
(3.28)

{(C1)n, X
µ(τ, σ)} = e−inσ

(
−iẊµ sinnτ +X ′

µ
cosnτ

)
. (3.29)

Here the time and space directions of the worldsheet are mixed and the interpre-

tation might seem confusing. In order to clarify this, let us, instead of choosing a

given moment of time τ = 0, consider a constant spatial coordinate σ = 0. Then

the constraints C0 and C1 become

C0(τ, σ = 0) =
α′

2

∑
n,m

(α̃n−m · α̃m + αn−m · αm) e−inτ , (3.30)

C1(τ, σ = 0) =
α′

2

∑
n,m

(α̃n−m · α̃m − αn−m · αm) e−inτ .

We then define the corresponding Fourier coefficients as

(A0)n ≡
1

2

∑
m

(α̃n−m · α̃m + αn−m · αm) , (3.31)

(A1)n ≡
1

2

∑
m

(α̃n−m · α̃m − αn−m · αm) . (3.32)

In order to calculate the Poisson bracket for two fields, which are given at differ-
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ent moments of time, in generic case, one should use the time evolution operator

determined by the Hamiltonian, to “bring the fields” to equal times. However, one

can formally use the expressions (3.30) and Poisson brackets (3.13) to derive the

following relations:

{Ci(τ), Ci(τ
′)} = −

(
C0(τ)

∂

∂τ
δ(τ, τ ′)− C0(τ ′)

∂

∂τ ′
δ(τ, τ ′)

)
, (3.33)

{C0(τ), C1(τ ′)} = −
(
C1(τ)

∂

∂τ
δ(τ, τ ′)− C1(τ ′)

∂

∂τ ′
δ(τ, τ ′)

)
. (3.34)

Note that these equations are very similar to the Poisson brackets (3.10). One

should be aware, however, that the equal-time Poisson brackets are universal, i.e.

they do not depend on the equations of motion. Meanwhile, the “equal-space

Poisson brackets” were derived by explicitly using the solution of the equations

of motion. However, the solutions of string theory are mode expanded in the

light-cone worldsheet coordinates σ± = τ ± σ. Hence, the space and time world-

sheet coordinates appear in combinations of the light-cone coordinates only. It

follows then from the remaining gauge invariance of Polyakov action that under

the conformal transformation σ− → −σ− the roles of the coordinates τ and σ are

exchanged. Therefore, the equal-time Poisson brackets have the same structure as

the “equal-space Poisson brackets”.

The action of (A0)n and (A1)n on coordinates Xµ is

{(A0)n, X
µ(τ, σ)} = einτ

(
Ẋµ cosnσ + iXµ′ sinnσ

)
, (3.35)

{(A1)n, X
µ(τ, σ)} = einτ

(
iẊµ sinnσ +Xµ′ cosnσ

)
, (3.36)

which coincides with (3.28) if one substitutes σ = −τ and (A1)n = −(C0)n. After

rewriting{
{(C0)n, X

µ(0, σ)} = e−inσẊµ

{(C1)n, X
µ(0, σ)} = e−inσXµ′,

{
{(A0)n, X

µ(τ, 0)} = einτẊµ

{(A1)n, X
µ(τ, 0)} = einτXµ′.

(3.37)

the physical interpretation of C0 and C1 is obvious. Hence, the C0 constraint gen-

erates time translations and the C1 constraint generates spatial diffeomorphisms.
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3.4 Old Canonical Quantization

As we have seen so far - the Polyakov action, initially invariant under diffeomor-

phism and Weyl transformations, was simplified by choosing the conformal gauge.

Still, there is a residual symmetry left which does not affect the choice of conformal

gauge. More precisely, the action is still invariant under conformal transformations

σ± → σ̃±(σ±). This gauge symmetry was a direct consequence of promoting the

worldsheet metric gαβ to a dynamical variable. This resulted in additional con-

straint equations which still have to be imposed once the solutions of the equations

of motion for target space coordinates Xµ are found. In the worldsheet light-cone

coordinates the final form of the subsidiary conditions was Ln = L̄n = 0.

How can we quantize the dynamical degrees of freedom of the string? The

Gupta-Bleuler method known from quantum electrodynamics suggests that the

system should be first quantized cannonically and that afterwards the constraint

equations in the form of operator equations on our wave functions have to be

imposed. So let us promote the target space coordinates Xµ to operator valued

fields and define their conjugated momenta as πµ = 1
2πα′

Ẋµ. We further demand

that they obey the canonical equal-time commutation relations

[Xµ(σ), πν(σ′)] = iδ(σ − σ′)ηµν

⇒ [αµn, α
ν
m] = [α̃µn, α̃

ν
m] = nηµνδn+m,0, [xµ, pν ] = iηµν . (3.38)

After redefining an = αn√
n

and a†n = α−n√
n

with n > 0, one obtains the familiar

commutation relations for the harmonic oscillator

[
aµn, a

ν†
m

]
= δn,mη

µν , [an, am] =
[
a†n, a

†
m

]
= 0. (3.39)

This suggests that we interpret a†n and an as creation and annihilation operators

respectively. The redefinition we performed above was only useful to see clearly

that αµn and αµ−n can be associated with some kind of creators and annihilators and

can be further used to build a Fock space. The corresponding analysis is valid also

for α̃. Thus every scalar field Xµ(σ) gives rise to an infinite number of creation

and annihilation operators.
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3.4 Old Canonical Quantization

Basing on this analogy we define the vacuum state of the Fock space as

αµn |0〉 = α̃µn |0〉 = 0, n > 0. (3.40)

We should be aware, however, that there is one more degree of freedom arising

from the zero mode of the oscillators αµ0 , α̃
µ
0 . This is pµ, which corresponds to the

momenta of the center of mass of the string. Hence, we denote |0; p〉 as a state which

is annihilated by the oscillators αµn, α̃
µ
n, n > 0 and has a center of mass momentum

pµ. We will further restrict the discussion to one of the sets of oscillator modes

only. However, we keep in mind that αµ0 = α̃µ0 =
√

α′

2
pµ. This relation translates

into the level matching condition L0 = L̄0 for closed strings.

Now we can build excited states by acting on the vacuum state with creation

operators. Every state in the Fock space can be schematically written as

|λ〉 =
∞∏
n=1

D−1∏
µ=0

(αµ−n)µn |0; p〉 . (3.41)

The Fock space defined above cannot be the physical Hilbert space though. This

can be seen immediately after considering the state α0
−n |0〉. In order to calculate

its norm the commutation relations (3.39) for the time component have to be used.

As a result this state has negative norm 〈0|α0
nα

0
−n |0〉 = −n. But we know that

the physical space should not contain any ghosts. In order to resolve this problem,

one has to implement the Virasoro constraints obtained in the classical theory,

Ln = 0, ∀n, in the quantum theory.

First, let us see, how these classical modes translate into quantum operators.

Because of the normal ordering of creation and annihilation operators, two mod-

ifications of the Virasoro algebra have to be made. The only normal ordering

ambiguities arise in the zero mode L0, because αn−m commutes with αm unless

n = 0. Thus some unknown ordering constant a will appear. One chooses to define

the quantum operator L0 to be the normal ordered expression

L0 =
1

2
α2

0 +
∞∑
n=1

α−n · αn (3.42)

and to include the normal ordering constant a by replacing L0 → L0−a everywhere.

For the same reason an extra term in the commutation relations [Ln, L−n] appears.
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It is determined by demanding that the Jacobi identity is satisfied. The quantum

Virasoro algebra is then

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm+n,0. (3.43)

In quantum theory the physicality conditions have to be implied as operator equa-

tions on the states Ln |φ〉 = 0, ∀n. This condition is too strong, because it leaves

us with an empty Hilbert space, and must be replaced by a weaker requirement

similarly to Gupta-Bleuler quantization. Namely, we demand that every physical

state is annihilated by positive frequency modes only. Then by choosing normal

ordering convention as ’negative frequency modes on the left and positive frequency

modes on the right,’ every matrix element between two physical states vanishes.

Thus, the physicality conditions for a quantum state |φ〉 read:

Ln |φ〉 = 0, ∀n > 0 (3.44)

(L0 − a) |φ〉 = 0. (3.45)

Classically (a = 0) the condition L0 = 0 translates into a relation between the mass

squared and the oscillator modes of the closed string on the mass shell:

M2 = −pµpµ = −2α2
0

α′
= − 4

α′

(
1

2
α2

0

)
=

4

α′

∞∑
n=1

α−n · αn. (3.46)

Thus, there is a natural choice for the quantum mass squared operator:

M2 =
4

α′

(
−a+

∞∑
n=1

α−n · αn

)
. (3.47)

After introducing the number operator N ≡
∑∞

n=1 α−n · αn, we have

M2 =
4

α′
(−a+N), (3.48)

L0 =
1

2
α2

0 +N.

The commutation relations with the creation and annihilation operators are:

[N,αn] = −nαn, [N,α−n] = nα−n, ∀n > 0. (3.49)
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When the number operator acts on the basis state |λ〉 in eq. (3.41), its eigenvalue

is the sum of the mode numbers of the creation operators

N |λ〉 = Nλ |λ〉 , with Nλ =
∞∑
n=1

25∑
µ=0

nµn. (3.50)

Therefore, the eigenstates |λ〉 can be classified according to their eigenvalues Nλ.

It is then said that the state |λ〉 is of the level Nλ.

3.5 Light-cone Gauge Quantization

The idea behind this approach to quantizing the string is to eliminate the non-

dynamical degrees of freedom before passing to quantum mechanics. This is done

by exploiting the remaining symmetry of the Polyakov action so that the constraint

equations can be resolved at the classical level. This envolves a choice of a particular

gauge, which appears to break the Lorentz invariance. However, it can be shown

that by appropriate choice of normal ordering constant a and spacetime dimension

D, the Lorentz invariance can be preserved.

3.5.1 Residual Gauge Symmetry

As was mentioned several times before, even after fixing gαβ = e2Φηαβ the Polyakov

action is still invariant under conformal transformations σ± → σ̃±(σ±). The world-

sheet coordinates τ = 1
2
(σ+ + σ−) and σ = 1

2
(σ+ − σ−) transform into

τ̃ =
1

2
(σ̃+(σ+) + σ̃−(σ−)), (3.51)

σ̃ =
1

2
(σ̃+(σ+)− σ̃−(σ−).

From here it follows that the coordinate τ̃ can be an arbitrary solution of the wave

equation (
∂2
τ − ∂2

σ

)
τ̃ = 0.

This is exactly the equation of motion for the target space coordinates. Thus we

can use the remaining gauge freedom to set τ̃ equal to one of the coordinates Xµ.

The coordinate σ̃ is then determined by eq.(3.51).
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3.5.2 Light-cone Gauge

Let us first introduce the light-cone coordinates in spacetime as

X± =
1√
2

(X0 ±XD−1),

XI = X i, i = 1, . . . , D − 2.

The light-cone gauge corresponds to the choice of the coordinate τ to be propor-

tional to X+, i.e.

X+(τ, σ) = x+ + p+τ.

Then the X−(τ, σ) coordinate is completely determined by the constraint equations

(Ẋ ±X ′)2 = 0 as

(Ẋ− ±X−′) =
1

2α′p+
(ẊI ±XI ′)2. (3.52)

One can introduce the transverse Virasoro modes for the coordinates XI . In com-

plete analogy with previous definitions (3.21) they are expressed as

L⊥n =
1

2

∑
m

αIn−mα
I
m, L̄⊥n =

1

2

∑
m

α̃In−mα̃
I
m,

where the repeated indices I = 1, . . . D − 2 denote summation over the transverse

dimensions. Consequently, from the expansion of X− coordinates

Ẋ− +X−
′
=
√

2α′
∑
n

α̃−n e
−inσ+

,

Ẋ− −X−′ =
√

2α′
∑
n

α−n e
−inσ−

one can read off the equations for oscillator modes:

√
2α′α−n =

2

p+
L⊥n ,

√
2α′α̃−n =

2

p+
L̄⊥n . (3.53)

Hence, the only degrees of freedom left after imposing the light-cone gauge are:

p+, x−0 , x
I
0, α

I
n. This choice of gauge is not covariant, however, and breaks Lorentz

invariance, since the choice of components 0 and D − 1 for defining the light-cone

coordinates was completely arbitrary. One can show that in order for the quantum

Lorentz generators to obey the Poincaré algebra, the constant values a = 1 and
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D = 26 have to be chosen for bosonic strings.

3.6 Physical States

As was mentioned before, the Fock space built by creation operators αµ−n, µ =

0, . . . , D acting on the vacuum state is not the physical state space which is spanned

by all positive norm states |φ〉 that satisfy the Virasoro condition Ln |φ〉 = 0, n > 0

and the mass-shell condition (L0 − a) |φ〉 = 0. In this section we will show how to

construct the physical state space without explicitly using the transverse oscillators

αI−n.

3.6.1 Vertex Operators

The first step in order to unambigously define the physical state space is to associate

an operator Vφ to every on-shell physical state |φ〉. This will allow us to build new

physical states from the old ones. What conditions should this new operator fulfill?

First of all, it should be transformed into itself by the Virasoro algebra. Imposing

this condition is necessary because the time evolution of any local quantum operator

is determined by the corresponding Hamilton operator, which on the open string

space is L0− a. Let us show that operators which satisfy this demand are actually

the primary operators from conformal field theory1. Consider a field V (σ = 0, τ) ≡
V (τ) on the open string Hilbert space. It is said that an operator has a conformal

weight h if under an arbitrary change of variables τ → τ ′ it transforms like

V ′(τ ′) =

(
dτ

dτ ′

)h
V (τ).

Written in infinitesimal form this transformation law becomes

δV (τ) = −εdV
dτ

+ hV
dε

dτ
. (3.54)

Rewriting eq. (3.26) at the point σ = 0 and substituting the Poisson bracket with

commutator leads to

[Lm, X
µ(τ)] = −ieimτXµ(τ).

1We will discuss this in more detail in the next chapter. For now we will only use some of
most essential properties of primaries.
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Hence, the target space coordinates Xµ(τ) have conformal weight h = 0, and we

conclude that Virasoro operators generate transformations (3.54) with the infinites-

imal parameter given by ε = −ieimτ . Thus for a field of arbitrary conformal weight

(3.54) can be written

[Lm, V (τ)] = eimτ
(
−i d
dτ

+mh

)
V (τ). (3.55)

If the operator V (τ) is expandable in a Fourier series, this condition can be imposed

on the Fourier modes An as

[Lm, An] = (m(h− 1)− n)Am+n. (3.56)

One can check that if |φ〉 is a given physical state and the operator V (τ) has

conformal dimension h = 1, then the state |φ′〉 = A0 |φ〉 is again a physical state.

Therefore, we conclude that we are looking for an operator of conformal weight

h = 1. In this case the transformation law (3.55) can be expressed as a total time

derivative:

[Lm, V (τ)] = −i d
dτ

(eimτV (τ)). (3.57)

The second condition we have to impose on the vertex operator is that if at time

τ and σ = 0 a physical state of momentum −kµ is emitted by vertex operator

V (k, τ), then it should increase the momentum of the initial state by an amount

kµ. This suggests that the vertex operator has to be proportional to eik·x(τ) with

x(τ) being the center of mass position of the string at time τ . So let us try the

simplest expression we can come up with:

V (k, τ) ≡: eik·X(0,τ) : . (3.58)

By straightforward calculation one can show that this operator has conformal

weight h = k2/2 for open strings. In the case k2 = 0 this gives h = 0, and,

hence, the expression (3.58) cannot be used as vertex operator describing the emis-

sion of a massless meson. However, one can show that the conjugated momenta

Ẋµ has h = 1, which is exactly what we are looking for. Thus, the next try should

be the following

Vζ(k, τ) = ζ · dX
dτ

exp[ik ·X], (3.59)
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where ζµ(k) is the polarization vector. If k · ζ = 0 then this expression has no

short distance singularities in the operator product expansion and Vζ(k, τ) can be

used as vertex operator. This condition on the polarization vector ensures that the

vertex operators are in one-to-one correspondance with physical states.

3.6.2 Transverse Physical States

In this section we present the Del Giudice, Di Vecchia and Fubini (DDF) con-

struction used to construct operators AIn, which when applied to the ground state

give all possible transverse physical states. Note that we only refer to the states

which correspond to the transverse oscillator modes αIn, where I = 1, .., D − 2, as

introduced in the light-cone quantization.

Let us first choose the ground state to be the tachyonic ground state |p0; 0〉,
which fulfills the mass shell condition p2

0 = 2. Suppose that the tachyon is in a

particular state with p+
0 = 1, p−0 = −1 and pI0 = 0. Also define a vector kµ0 with

components k−0 = −1, k+
0 = kI0 = 0, and, thus, k0 · p0 = 1. This kinematic setup

will be used throughout the construction of physical states.

We now define allowed states such that if the mass is given to be α′M2 = N − 1

then the momentum has to be pµ = pµ0 − Nkµ0 . Any physical state obeying the

mass shell condition can be Lorentz transformed into such a configuration.

As we discovered in the previous section, one can build new massless physical

states from already existing physical state via applying the vertex operator (3.59).

From our kinematical setup it follows that we are only studying states with a wave

vector which is an integer multiple of the null vector defined above, i.e. kµ = nkµ0 .

In this case the vertex operator for transverse polarizations is

V I(nk0, τ) = ẊI(τ)einX
+(τ), (3.60)

where X+(τ) = x+ + τ . It follows that V I(nk0, τ) = V I(nk0, τ + 2π). We define

AIn =
1

2π

∫ 2π

0

V I(nk0, τ)dτ =
1

2π

∫ 2π

0

ẊI(τ)einx
+

einτ dτ. (3.61)

The operators AIn can be interpreted as the Fourier modes of a periodic operator

which behaves as a primary field with weight h = 1 under the transformations

generated by Lm at a given point σ = 0. Because of the periodicity condition, AIn
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commutes with the Virasoro operators, as can be calculated from (3.57). As we

will see later, this is actually the most important property an operator has to fulfill

in order to generate physical states .

The following properties of operators AIn can be derived by direct computation:

[Lm, A
I
n] = 0

[N,AIn] = nAIn (3.62)

[AIm, A
J
n] = mδIJδm+n

AI†n = AI−n

AIn |0; p0〉 = 0, n > 0.

From here it is obvious that the AIn have the same properties as the transverse

oscillators αIn and therefore states of the form

|f〉 = AI1−1A
I2
−2...A

Im
−m |0; p0〉 (3.63)

satisfy the Virasoro conditions and have N =
∑
rIr. In other words, these states

are physical, linearly independent, and have positive metric. We will call generic

states of the form (3.63) DDF states, and the space spanned by them we denote

F . As the operators AIn are in one-to-one correspondence with the algebra of

transverse oscillators, we can then conclude that they form a D − 2 dimensional

physical subspace of the complete Fock space.

3.6.3 No Ghost Theorem for D = 26 and a = 1

The purpose of this section is to show that there are no ghosts if we choose the

spacetime dimension to be D = 26 and normal ordering constant a = 1. The idea of

the proof is to show that all states in the complete Fock space built from oscillator

modes as shown in (3.41) can be identified with DDF states, which are physical,

positive norm states, according to the previous section. We will sketch the proof as

it is necessary for further discussion, but only its main steps and results. Detailed

proof can be found in [17].

Let us define the operators

Km = k0 · αm, (3.64)
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where the scalar product is taken over all spacetime dimensions. This operator has

the following properties

[Km, Ln] = mKm+n, [Km, Kn] = 0 (3.65)

Kn |f〉 = 0, n > 0.

Here and henceforth we will take |f〉 to be a DDF state. We also define K to be a

space spanned by all the states of the form

|k〉 =
∞∏
n=1

Kµn
−n |f〉 . (3.66)

We now are going to explore the properties of the states built by acting on DDF

states with operators L−n and K−n. We introduce

|{λ, µ}, f〉 ≡ Lλ1
−1L

λ2
−2 . . . L

λm
−mK

µ1

−1 . . . K
µm
−m |f〉 (3.67)

with the eigenvalue P of the number operator defined as

P ≡
∑

rλr +
∑

sµs. (3.68)

The ordering in (3.67) was chosen arbitrarily and this is possible due to the com-

mutation relations of the L’s and K’s. Once an ordering is chosen we will stay to

this convention throughout the calculation. Also note that the subscript m is the

same for both the L’s and K’s. This is done only for the elegance of notation and

denotes the highest order of operators K or L used to build a given state. It is still

allowed that λm = 0 if µm 6= 0.

We now claim that the states (3.67) are linearly independent. To show this

consider the matrix of inner products of states (3.67) for a given value of P and

some DDF state |f〉:

MP
{λ,µ};{λ′,µ′} = 〈f |Kµn

n . . . Kµ1

1 Lλnn . . . Lλ1
1

L
λ′1
−1 . . . L

λ′m
−mK

µ′1
−1 . . . K

µ′m
−m |f〉 , (3.69)

where P =
∑
rλr +

∑
sµs =

∑
rλ′r +

∑
sµ′s. One can then show that there exists

an ordering of the states like i = {λ, µ} < j = {λ′, µ′} such that the matrix MP
ij
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takes the form 
a11 a12 a13 a14

a21 a22 a23 0

a31 a32 0 0

a41 0 0 0

 . (3.70)

The states (3.67) are then linearly independent because det(MP ) 6= 0.

There are two kinds of states with nonzero inner products: the states made

out of L’s or K’s only, or states with an equal number of L’s and K’s. The latter

restriction is needed because the evaluation process of the elements of MP consists

of commuting the operators past each other in order to get an L0 or K0 acting on

the DDF state. If there would be more operators K than L, then an operator Kn

coming from the left with n > 0 would hit |f〉 and give zero. After these remarks

it is easy to define an appropriate ordering and to prove the claim.

The important remark has to be made that the presence of K operators is

crucial. They are the key ingredients which ensure the non-singularity of matrix

MP . The calculation of the determinant of inner product matrix for the states

made out of L’s only (Kac determinant) is of great importance in CFT and gives

restrictions on the allowed values of the conformal weights h and the central charges

c.

One can also check that any two states built from two orthogonal DDF states

|f〉 and |g〉 which are L0 eigenstates are also orthogonal, as are the states built upon

them. This allows us to conclude that the states (3.67) made from all possible DDF

states and {λ, µ} running over all strings of L’s and K’s are linearly independent.

Let us summarize. We have so far two sets of states. The first set is the Fock

space built by acting on the string vacua with oscillators. A generic state in this

space can be written as
25∏
ρ=0

∞∏
n=1

(αρ−n)εn,ρ |0〉 . (3.71)

The second set of states is the one introduced in (3.67). More explicitly, any such

state can be written as a product

∞∏
n=1

Lλn−n ·K
µn
−n ·

24∏
I=1

(
AI−n

)βn,I |0〉 . (3.72)
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We claim now that every state in the bosonic open string Fock space (3.71) can be

expressed as a linear combination of basis states (3.72). To prove this one has to

show that the number of states with a given eigenvalue 〈N〉 of the number operator

N =
25∑
ρ=0

∞∑
n=1

αρ−nαnρ (3.73)

is the same for both (3.71) and (3.72). For the Fock space states this gives

〈N〉 =
∑
n,ρ

nεn,ρ (3.74)

and for the states (3.72)

〈N〉 =
∞∑
n=1

n

(
λn + µn +

24∑
I=1

βn,I

)
. (3.75)

The combinatorics of 26 ε’s and one λ, one µ, and 24 β’s is the same. Thus we can

use the states (3.72) as the basis of the Fock space instead of (3.71). These states

are not all physical though. What we have shown so far is only that they span the

whole Fock space built from oscillators.

Further, let us define a spurious state. A state |ψ〉 is called spurios if it satisfies

the constraint (L0 − a) |ψ〉 = 0 and is orthogonal to every physical state |φ〉, i.e.

〈φ|ψ〉 = 0. We denote such states with |s〉, and call the space they span S. Every

state of the form (3.72) is spurious if it has at least one operator Ln in it. The

rest of the states belong to K since they contain the operators K only. Hence, any

state |φ〉 in the Fock space can be written as a sum

|φ〉 = |s〉+ |k〉 . (3.76)

From here it follows that if |φ〉 is an eigenstate of L0, then |s〉 and |k〉 are also

eigenstates of L0 with the same eigenvalue. One can further show that if |φ〉 is a

physical state then |s〉 and |k〉 are also physical states. This is true, however, only

if D = 26 because this value is used explicitly in the proof of the claim. The last
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step is to consider a general form of a state (3.66). This can be written as a sum

|k〉 = |f〉+
∑
α

∞∏
n=1

K
µn,α
−n |fα〉 ≡ |f〉+ |k̃〉, (3.77)

and one can show that if |k〉 is physical, then the decomposition (3.77) simply

becomes |k〉 = |f〉. Hence, every physical state in the K space is a DDF state.

Thus we conclude that every physical state |φ〉 can be decomposed into a sum of a

physical spurious state |s〉 and a DDF state |f〉 which by its construction is physical

|φ〉 = |s〉+ |f〉 . (3.78)

Finally, we are able to prove that there are no ghosts in the physical Hilbert space

which is a subspace of states spanned either by (3.71) or (3.72) fulfilling the Virasoro

condition (Lm − aδm0) |φ〉 = 0, ∀m ≥ 0:

〈φ|φ〉 = (〈s|+ 〈f |) (|s〉+ |f〉)

= 〈s|s〉+ 〈f |s〉+ 〈s|f〉+ 〈f |f〉

= 〈f |f〉 ≥ 0.
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4

On Representations of the

Virasoro Algebra in Conformal

Field Theory

Here the construction of the highest-weight representation of the Virasoro algebra

in conformal field theory is investigated. We first review the basic notions and

techniques used in conformal field theory [19; 20]. Then we conclude the chapter

with the calculation of the level density of highly excited states and compare the

results with string theory. Finally we discuss the relation between this and black

hole physics.

4.1 Classical Conformal Field Theory

4.1.1 Conformal Symmetry

By definition the conformal transformations are a subgroup of the diffeomorphism

transformations xµ → x′µ, under which the metric remains invariant up to an

overall scale factor, i.e.

gµν(x)→ g̃µν(x̃) = Ω(x)gµν(x). (4.1)
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An infinitesimal coordinate transformation can be written in terms of conformal

Killing vector fields Xµ
a as

xµ → x′µ = xµ + ξµ(x) = xµ + εaX
µ
a .

For translations, rotations and dilations this yields1

ξµ(T )(x) = ενXµ
ν = ενδµν

ξµ(R)(x) = ε(νρ)X
µ(νρ) = ε(νρ)(δ

µνxρ − δµρxν)

ξµ(D)(x) = εxµ. (4.2)

In d-dimensional (d > 2) space of signature (p, q) the conformal group is finite and

the conformal algebra is isomorphic to so(p+ 1, q + 1).

The defining equation (4.1) for infinitesimal conformal coordinate transforma-

tions xµ → xµ + εµ(x) in two dimensional Euclidean space reduces to the Cauchy-

Riemann differential equations

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1. (4.3)

If we complexify the Euclidean coordinates and coordinate transformations as

z = x1 + ix2, z̄ = x1 − ix2,

εz(z, z̄) = ε(z, z̄)1 + iε2(z, z̄), ε̄z̄(z, z̄) = ε1(z, z̄)− iε2(z, z̄),

then the equations (4.3) imply holomorphic dependence of the conformal trans-

formations εz = εz(z) and ε̄z̄ = ε̄z̄(z̄). Therefore the two dimensional conformal

transformations can be identified with analytic coordinate transformations

z → f(z), z̄ → f̄(z̄).

This allows us to treat z and z̄ as two independent variables. By independent we

mean that a priori z̄ 6= z∗. the condition z̄ = z∗ is only a section in our C2 space

which recovers the initial 2d Euclidean space. Hence, we have complexified the

1The round brackets here are only indicating the distinction between different kinds of indices
and have nothing to do with the symmetrization.

42



4.1 Classical Conformal Field Theory

initial real 2d Euclidean space to a 2d complex space R2 → C2. In two spacetime

dimensions, then, the local1 conformal group is the set of all analytic maps of the

complex plane onto itself, which is obviously an infinite dimensional group.

4.1.2 Conformal Ward Identities

In a quantum field theory the main objects of interest are the correlation functions

which are defined via the path integral as

〈φ(x1)...φ(xn)〉 =
1

Z

∫
[dφ]φ(x1)...φ(xn)e−S[φ]. (4.4)

It is natural to demand the invariance of correlation functions under symmetry

transformations that leave the action itself invariant. The consequences of some

symmetry on correlation functions is expressed in the form of Ward identities.

More precisely, Noether theorem states that the variation of the action δS[φ, δφ] ≡
S[φ+ δφ]− S[φ] can be expressed in terms of a current jµa as

δS =

∫
ddx(∂µj

µ
a )εa. (4.5)

This current is then conserved on the mass shell, i.e. where the classical equations

of motion are satisfied,

∂µj
µ = 0. (4.6)

For correlation functions, conservation of the current leads to the Ward identities

∂

∂xµ
〈jµa (x)φ(x1)...φ(xn)〉 = −i

n∑
j=1

δ(x− xi) 〈φ(x1)...Gaφ(xj)...φ(xn)〉 , (4.7)

where Ga is the generator of the symmetry transformation

δφ = φ′ − φ = −iGaεa.

This tells us that the current is conserved away from the insertions of the field φ.

Any field theory consistent with general relativity has to be diffeomorphism

invariant. Therefore, let us consider an infinitesimal general coordinate transfor-

1Globally only Killing vectors corresponding to translations, rotations, dilations, and special
conformal transformations are well-defined.
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mation under which the matter fields transform like φi(x)→ φ̃i(x) = φi(x)+δφi(x).

The variation of the action functional of matter, Sm[gµν , φ], has to vanish

δSm =

∫
ddx

δSm

δgµν(x)
δgµν(x) +

∫
ddx

δSm

δφi(x)
δφi(x) = 0. (4.8)

We then introduce the energy-momentum tensor in a spacetime with Euclidean

signature as

Tµν = − 2
√
g

δSm

δgµν
. (4.9)

Then the Ward identities for diffeomorphism transformations in two dimensions

reads

n∑
j=1

〈φ(x1)...δφ(xj)...φ(xn)〉 =
1

2

∫
d2x
√
g δgµν(x) 〈T µν(x)φ(x1)...φ(xn)〉 . (4.10)

If we assume that the unperturbed background metric is flat δµν , then the square

root
√
g = 1, and the metric perturbations become δgµν = −(ξµ,ν + ξν,µ). Thus,

n∑
j=1

〈φ(x1)...δφ(xj)...φ(xn)〉 = −
∫
d2x ∂µξν(x) 〈T µν(x)φ(x1)...φ(xn)〉 (4.11)

= −
∫
d2x {(∂µεa)Xaν + εa∂µXaν} (x)·

· 〈T µν(x)φ(x1)...φ(xn)〉 ,

where in the second line the metric perturbations were expressed in terms of Killing

vector fields ∂µξν = ∂µ(εaX
µ
a ). For conformal transformations given in equations

(4.2) the second term vanishes only if the energy-momentum tensor is symmetric

and traceless. Hence, this is a sufficient, but not a necessary, condition for a

conformal symmetry to be generated by the energy-momentum tensor. As there

are no counterexamples found so far, we will assume that classically the energy-

momentum tensor is symmetric and traceless. So finally, after combining (4.7) and

(4.11), we have∫
d2x(∂µεa)Xaν(x) 〈T µν(x)φ(x1)...φ(xn)〉 =

∫
d2x 〈(∂µεa)jµaφ(x1)...φ(xn)〉. (4.12)

This gives the relation between the energy-momentum tensor and the conserved
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current of the conformal symmetry of the action functional

jµa = Xν
aTµν . (4.13)

In flat space, the energy-momentum tensor is the conserved current due to the

translational symmetry with infinitesimal, position dependent parameter. There-

fore, ∂µT
µν = 0.

4.1.3 Generators of Conformal Transformations

In terms of the variables z and z̄ the scale invariance and conservation of the

energy-momentum tensor can be rewritten as1

∂̄Tzz + ∂Tz̄z = 0, ∂Tz̄z̄ + ∂̄Tzz̄ = 0 (4.14)

Tz̄z = Tzz̄ = 0.

Therefore, only the holomorphic and anti-holomorphic parts of the energy-momentum

tensor T (z) ≡ Tzz and T̄ (z̄) ≡ Tz̄z̄ are non-zero. The Ward identity (4.10), rewrit-

ten with z and z̄, takes the form

δεε̄ 〈A〉 =
1

2πi

∮
C

dzε(z) 〈T (z)A[φ]〉 − 1

2πi

∮
C

dz̄ε̄(z̄)
〈
T̄ (z̄)A[φ]

〉
. (4.15)

The integration contour encircles the origin and all the points inside the set of the

fields A[φ] ≡ φ(x1)...φ(xn), as the identity (4.15) is identically zero elsewhere.

From complex analysis we know that every meromorphic (∂z̄φ(z) = 0) function

can be expanded in a Laurent series. Hence, the coordinate change ε(z) becomes

ε(z) =
∑
n∈Z

zn+1εn.

The generators of conformal transformations can then be defined as

Ln =
1

2πi

∮
dz zn+1T (z)

T (z) =
∑
n∈Z

z−n−2Ln. (4.16)

1the notation ∂ ≡ ∂z and ∂̄ ≡ ∂z̄ is introduced here
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4.1.4 Primary Fields

The fields of greatest importance in conformal field theory are the ones transform-

ing under conformal transformations in a way that the form φh,h̄(z, z̄)dzhdz̄h̄ is

conformally invariant. Such a field φh,h̄(z, z̄) is called a primary field. It follows

that a primary field transforms as

φ̃(z̃, ˜̄z) = φ(z, z̄)

(
dz

dz̄

)h(
dz̄

d˜̄z

)h̄
and (h, h̄) is called a conformal weight. The infinitesimal form of this transforma-

tion law reads

δε,ε̄φ(z, z̄) = [(h∂ε+ ε∂) + (h̄∂̄ε̄+ ε̄∂̄)]φ(ε, ε̄). (4.17)

The appropriate Laurent expansion of a primary field reads

φ(z) =
∑
n∈Z

z−n−hφn,

φn =
1

2πi

∮
dz zn+h−1φ(z). (4.18)

4.2 Radial Quantization of Conformal Field The-

ories

In order to cannonically quantize a conformal field, the notion of a time axis has to

be introduced. So far we have been working with Euclidean coordinates described

by a single complex coordinate z = x1 + ix2. We may proceed by parametrizing

the complex z plane as follows:

z = ew, w = τ + iσ. (4.19)

By restricting the range of σ coordinate to σ ∈ [0, 2π), this corresponds to a

mapping of a cylinder w to a complex plane z. The coordinate τ ∈ (−∞,∞) can

then be regarded as time. The infinite past and future, τ = ±∞, is mapped to

the points z = 0,∞ respectively. The circles of fixed radius around the origin on

the z plane are interpreted as equal time slices. Hence, the time ordering required
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in quantum mechanics translates into a radial ordering in conformal field theory.

Therefore, we introduce the radial ordering operator R

R(A(z)B(w)) =

A(z)B(w), if |z| > |w|

B(w)A(z), if |z| < |w|.
(4.20)

The equal-time commutator is then defined as

[Tε, φ(w, w̄)] = lim
|z|→|w|

∮
dz

2πi
ε(z)T (z)φ(w, w̄)

with the integration contour encircling the point w.

The conformal Ward identity (4.15) can be rewritten as

δε,ε̄φ(w, w̄) =
1

2πi

(∮
[dz T (z)ε(z), φ(w, w̄)] +

[
dz̄ T̄ (z̄)ε̄(z̄), φ(w, w̄)

])
. (4.21)

In analogy to the classical definition of conserved charge, let us define the charge

corresponding to a conformal coordinate transformation z → z + ε(z) as

Qε =

∮
dz

2πi
ε(z)T (z). (4.22)

From the mode expansions (4.16) it follows that

Qε =
∑
n∈Z

εnLn (4.23)

After rewriting the holomorphic part of the Ward identity (4.21) in terms of Ln

δεφ(z) = [
∑
n∈Z

εnLn, φ(z)] (4.24)

one recognizes the mode expansion coefficients Ln as generators of a local conformal

transformation. This is in agreement with our knowledge from string theory, as

there the Virasoro operators generated the remaining gauge transformations which

were left after the conformal gauge was fixed. These symmetries corresponded

to the conformal transformations of the worldsheet light-cone coordinates τ ± σ.

Hence, string theory in conformal gauge is a conformal field theory.

47



4. ON REPRESENTATIONS OF THE VIRASORO ALGEBRA IN
CONFORMAL FIELD THEORY

4.2.1 Operator product expansion

We note that the conformal Ward identity (4.21) is only non-zero if there is a

singularity in the operator product limz→w T (z)φ(w). The correlation functions

of fields typically also have singularities at the points where the fields inside the

correlator coincide. This corresponds to infinite quantum fluctuations once the field

is localized. In general we call an expression, which reflects the singular behavior of

the product of two or more local operators an operator product expansion (OPE).

Thus, for example, the OPE of a primary field with the energy-momentum

tensor can be derived from (4.21) and is

T (z)φ(w, w̄) ∼ h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄). (4.25)

“∼” means that expressions like (4.25) are valid when the product is inserted into

a correlation function. The OPE’s for products of the stress tensor with primary

fields and for products of the primary fields themselves contain all the information

about dynamics and can actually substitute for a conformal field theory Lagrangian.

4.3 Central Charge and the Virasoro Algebra

The OPE for the energy-momentum tensor with itself is:

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
. (4.26)

The factor 2 in front of the second term on the right hand side suggests that

T is a quasi-primary field with conformal weight h = 2. This is violated by the

anomalous term that has appeared due to the scale invariance condition of two point

correlation functions. In other words, the first term gives the 2-point correlation

function of the stress tensor

〈T (z)T (0)〉 =
c/2

z4
.

The constant c is the central charge and depends on the conformal field theory for

which the energy momentum tensor is computed for. Classically c = 0.
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After combining equations (4.26) and (4.16) one can derive the following commu-

tation relation defining the Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (4.27)

with c being the central charge from the equation (4.26).

Let us consider the OPE (4.26) in its infinitesimal form

δεT (w) = [Tε, T (w)] =

∮
w

dz ε(z)T (z)T (w)

= [ε(w)∂w + 2∂wε(w)]T (w) +
c

12
∂3
wε(w). (4.28)

For a finite transformation z = f(w) this gives

T (z)→ T̃ (w) =

(
dz

dw

)2

T (z) +
c

12
S[z;w], (4.29)

where we have introduced the Schwartzian derivative

S[f ;w] =
∂wf∂

3
wf − 3

2
(∂2
wf)2

(∂wf)2
. (4.30)

For the conformal transformation z = ew from the cylinder (with coordinates w)

to the plane (with coordinates z) one obtains the following relation between the

corresponding energy-momentum tensors

Tcyl(z) = z2T (z)− c

24
=
∑
n∈Z

Lnz
−n − c

24
, (4.31)

and, hence, the zero modes of the Virasoro algebra are shifted

(L0)cyl = (L0)plane −
c

24
. (4.32)

Note that this also changes the Hamilton operator on the cylinder.
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4.4 Hilbert Space of Conformal Fields

4.4.1 Operator-state Correspondence

The vacuum of a conformal field theory is defined as a state |0〉 which is invariant

under global conformal transformations. This means that it is annihilated by op-

erators L−1, L0, L1. The condition that T (z) |0〉 is regular at z = 0 gives further

restrictions

Ln |0〉 = 0, n ≥ −1.

This implies the vanishing of the vacuum expectation value of the energy-momentum

tensor, i.e. 〈0|T (z)|0〉 = 0.

The CFT in-states are defined by applying the CFT operators to the vacuum,

|Ain〉 = lim
z→0

A(z) |0〉 ≡ A(0) |0〉 .

The limit z → 0 in radial quantization corresponds to τ → ∞. Therefore, we

have assumed that the CFT fields are asymptotically free and can be used as CFT

in-states.

The primary states are defined as |h〉 ≡ φh(0) |0〉, and are often called highest-

weight states. From the OPE between the stress tensor and primary fields φh it

follows that L0 |h〉 = h |h〉, and likewise, we have Ln |h〉 = 0, ∀n > 0. The excited

states above the asymptotic state |h〉 can be obtained by applying the raising

operators L−n.

4.4.2 Highest-weight Representations. Verma Module

The simplest conformal field theories are characterized by a Hilbert space made of

a finite number of representations of the Virasoro algebra. These include discrete

statistical models at their critical points (Ising model, etc.). Such theories are

called minimal models, and their correlation functions are completely determined

once the corresponding partition function is known. It turns out that in order for

a representation of the Virasoro algebra to be unitary, very severe restrictions are

put on the central charge and highest-weight of the theory under consideration.

Therefore, if the central charge is known, there is only a limited number of allowed

values for the highest-weight. Hence, the partition function of a physical theory is
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completely determined by algebraic methods. Therefore, the analysis of highest-

weight representations is a very powerful tool.

Let us construct representations of the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0. (4.33)

We denote by |h〉 the highest-weight state, an eigenstate of operator L0 with eigen-

value h,

L0 |h〉 = h |h〉 . (4.34)

From the commutation relations it follows that

L0 (Ln |h〉) = (h− n) (Ln |h〉) ,

and, hence, the state Ln |h〉 is an eigenstate of L0 operator. Since to every highest-

weight state |h〉 there is related some primary field of conformal weight h, the

operators Ln lower and raise (depending on the sign of n) the conformal dimension

of the field. Therefore, the operators Ln with n > 0 are called lowering operators,

and L−n are called raising operators. The condition that the vacuum expectation

value of the energy-momentum tensor has to vanish translates into the condition

Ln |h〉 = 0, ∀n > 0.

It is important to note that in order to satisfy this condition it is sufficient to

impose

L1 |h〉 = L2 |h〉 = 0, (4.35)

since all higher level operators can be turned into linear combinations of L1 and

L2 by repeated use of commutation relations. All other basis states of the rep-

resentation can be obtained by successive application of raising operators on the

highest-weight state:

L−n1L−n2 . . . L−nm |h〉 , 1 ≤ n1 ≤ n2 ≤ · · · ≤ nm. (4.36)
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This state is then an eigenstate of operator L0 with an eigenvalue

h′ = h+
m∑
i=1

ni = h+N.

We call such a state a descendant state of the highest-weight state |h〉 of level

N . The Hermitian conjugate is defined as: L†n = L−n. The only non-zero inner

products are among the descendant states of the same level.

The Verma module, generated by the set {Ln} is denoted as V (c, h) and is

completely determined once the values of the conformal dimension and central

charge are given.

Note the analogy with string theory. The mass shell condition (L0− a) |φ〉 = 0,

together with the physicality condition Ln |φ〉 = 0, ∀n > 0 translates into saying

that |φ〉 is a highest-weight state of conformal weight a. It follows that the physical

states of string theory are the highest-weight states of conformal field theory. We

also note, that from the point of view of operator L0 there is no difference between

the states built as descendants by repeated application of the oscillator modes of

the string αµ−n or the Virasoro operators L−n. The L0 eigenvalue is the same in

both cases.

4.4.3 Singular Vectors and Spurious States

For certain values of the central charge c and the conformal weight h it might

happen that the Verma module V (c, h) is reducible. This is to say, that there is a

subspace that is itself a representation of the Virasoro algebra. This is the case if

among the descendants of |h〉 there exists a state |χ〉 such that it is a highest-weight

state itself, i.e. Ln |χ〉 = 0, ∀n > 0.

Such states are also called null states. They generate their own Verma module,

which is a submodule of the initial module V (c, h). The null states (and also

their descendants) are orthogonal to any other state in the original Verma module,

including themselves. To see this consider a descendant state of singular vector |χ〉

L−r1L−r2 . . . L−rm |χ〉 . (4.37)

If |χ〉 is itself a descendant of the original highest-weight state |h〉 of level N , then

the level of the descendant (4.37) is
∑

i ri + N . The only possible non-zero inner
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product can come from the states of the same level, i.e.

〈h|Lkn . . . Lk1L−r1 . . . L−rm |χ〉

with
∑

i ki >
∑

i ri. Therefore, one can bring the Lk’s to the right and they will

annihilate the highest-weight state |χ〉.
The physical meaning of such subspaces is that the states of this submodule trans-

form among themselves under conformal transformations. Hence, by identifying

the states which differ from each other only by a state of zero norm, one is iden-

tifying two states which differ from each other only by conformal transformation.

After having quotiened out all the zero norm states, one obtains an irreducible

representation of the Virasoro algebra.

Again there is an analogy with string theory. In order to prove that the DDF

states span the whole physical positive norm space we considered the orthogonal

complement of the DDF state space F . This complement was built by acting

on DDF states |f〉 with operators K−n and L−n. From the point of view of L0

operators, they both were acting as raising operators. By this we mean that the

level of the DDF states was raised by applying operators K−n or L−n. The main

idea of the proof was to show that every physical, non-negative norm state in string

Fock space can be written as

|φ〉 = |f〉+ |s〉 , (4.38)

where |s〉 was proven to be a spurious state of zero norm. Then we concluded, that

the only physical states with positive norm are the DDF states |f〉. However, only

in the case of D = 26 it is possible to have enough null states for the splitting of

every physical state of the open string Hilbert space as in eq. (4.38). Thus, the

reason for the quite unnatural choice of 26 dimensions in the string theory can be

derived from the purely algebraic considerations of reducible Verma modules.

4.5 Degeneracy of Highly Excited States

There are two common methods for determining the number of states at the energy

level N for a specific conformal field theory. The first one is to use the partition

function to obtain the level density. The second approach is to simply count the
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number of different ways how to reach the level N starting from the vacuum state.

We will, therefore, begin this section with considering the partition function on the

torus. We will then recall how the modular invariance of the partition function

can be used to derive the Cardy formula for the level density ρ(N) of a given

highest-weight representation [21].

4.5.1 Partition Function on the Torus

We have seen so far that the holomorphic and antiholomorphic sectors of a confor-

mal field theory which is deefined on the whole complex plane completely decouple.

Hence, each sector could in principle describe a distinct theory, which seems to be

quite unphysical. As an example we recall that in string theory, although the left-

and right-moving modes of the closed string were decoupled, still the level matching

condition L0 = L̄0 had to be imposed. The left-right sectors of a conformal field

theory can be coupled through the geometry of the space. We will, therefore, study

conformal field theories on the torus, which is topologically equivalent to the com-

plex plane with periodic boundary conditions in two directions. Defining a lattice

on a complex plane corresponds to providing two lattice vectors and identifying all

the points which differ from each other by an integer linear combination of these

vectors. Hence, to uniquely specify a lattice on the complex plane one only has to

fix two complex numbers w1 and w2. As the partition function can be interpreted as

zero point function, it has to be conformally invariant. Therefore, only the relative

angle and ratio of the two complex numbers w1 and w2 are important. By setting

w1 = 1 one can define the modular parameter of the torus as τ = w2 = τ1 + iτ2

with τ1 = Rew2 and τ2 = Imw2. Recall that with the exponential mapping (4.19)

the complex plane was mapped to an infinite cylinder. Hence, the first of the two

identifications is already fixed, and the first of the lattice vectors w1 points along

the circumference of the cylinder. The second identification can be performed as

follows - first “go” further up along the cylinder axis by a stretch equal to Imw2

and then “make a twist along” the circumference of the cylinder by Rew2.

The states of a conformal field theory on the torus are propagated by Hamilto-
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nian and momentum operators, which are defined as

Hcyl = (L0)cyl + (L̄0)cyl

Pcyl = (L0)cyl − (L̄0)cyl.

The translation in Eucledian time corresponds to going in the Imτ = Imw2 direction

and is done by the Hamilton operator. The translation in space is equivalent to

moving along the circumference of the cylinder by a stretch Reτ = Rew2, and is

generated by the momentum operator. The partition function is then the trace

over all possible states on the torus. This yields the following expression

Z(τ, τ̄) = Tr e−2πImτHe2πiReτP

= Tr e2πiτ(L0)cyle−2πiτ̄(L̄0)cyl . (4.39)

This partition function is invariant under modular transformations by construction.

Global modular transformations are generated by two basis elements S : τ → τ+1

and T : τ → − 1
τ
. The latter will be of great importance for us. Rewriting

the equation (4.39) in terms of q ≡ e2πiτ , and substituting (4.32) gives the final

expression for the partition function on the torus

Z(τ, τ̄) = Tr qL0−c/24q̄L̄0−c̄/24. (4.40)

4.5.2 Derivation of the Cardy Formula

The Cardy formula for the density of the eigenstates of the operator L0 on the

N -th level is

ρ(N) ≈ exp

{
2π

√
cN

6

}
, (4.41)

where c is the central charge. The anti-holomorphic part is suppressed for nota-

tional simplicity. We will recall the key ideas of the proof of this formula. The full

derivation can be found in [22].

First, we consider a partition function on the two-torus of modulus τ of the

kind

Z ′(τ, τ̄) = Tre2πiτL0e−2πiτ̄ L̄0 =
∑

ρ(N, N̄)e2πiNτe−2πiN̄τ . (4.42)
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As we have seen in previous section, this is not a modular invariant partition

function. However, the weight ρ(N, N̄) corresponds to the density of states with

eigenvalues N, N̄ for the operators L0, L̄0 respectively. By contour integration one

can extract the degeneracy

ρ(N, N̄) =
1

(2πi)2

∫
dq

qN+1

dq̄

q̄N̄+1
Z ′(q, q̄),

where we have substituted the parameter q ≡ e2πiτ . Let us further consider the

holomorphic dependence only. We observe that the modular invariant partition

function (4.40) is related to (4.42) by

Z ′(τ) = e
2πic
24

τZ(τ).

In particular, the partition function Z(τ) is invariant under τ → −1/τ . For Z ′(τ)

this translates into the following equality

Z ′(τ) = e
2πic
24

τZ(τ) = e
2πic
24

τZ(−1

τ
) = e

2πic
24

τe
2πic
24

1
τZ ′(−1

τ
).

The level density is then

ρ(N) =

∫
dτ e−2πiNτe

2πic
24

τe
2πic
24

1
τZ ′(−1/τ). (4.43)

For large N , the extremum of the exponent is at τ ≈ i
√

c
24N

. Evaluating the above

integral with the saddle point approximation then gives the Cardy formula (4.41).

However, this approach does not explicitly display which states are being counted.

4.5.3 Combinatorial Approach to the Counting of States

A more straightforward method to determine the density of states ρ(N) is based on

the combinatorics of creation operators. Consider as an example a single bosonic

field, whose creation and annihilation operators αn obey the algebra

[αn, αm] = nδn+m,0.

56



4.5 Degeneracy of Highly Excited States

The oscillator vacuum |0〉 is defined as

αn |0〉 = 0, for n > 0. (4.44)

The operators α−n are then used to create the excited states. Since [L0, α−n] =

nα−n, and L0 |0〉 = 0, it follows that

L0

m∏
j=1

α−nj |0〉 =
m∑
j=1

nj

m∏
j=1

α−nj |0〉 .

The number of the eigenstates of L0 at the excited level N can be expressed as

the number of partitions p(N) of an integer N into a sum of integers. For large

integers N , the asymptotic behavior of the number of partitions is given by the

formula [23]:

p(N) ∼ 1√
48N

e2π
√

N
6 . (4.45)

This agrees with the Cardy formula for c = 1.

4.5.4 Level Density of Physical States in String Theory

Every physical state in the open string state space can be written as

24∏
I=1

∞∏
n=1

(αI−n)λ
I
n |0〉 , (4.46)

where |0〉 denotes the oscillator vacuum (4.44). We neglect the momentum of the

center of mass of the string as this is of no relevance to this discussion. The λIn’s are

the occupation numbers, and the open string number operator N̂ =
∑

m α
I
n−mα

I
m

acting on the state (4.46) returns the eigenvalue N =
∑

n,I nλ
I
n. We note that this

is simply an extension of the previous discussion of one scalar field to D − 2 = 24

scalar fields. The generalization of (4.45) to a partition with D − 2 “colors” gives

pD−2(N) ∼ 1√
2

(
D − 2

24

) (D−2)+1
4

N−
(D−2)+3

4 exp

(
2π

√
(D − 2)N

6

)
.
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For the case D = 26 this yields

p24(N) ∼ 1√
2
N−27/4 exp

(
2π

√
24N

6

)
. (4.47)

Hence, the bosonic string theory can effectively be treated as a conformal field

theory of central charge c = D − 2.

4.5.5 Applications to 2 + 1 dimensional black holes

It has been shown that the asymptotic symmetry group of 2+1 dimensional gravity

with a negative cosmological constant Λ = −1/l2 is generated by two copies of the

Virasoro algebra [24], with central charges

cL = cR =
3l

2G
.

These central charges are classical and appear in the Hamilton formalism as the

canonical generators of the asymptotic symmetries. Hence, the degrees of freedom

of a black hole horizon in 2+1 dimensions at the spatial infinity are described by a

conformal field theory. The asymptotic growth of the level density then yields:

S = 2π

√
cNR

6
+ 2π

√
cNL

6
. (4.48)

For a three dimensional black hole of Bañados, Teitelboim and Zanelli (BTZ) of

mass M and angular momentum J this relation can be rewritten as

S = π

√
l(lM + J)

2G
+ π

√
l(lM − J)

2G
, (4.49)

where the relations M = 1
l
(L0 + L̄0) and J = L0 − L̄0 have been used [25]. This is

in exact agreement with the Bekenstein-Hawking entropy for a BTZ black hole

S =
π

G

√
Gl(Ml +

√
M2l2 − J2).

However, in order for this scenario to be acceptable one must first show that the

BTZ black hole can be obtained as a solution of a consistent theory of quantum

gravity on AdS3 (see [26] and references therein).
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5

Quantum Black Holes

The state of current knowledge about the quantization of black holes will be pre-

sented in this chapter. This discussion follows closely a paper of Bekenstein [6].

The basic heuristic properties of the algebra of black hole horizon area will be

presented.

5.1 The Area Spectrum

The goal of this section is to give some justification of why the area of a black

hole should be quantized. We also wish to discuss some main characteristics of the

eigenvalue spectrum of the horizon area.

Let us recall the notion of an adiabatic invariant in classical mechanics. It is a

quantity A(p, q) which changes little during a time period while the Hamiltonian

H changes significantly. Ehrenfest has shown that all action integrals of the form

A =
∮
pdq are adiabatic invariants. In the old Bohr-Sommerfeld theory Jacobi

actions are quantized in integers
∮
pdq = 2πn~. Combining this knowledge suggests

that any classical adiabatic invariant corresponds to a quantum operator with a

discrete spectrum. We wish to argue that the horizon area of a black hole is an

adiabatic invariant.

Let us consider a classical Kerr-Newman black hole of mass M , electric charge

Q, angular momentum J and area A satisfying the relation

M2 =
A

16π

(
1 +

4πQ2

A

)2

+
4πJ2

A
. (5.1)
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Now we will imagine a point particle approaching the black hole. On the black hole

horizon the particle has a turning point. This process is happening very slowly and

thus can be considered a classically reversible process [27]. The change in the area

of the black hole ∆A can be calculated by varying the expression (5.1). The result

shows that the area remains unchanged. Hence, it is indeed a classical adiabatic

invariant. This in correspondence with the theorem of Ehrenfest suggests that the

horizon area of a quantum black hole must have a discrete eigenvalue spectrum.

In quantum mechanics the notion of a point particle does not exist anymore

and one has to take into account the finite size of the particle. The smallest radius

b that one can associate to an elementary particle with mass m is of the order of its

Compton length b = ξ~/m. Here ξ is a number of order unity. Bekenstein showed

that the absorption of a particle necessarily involves an increase in the horizon area

[6]. The reason for this is that the center of mass of the particle cannot be localized

directly on the black hole horizon, and is instead a distance b away from it. The

minimal change in area is then

(∆A)min = 8πµb = 8πξ~ ≡ αl2Pl. (5.2)

Observe that the minimal increase in the horizon area is universal and does not de-

pend on any other properties of the black hole. Therefore (∆A)min can be regarded

as the spacing between the eigenvalues of area operator A. Thus, the spectrum of

area eigenvalues is positive and uniformly spaced

an = αl2P (n+ η); η > −1, n ∈ N. (5.3)

The parameter η has been introduced in order to take into account the possible

vacuum area.

5.2 The Origins of Black Hole Entropy

The results of the previous section suggest that a black hole of given area A consists

of n = A/αl2P equal pieces. If one assumes that all these area patches are equivalent

then there is an equal number k of microscopic eigenstates, hidden to an external

observer inside of every area patch. Hence, the total number of different quantum
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5.2 The Origins of Black Hole Entropy

states of the horizon is

N = kA/αl
2
P . (5.4)

We can imagine then, that the black hole is built by adding one piece of area

at every moment of time. Each such area quantum is an independent degree of

freedom by itself. Therefore, one can interpret the black hole entropy statistically

as the logarithm of the number of different quantum states the black hole is made

of. One can consider the black hole horizon area as being split into small parts,

each of them containing k “particles”. The entropy is reflected in our missing

knowledge about the microscopic internal state of the black hole. This leads to the

expression

S =
ln k

α

A

l2P
(5.5)

for the entropy, which when compared to the Bekenstein-Hawking entropy

SBH =
1

4
A+ const (5.6)

suggests that α = 4 ln k.

If one now accepts proportionality between black hole entropy and horizon

area, then one can follow Mukhanovs approach to determine the degeneracy gn of

a given area eigenvalue an [8]. From statistical physics we know that the entropy

of some macroscopic configuration is given by the logarithm of the number of its

microstates. As the black hole entropy is directly related to the horizon area, one

can calculate the degeneracy of a particular area eigenvalue as

gn = exp(SBH)

= exp(an/4αl
2
P ) (5.7)

= g1 exp(
α

4
(n− 1)),

where g1 ≡ exp(α
4
(η + 1)) denotes the degeneracy of black hole ground state. In

order for gn to be an integer number, some restrictions on g1 and α have to be

imposed. In the original paper of Mukhanov a nondegenerate black hole ground

state was assumed, i.e. g1 = 1, which lead to degeneracy gn = 2n−1. However, a

doubly degenerate black hole ground state would be a better choice, as this allows

us to set the constant η to zero. Thus the choice of g1 = 2 corresponds to setting
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η = 0, α = 4 ln 2. This gives the following area spectrum and its degeneracy:

an = 4l2p ln 2 · n, n ∈ N; (5.8)

gn = 2n. (5.9)

A simple explanation for this degeneracy comes from combinatorics. It describes

in how many ways one can get up the staircase to the n-th level. In the case of

horizon area the “staircase” would be the levels of area eigenvalues. Finally, we

rewrite the expression of the degeneracy as

gn = en ln 2. (5.10)

5.3 Predictions Due to the Existence of Discrete

Area Spectrum

In order to see what macroscopic consequences the quantization of the black hole

horizon area has, let us consider a black hole with zero charge and zero angular

momentum. Then we have from (5.1) the following relation:

M2 =
A

16π
⇒ M ∼

√
n. (5.11)

This implies that due to the discreteness of the area spectrum, the mass spectrum

is also discrete. Taking into accout the formula (5.8) one can derive the following

mass level spacing

ω0 ≡ ∆M/~ =
ln 2

8πM
. (5.12)

By analogy with atomic physics a black hole should be able to make a spontaneous

transition from mass level n to n− 1. This could explain the Hawking radiation in

the limit of highly excited black holes. However, from eq. (5.12) we are expecting a

line spectrum with frequencies, which are multiples of ω0. This is in contradiction

with the continuous thermal spectrum of the Hawking radiation. In the case of very

massive black holes the intensity of radiation is exponentially surpressed, but for

primordial black holes the first lines should be detectable. There have been some

attempts to coincide the line spectrum with the continuous Hawking spectrum
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by arguing, for example, that the spectral lines are broadened so much that the

spectrum becomes continuous. However, the broadening of a line is negligible [9],

i.e.
∆ω

ω0

∼ 0.019γ, (5.13)

where γ is a numerical factor of order unity. This suggests that the line spectrum

is in fact sharp.

5.4 An Algebraic Description of Black Holes

Let us assume that a quantum black hole state is desribed by the eigenvalues

of the set of operators
{
Q, J2, Jz, A

}
. The spectrum of the first three opera-

tors is well known from atomic physics. The eigenvalues are, Q {qe; q = integer},
J2 {j(j + 1)~2}, and Jz {m~ = −j~,−(j − 1)~, . . . , (j − 1)~, j~}, with j being a

nonnegative integer or half-integer. We have no information whatsoever about the

spectrum of the area operator. It is, however, possibile to derive its characteristic

properties from algebraic considerations. Bekenstein proposed the following ax-

ioms:

Axiom 1: The horizon area operator A is positive, semi-definite, and has a discrete

spectrum {an; n ∈ N}. The degeneracy of an eigenvalue gn is independent of the

quantum numbers j, m, q.

The fact that the degeneracy is independent of quantum numbers coming from

other operators is due to the consideration that the operators A, Q, J2, and Jz

mutually commute.

Axiom 2: There exist some operators Rλs with λ = {njmq} which play the role of

creation operators of the black holes, i.e. a state Rλs |vac〉 is a black hole with hori-

zon area an, corresponding eigenvalues of angular momentum, and some internal

quantum nuber s.

This internal quantum number distinguishes between states with equal horizon

area. We do not know any characteristics of this number, but we do know that the

area spectrum is degenerate in the sense that for an external observer the internal

configurations of a black hole remain invisible.

Axiom 3: The operators A, J , Q, Rλs and [A,Rλs] form a closed, linear, infinite-

dimensional nonabelian algebra.
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The properties of operator Rλs, listed in Axiom 2, impose severe restrictions on the

commutation relations between Rλs and the rest of operators. After demanding

that the vacuum state is invariant under rotations and has zero area and charge,

one obtains the following commutation relations

[Jz, Rλs] = mλ~Rλs, (5.14)

[J±, Rλs] =
√
jλ(jλ + 1)−mλ(mλ ± 1)~Rnjmλ±1qs (5.15)

[Q,Rλs] = qλeRλs. (5.16)

After considering the Jacobi identities involving A, Rλs, and any of the remaining

operators it follows that the commutation relations of operator [A,Rλs] are exactly

the same as the ones for Rλs, listed above. This allows us to write the operator as

[A,Rλs] = aλRλs + Tλs (5.17)

with Tλs |vac〉 = 0 in order for [A,Rλs] |vac〉 = aλRλs |vac〉 to be fulfilled. One

can further show that [A, Tλs] must be expressible as a linear combination of other

operators A, J , Q, Rλs, Tλs. Hence, it is possible to redefine the operator Rλs in

such a way that the new operator Rnew
λs creates the same black hole states as Rλs

and satisfies the commutation relation

[A,Rnew
λs ] = aλR

new
λs . (5.18)

Henceforth we use only the “new” creation operator and drop the superscript.

5.5 Properties of the Area Operator

One can check that

ARκsRλt |vac〉 = (aκ + aλ)RκsRλt |vac〉 , (5.19)

i.e. the horizon area of the state RκsRλt |vac〉 is the sum of the horizon areas

of the states Rκs |vac〉 and Rλt |vac〉. This suggests that the eigenvalues of the

area operator are additive. Nonetheless, it could still be possible that the state

RκsRλt |vac〉 describes two black holes and not one. In this case the relation (5.19)

64



5.5 Properties of the Area Operator

would be a triviality. It can, however, be shown that, when one operates on a

vacuum state with the commutator [Rκs, Rλt], the resulting state describes a one-

black hole state:

[Rκs, Rλt] |vac〉 = |one BH〉 . (5.20)

It follows that

RκsRλt |vac〉 = |one BH〉+ |two BH〉 . (5.21)

Hence, the eigenvalue aκ + aλ can be used to describe a one-black hole as well as

a two-black hole state.

By taking hermitian conjugate of equation (5.18) one obtains

[A,R†λs] = −aλR†λs (5.22)

and thus

AR†κsRλt |vac〉 = (aλ − aκ)R†κsRλt |vac〉 . (5.23)

Several conclusions can be drawn here. First, the operators R†κs annihilate the

vacuum and, thus, can be considered as lowering operators. This further implies

that the state R†κsRλt |vac〉 is a purely one-black hole state, as a lowering operator

cannot have created an extra black hole. Second, positive differences of one-black

hole area eigenvalues are also allowed eigenvalues of a black hole. This also implies

that only integer area eigenvalues are allowed, and that the set {na1; n ∈ N} spans

the entire spectrum of eigenvalues of A.
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6

Diffeomorphism algebra in gravity

The goal of this chapter is to determine the quantum physical states of a two di-

mensional spacelike surface embedded in a four dimensional spacetime. When we

quantize a scalar field the Fock space is built by creation and annihilation opera-

tors, which are determined by the mode expansion of the solution of wave equation

satisfied by a free scalar field. In general relativity the gravitational field equations

are very nonlinear, so there exist no obvious analogue of creation and annihilation

operators.

As we have seen in string theory, the target space coordinates satisfy the wave equa-

tions. However, the situation there is complicated by the existence of constraints

due to the diffeomorphism invariance of the worldsheet hypersurface. Since, in

general relativity the diffeomorphism constraints satisfy an algebra similar to the

algebra of string theory constraints, one could try to use the methods developed in

string theory to study the diffeomorphism invariant states in gravity.

6.1 Discretization of constraints

Let us parametrize the spacetime in such a way that the first two spacelike coordi-

nates parametrize a two-dimensional surface, and thus the diffeomorphism trans-

formations of this surface are generated by the first two constraints. The mutual

Poisson bracket is given by

{Hi(x),Hj(y)} = Hj(x)
∂

∂xi
δ(x, y)−Hi(y)

∂

∂yj
δ(x, y), (6.1)
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where i, j take values 1, 2 corresponding to the coordinates on the surface.

In quantum theory the constraints become operators and the Poisson brackets

are replaced by commutators as [. . . ] = i {. . . }. For simplicity let us consider a

two dimensional surface with the topology of a torus T2. Then the constraints can

be expanded in a Fourier series as:

H1(x) =
∞∑

n=−∞

L1
nmeinx

1+imx2

, (6.2)

H2(x) =
∞∑

n=−∞

L2
kle

ikx1+ilx2

.

Taking into account that δ(x, y) =
∑

n,m e
in(x1−y1)+im(x2−y2), and substituting into

(6.1), we find that the operators Linm obey the following algebra:

[L1
nm, L

1
kl] = (n− k)L1

n+k,m+l, (6.3)

[L2
nm, L

2
kl] = (m− l)L2

n+k,m+l,

[L1
nm, L

2
kl] = mL1

n+k,m+l − kL2
n+k,m+l.

6.2 On Quantum Anomalies of 2D Diffeomor-

phism Algebra

Because of normal ordering ambiguities, there could be some kind of central ex-

tension of the diffeomorphism algebra. Here we will consider several possibilities.

Let us first recall the central extension of Virasoro algebra in the one dimensional

case.

6.2.1 Central Extension in One Dimension

Consider the 1D Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (6.4)
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By redefining the L0 operator as L′0 := L0 − c/24, the term linear in m can be

removed, as the commutator (6.4) becomes

[Lm, L−m] = 2mL′0 +
c

12
m3. (6.5)

From now on we will skip the linear term and use the relation

[Lm, Ln] = (m− n)Lm+n +
c

12
m3δm+n,0. (6.6)

Setting m = 0 in the mode expansion of the H1(x) = H1(x1, x2) constraint (6.2)

corresponds to restricting to the one-dimensional hypersurface x2 = 0:

H1(x) = H1(x1, 0) =
∑
n

Ln0einx
1

.

Hence, the operators L1
n0 have to obey the algebra (6.6) and satisfy

[
L1
n0, L

1
k0

]
= (n− k)L1

n+k,0 +
c

12
n3δn+k,0. (6.7)

This imposes severe conditions on the possible central extensions of the two dimen-

sional diffeomorphism algebra. In the following we denote L1
nm ≡ Lnm for brevity

and use notation Lnm = LnM to distinguish between “active” and “passive” indices.

To prove the non-existence of central extension for the two dimensional Virasoro

algebra we will use the Jacobi identity

[LnM , [LkL, LsT ]] + [LkL, [LsT , LnM ]] + [LsT , [LnM , LkL]] = 0, (6.8)

which has to be satisfied by the operators in order to form a closed algebra. The

only possible central extension of the one dimensional algebra, which obeys (6.8)

is of the form n(n2 − 1) as in (6.4).

6.2.2 Central Extension for the Two Dimensional Diffeo-

morphism Algebra

In this section we prove, that there is no central extension for two dimensional

Virasoro algebra.
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• Proposition 1

The most general central extension, which would still satisfy (6.8), can be

written as

[LnM , LkL] = (n− k)Ln+k,M+L + n3δn+k,0f(M,L) + g(M,L). (6.9)

Proof

Assume that instead of functions f(M,L), g(M,L) we have f̃(n, k|M,L)

and g = g̃(n, k|M,L) and demand that (6.9) reduces to (6.7) in the case

M = L = 0. It follows that

f̃(n, k|0, 0) = a, a ∈ R

⇒ f̃(n, k|M,L) = f(M,L) with f(0, 0) = a.

Similarly, g̃(n, k|0, 0) has to satisfy

g0(n, k) ≡ g̃(n, k|0, 0) = bn(n2 − 1), b ∈ R.

From this it follows then that the function g̃ can be separated into g̃(n, k|M,L) =

g0(n, k) + g(M,L) with g(0, 0) = 0. The function g0 can be absorbed into

the term n3δn+k,0f(0, 0) and L0. Therefore we asssume that g0 ≡ 0 and

f(0, 0) = c
12

. Hence,

g̃(n, k|M,L) = g(M,L) with g(0, 0) = 0.

• Proposition 2

f(M,L) = f(L,M), (6.10)

g(M,L) = −g(L,M). (6.11)

Proof

Use the antisymmetry of the commutator, i.e. [LnM , LkL] = − [LkL, LnM ].

70



6.2 On Quantum Anomalies of 2D Diffeomorphism Algebra

This gives

[LnM , LkL] = (n− k)Ln+k,M+L + n3δn+k,0f(M,L) + g(M,L),

[LkL, LnM ] = (k − n)Ln+k,M+L + k3δn+k,0f(L,M) + g(L,M)

= −(n− k)Ln+k,M+L − n3δn+k,0f(L,M) + g(L,M).

Comparing both expressions leads to f(M,L) = f(L,M) and g(M,L) =

−g(L,M) q.e.d.

• Proposition 3

f(M,L) = f̃(M + L), (6.12)

g(M,L) ≡ 0. (6.13)

Proof

According to our assumption (6.9) and the following discussion, the functions

f(M,L) and g(M,L) are defined to be mutually independent. Therefore,

the Jacobi identity (6.8) also has to be satisfied independently. Hence, two

equations have to be fulfilled:

(
(k − s)n3f(M,L+ T ) + (s− n)k3f(L, T +M) + (n− k)s3f(T,M + L)

)
·

· δn+k+s,0 = 0,

(k − s)g(M,L+ T ) + (s− n)g(L, T +M) + (n− k)g(T,M + L) = 0.

As f and g do not dependen on “active” indices, the above equations can be

satisfied only if

f(M,L+ T ) = f(L, T +M) = f(T,M + L),

g(M,L+ T ) = g(L, T +M) = g(T,M + L).

By setting T = 0 these become

f(M,L) = f(L,M) = f(0,M + L) ≡ f̃(M + L), (6.14)

g(M,L) = g(L,M) = g(0,M + L). (6.15)
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Equation (6.14) proves the first part of claim. Taking into account the anti-

symmetry of g, the second equation becomes g(M,L) = −g(M,L). Hence,

g(M,L) ≡ 0. Note, that from eq. (6.14) it follows that

f(M,−M) = f(0, 0) =
c

12
∀M.

Thus, the most general two dimensional Virasoro algebra with a central ex-

tension obeys the algebra

[LnM , LkL] = (n− k)Ln+k,M+L + n3δn+k,0f(M + L), (6.16)

[MNm,MKl] = (m− l)MN+K,m+l + nm3δm+l,0f̄(N +K), (6.17)

where MNm ≡ L2
nm. The second relation was written by analogy, with active

and passive indices exchanged. The functions f and f̄ can be different.

• Proposition 4

If

[Lnm,Mkl] = mLn+k,m+l − kMn+k,m+l, (6.18)

then f = f̄ = 0.

Proof

The Jacobi identities

[Lnm, [Mkl,Mst]] + [Mkl, [Mst, Lnm]] + [Mst, [Lnm,Mkl]] = 0,

[Mmn, [Llk, Lts]] + [Llk, [Lts,Mmn]] + [Lts, [Mmn, Llk]] = 0

lead to the conditions

(sl3 − kt3)f̄(n+ k + s)δm+l+t,0 = 0,

(sl3 − kt3)f(n+ k + s)δm+l+t,0 = 0.

Since, both equations have to be satisfied for arbitrary values of indices, it

follows that both functions have to be zero.
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• Proposition 5

Assume the following central extension of the commutator [L,M ]:

[LNm,MkL] = mLN+k,m+L − kMN+k,m+L + g̃(m, k|N,L), (6.19)

[MkL, LNm] = kMk+N,L+m −mLk+N,L+m + g̃(k,m|L,N),

where capital letters denote “passive” indices again. The arguments in g̃ are

grouped according to their “active” or “passive” action.

Then g̃(m, k|N,L) = g(m+ L|k,N) with g(m+ L|k,N) = −g(m+ L|N, k).

Proof

Consider the Jacobi identity:

0 = [Lnm, [Mkl,Mst]] + [Mkl, [Mst, Lnm]] + [Mst, [Lnm,Mkl]]

= (l − t)g̃(m, k + s|n, l + t)−mg̃(k, t+m|l, s+ n) +mg(s,m+ l|t, n+ k)+

+ (sl3 − kt3)δm+l+t,0f̄(k + s+ n) + (L, M terms).

By setting l = t we obtain

0 = −m(g̃(k,m+ l|l, s+ n)− g̃(s,m+ l|l, n+ k)) + l3(s− k)δm+2l,0f̄(k + s+ n).

For m 6= −2l this gives the following equality

g̃(k,m+ l|l, s+ n) = g̃(s,m+ l|l, n+ k).

It can be satisfied only if g̃(m, k|n, l) = g(m+ l|k, n).

Hence, the commutators (6.19) become

[LNm,MkL] = mLN+k,m+L − kMN+k,m+L + g(m+ L|N, k), (6.20)

[MkL, LNm] = kMk+N,L+m −mLk+N,L+m + g(L+m|k,N).

From the antisymmetry [LNm,MkL] = −[MkL, LNm] it follows that g(m +

L|k,N) = −g(m+ L|N, k).

• Proposition 6

g(t|n, k) = 0, ∀t 6= 0 ⇒ g(t|n, k) = δt,0ḡ(n+ k) ⇒ ḡ(n) ≡ 0.
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Proof

Consider the Jacobi identity with two “passive” and one “active” index.

0 = [Ln0, [Ml0,M0t]] + [Ml0, [M0t, Ln0]] + [M0t, [Ln0,Ml0]]

= [Ln0,−tMlt] + [M0t,−lMl+n,0]

= −tg(t|n, l)− lt3δt,0f̄(l + n) + (L, M terms).

The second term always vanishes, and, therefore, g(t|n, l) = 0, ∀t 6= 0. We

can then write it in the form g(t|n, k) = δt0h(n, k). Returning back to the

initial Jacobi identity

0 = [Lnm, [Mkl,Mst]] + [Mkl, [Mst, Lnm]] + [Mst, [Lnm,Mkl]]

it follows that

(l − t)h(n, k + s) + (l + t)h(k, s+ n)− (l + t)h(s, n+ k) + (sl3 − kt3)f̄(k + n+ s) = 0.

Hence, it can only be fulfilled if h(n, k) = ḡ(n + k). After inserting this in

the expression above, it follows that

(l − t)ḡ(n+ k + s) + (sl3 − kt3)f̄(n+ k + s) = 0.

This cannot be satisfied. Therefore, we conclude, that ḡ(n) ≡ 0.

It follows from proposition 6.2.2 that g = f = f̄ ≡ 0. Hence, there is no

central extension for the two dimensional Virasoro algebra.

6.3 Non-central Extensions of the 2D Virasoro

Algebra

As it was found by Moody and Larsson [28; 29; 30], the algebra can be supplemented

with a non-central extension. This means that instead of adding some function of

c-numbers, as in the case of a central extension, one can extend the algebra (6.3)

by adding certain operators. The commutators derived by Larsson, rewritten for
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the two dimensional case, are

[
L1
nm, L

1
kl

]
= (n− k)L1

n+k,m+l − nk(c1 + c2)(nS1
n+k,m+l +mS2

n+k,m+l) (6.21)[
L2
nm, L

2
kl

]
= (m− l)L2

n+k,m+l −ml(c1 + c2)(nS1
n+k,m+l +mS2

n+k,m+l)[
L1
nm, L

2
kl

]
= mL1

n+k,m+l − kL2
n+k,m+l − (c1mk + c2nl)(nS

1
n+k,m+l +mS2

n+k,m+l)

with non-central extensions defined via the operators Sµ. These obey the commu-

tation relations:

[
L1
nm, S

1
kl

]
= lS2

n+k,m+l[
L1
nm, S

2
kl

]
= −kS2

n+k,m+l[
L2
nm, S

1
kl

]
= −lS1

n+k,m+l (6.22)[
L2
nm, S

2
kl

]
= kS1

n+k,m+l[
Sinm, S

j
kl

]
= 0.

and satisfy the identity

nS1
nm +mS2

nm = 0, (6.23)

which follows from the antisymmetry of the commutator algebra, [Lnm, Lkl] =

− [Lkl, Lnm].

Some restrictions on the operators Si and constants ci follow from the 1D

Virasoro algebra. Consider the commutator (6.21) with m = l = 0:

[
L1
n0, L

1
k0

]
= (n− k)L1

n+k,0 − n2k(c1 + c2)S1
n+k,0 (6.24)

From the defining relation (6.23) it follows that

nS1
n0 = 0, ∀n

which can be satisfied for all values of n only if S1
n0 is proportional to Kronecker

delta. The same argument applies to S2
0m and thus

S1
n0 = S1

00δn0 (6.25)

S2
0m = S2

00δm0.
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Substituting in the commutators gives

[
L1
n0, L

1
k0

]
= (n− k)L1

n+k,0 + n3(c1 + c2)S1
00δn+k,0 (6.26)[

L2
0m, L

2
0l

]
= (m− l)L2

0,m+l +m3(c1 + c2)S2
00δm+l,0.

Comparison of (6.7) and (6.26) yields the following relations for the constants in a

non-central extension

(c1 + c2)S1
00 =

c

12
(6.27)

(c1 + c2)S2
00 =

c̄

12
,

where c and c̄ are central charges for L1 and L2 respectively. It follows from here

that the operators Si00 are numbers and, hence, commute with Li’s.

6.4 Eigenspace of the Constraint Operators

In a conformal field theory of conformal weight h and central charge c all infor-

mation necessary to find the correlation functions is encoded in its highest-weight

representation space (Verma module V (c, h)), which is spanned by the eigenstates

of L0 operator. By following this analogy let us explore the properties of the space

spanned by the eigenstates of Li00.

6.4.1 Eigenspace of Decoupled L1
0J and L2

I0

Let us consider the Virasoro algebra

[L1
nm, L

1
kl] = (n− k)L1

n+k,m+l, (6.28)

[L2
nm, L

2
kl] = (m− l)L2

n+k,m+l,

[L1
nm, L

2
kl] = 0,

where for simplicity, we have assumed that the constraint operators L1
nm and L2

nm

commute, and that there are no extensions. Denote by |J〉 an eigenstate of L1
0J
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with eigenvalue λJ and by |I〉 an eigenstate of L2
I0 with eigenvalue µI

L1
0J |J〉 = λJ |J〉 .

L2
I0 |I〉 = µI |I〉 .

Consider the following commutator

[
L1

0J , L
1
−nK

]
|J〉 = nL1

−n,K+J |J〉

= L1
0JL

1
−nK |J〉 − L1

−nKL
1
0J |J〉

= L1
0JL

1
−nK |J〉 − λJL1

−nK |J〉 .

For J = 0 it follows that

L1
00L

1
−nK |λ〉 = (λ+ n)L1

−nK |λ〉 ,

where λ ≡ λ0 and |λ〉 ≡ |J = 0〉. Hence, L1
−nK |λ〉 is an eigenstate of L1

00 with

eigenvalue λ + n. Note that the second index in operator L1
−nK has no influence

on the eigenvalues of L1
00, and, as long as operators L1, L2 commute, it does not

contribute to the eigenvalues of L2
I0 either. Therefore, following the notation in the

previous section, we have denoted the second index in L1
nK with a capital letter in

order to indicate that it is “passive”. Nevertheless, only in the case J = 0, are the

states L1
−nK |J〉 eigenstates of L1

0J . The results for L2
I0 are analogous, and can be

summarized as follows:

L1
00L

1
−nK |λ〉 = (λ+ n)L1

−nK |λ〉

L1
00L

1
nK |λ〉 = (λ− n)L1

nK |λ〉

L2
00L

2
L,−m |µ〉 = (µ+m)L2

L,−m |µ〉

L2
00L

2
Lm |µ〉 = (µ−m)L2

Lm |µ〉 .

As expected, the eigenspaces of L1
00 and L2

00 are decoupled. For each fixed value

K, for the set {L1
00 : L1

nK , ∀n ∈ Z}, some sort of highest-weight representation can

be defined with the highest-weight state |λ〉 satisfying:

L1
00 |λ〉 = λ |λ〉 .
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The descendants are built by successively applying the raising operators L1
−nK , ∀n >

0 on the highest-weight state. The gauge invariance condition, which has to be im-

posed is then L1
nK |λ〉 = 0, ∀n > 0. We note that

L1
00

(
L1

0K |λ〉
)

= λ
(
L1

0K |λ〉
)
.

Hence, the eigenvalue λ is double degenerate for each fixed K. However, the set

{L1
00 : L1

nK , ∀n ∈ Z} cannot be interpreted as one copy of the Virasoro algebra

labeled by K. The reason for this is the fact that this set does not form a closed

algebra:

[L1
nK , L

1
mK ] = (n− k)L1

n+m,2K .

The Verma module of the whole Virasoro algebra of operators L1, defined by the

commutators (6.28), is spanned by the descendant states, which are obtained by

repeated action on the highest-weight state |λ〉 with all possible raising operators

L1
−nK , ∀K ∈ Z. However, the degeneracy of each eigenvalue of L1

00 is infinite.

This is very unphysical and as such we will no longer discuss the decoupled two

dimensional diffeomorphism algebra.

6.4.2 Eigenspace of Coupled L1
00, L

2
00 without Central Ex-

tension

Let us now take into account the non-commutativity of the constraint operators

L1 and L2, and consider the algebra

[L1
nm, L

1
kl] = (n− k)L1

n+k,m+l,

[L2
nm, L

2
kl] = (m− l)L2

n+k,m+l, (6.29)

[L1
nm, L

2
kl] = kL2

n+k,m+l −mL1
n+k,m+l.

In this section we will investigate the highest-weight representation of the algebra

(6.29) and what is the increase in the degeneracy Γ(N) of level N .

We define the state |λµ〉 as

L1
00 |λµ〉 = λ |λµ〉 , L2

00 |λµ〉 = µ |λµ〉 . (6.30)
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As before, one finds the following relations:

L1
00L

i
−nM |λµ〉 = (λ+ n)Li−nM |λµ〉 ,

L1
00L

i
nM |λµ〉 = (λ− n)LinM |λµ〉 ,

L2
00L

i
N,−m |λµ〉 = (µ+m)LiN,−m |λµ〉 , (6.31)

L2
00L

i
Nm |λµ〉 = (µ−m)LiN,m |λµ〉 ,

with i = 1, 2. Hence, the operators L1
00 and L2

00 have the same eigenspace, as they

commute. The corresponding eigenvalues are different though.

In order to construct the highest-weight representation space of the Virasoro alge-

bra (6.29), one has to point out one generator A0 which is diagonal in the repre-

sentation space. This operator determines the highest-weight of the Verma module

and defines the notion of raising and lowering operators of the eigenvalues of A0.

The choice of A0 for the 1d Virasoro algebra was unambiguous, as there were no

two generators which commute. Therefore, we have chosen the diagonal operator

to be A0 = L0:

L0 |h〉 = h |h〉 , Ln |h〉 = 0, ∀n > 0.

The basis for the other states in the representation space was obtained by applying

the raising operators Ln.

In string theory and conformal field theory one has two decoupled Virasoro

algebras {Ln} and
{
L̄n
}

. In order to extend the basis of the representation space

to both eigenstates of L0 and L̄0, the diagonal operator A0 of the representation

was defined as A0 = L0 +L̄0. This choice was justified because the operator L0 +L̄0

corresponds to the closed string Hamiltonian. However, we could have, in principle,

defined a different A′0 of the form

A′0 = aL0 + bL̄0, a, b ∈ N,

A′0
∣∣hh̄〉 = (ah+ bh̄)

∣∣hh̄〉 .
By this choice the highest-weight of the representation is changed, h+ h̄→ ah+bh̄.

The A′0 eigenvalue of descendants of level Ntot = N + N̄ is then

N ′ = a(h+N) + b(h̄+ N̄).
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Still, the different values of a, b do not change the degeneracy of the level Ntot.

In practice, the choice a = b corresponds to some overall factor. If a 6= b, we are

introducing some kind of anisotropy. Hence, it seems that setting a = b = 1 is

indeed the most natural choice.

Among the generators of the algebra (6.29), there are two mutually commuting

operators L1
00 and L2

00 with the same eigenspace. In the analogy with conformal

field theory we define the diagonal operator A0 of the highest-weight representation

as

A0 = L1
00 + L2

00 ⇒
(
L1

00 + L2
00

)
|λµ〉 = (λ+ µ) |λµ〉 .

Hence, the state |λµ〉 is a highest weigth state with respect to operator A0 of weight

λ+ µ. A basis state of the representation space can be written in general form as

|λ′µ′〉 =
∏̃l

i=0
(L1

0,−i)
α0i(L1

−1,−i)
α1i . . . (L1

−ni,−i)
αnii∏̃m

j=0
(L2

0,−j)
β0j(L2

−1,−j)
β1j . . . (L2

−nj ,−j)
βnjj |λµ〉 , (6.32)

with α00 = β00 ≡ 0. The tilde over the products means that the operators for

different values of i are ordered in ascending order from left to right. This is possible

due to the commutation relations and once the convention is chosen it has to remain

fixed in order to ensure that the eigenstates (6.32) are linearly independent. Indices

αij (βij) count the number of times the operator L1
−i,−j, (L2

−i,−j) was used.

Note, that only the operators Li−n,−m with negative indices were used as the

raising operators in order to insure, that the state |λµ〉 has the smallest A0 eigen-

value among the basis states of the representation space. This condition can be

written as

Linm |λµ〉 = 0, ∀n,m > 0. (6.33)

This is equivalent to demanding that the diffeomorphism constraints vanish in the

operator sense, i.e. that for any two physical states |φ〉, |ψ〉

〈
ψ|Linm|φ

〉
= 0, ∀n ∈ Z.
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The A0 eigenvalue of the state (6.32) is then

N = λ+ µ+NL1 +NL2 , (6.34)

NL1 =
l∑

i=0

ni∑
k=0

(k + i)αki, (6.35)

NL2 =
m∑
j=0

nj∑
k=0

(k + j)βkj, (6.36)

where NLi counts only the eigenvalues of A0 which arise from the operators Li−n,−m

in the state (6.32).

6.4.3 Degeneracy

To find the degeneracy Γ(N) of a given eigenvalue N = NL1 + NL2 it is useful to

first find the degeneracy of the eigenvalue NL1 . The degeneracy Γ(N) can then be

found later as

Γ(N) =
N∑

NL1=0

Γ(NL1)Γ(N −NL1).

In order to simplify the notation we will skip the superscript and denote the eigen-

value NL1 simply as NL.

Let us subdivide the degeneracy of the value NL as

Γ(NL) =

NL∑
n=1

Γn(NL),

where Γn(NL) denotes the degeneracy of the eigenvalue NL which arises from a state

which is built by n operators L−p−r. An example for a state which contributes to

Γ3(8) would be:

L−2−1L−30L−1−1 |0〉 .

Hence, our task now is to calculate the degeneracy Γn(NL) of a given value of

NL when the number n of the operators L, which are used to build the states, is

fixed. We proceed by counting the number of different ways one can distribute the

value NL among n operators L. This corresponds to the number of partitions of an

integer number NL into a sum of exactly n integers, and it is denoted by pn(NL).
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For the example considered above p3(8) = 5, as it can be seen from:

8 = 1 + 1 + 6

8 = 1 + 2 + 5

8 = 1 + 3 + 4 (6.37)

8 = 2 + 2 + 4

8 = 2 + 3 + 3

The order of the different terms in the sum does not matter. Once the splitting is

known, we have to consider each of them separately. Therefore we denote these by

αk(n,NL), where the index k = 1, . . . , pn(NL). For (6.37) this means:

α1 = {1, 1, 6}

α2 = {1, 2, 5}

α3 = {1, 3, 4}

α4 = {2, 2, 4}

α5 = {2, 3, 3}

We will now consider one of the strings αk(n,NL). It denotes one of the possible

ways of writing the number NL as a sum of exactly n integers. αk is only a label

of one of such splittings. Hence, every αk denotes a set Aαk(n,NL) of states which

are built in a certain way. Every state of the form

L−p1,−r1 . . . L−pn,−rn |0〉

belongs to one of the sets Aαk . For example, the state

L−1−2L−30L−1−1 |0〉 ∈ Aα5(3, 8). (6.38)

We now denote the numbers in every string as αk = {µ1, µ2, . . . , µn}. Each number

µj is a label associated to each operator L−p−r and gives the value of the sum of

the indices p and r, hence, µj = p+ r. For a given µj there is a certain amount of

possibilities how it can be obtained. For example, if µj = 3, it can originate from
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the following operators:

µj = 3 : L0−3

L−1−2

L−2−1

L−30

The order of the indices does matter and, thus, the degeneracy of µj is µj + 1.

Hence, effectively we can replace the “two-index-labeling” of an operator L−p−r

to “colored-index-labeling” (Lµj)
a, where a tells which one of the µj + 1 possible

configurations is used. Index a will be called the color of operator (Lµj)
a. For the

above example we then have

{0,−3} = 1, L0−3 = (L3)1

{−1,−2} = 2, L−1−2 = (L3)2

{−2,−1} = 3, L−2−1 = (L3)3

{−3, 0} = 4, L−3,0 = (L3)4

Hence, every element µj in the string αk can be picked in µj + 1 different colors

labeled by a(µj). Therefore a state which belongs to the set Aαk(n,NL) can be

written as

(Lµ1)
aµ1 (Lµ2)

aµ2 . . . (Lµn)aµn |0〉 , (6.39)

where
∑n

j=1 µj = NL and aµj = 1, . . . , µj + 1. The number g(αk) of different states

for a given string αk(n,NL) is then

g(αk) =
n∏
j=1

(µj + 1).

However, if some of the µj’s are equal, this diminishes the number of distinct states,

which belong to the set Aαk . This is because the colors of the equal µj’s are the

same and some of the states (6.39) will differ from each other only by the order in

which the different L operators appear in the string. If we have µj = µi = 3 then,

83
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for example, only one of the products

(L3)1(L3)2 = L0−3L−1−2

(L3)2(L3)1 = L−1−2L0−3

can be a part of a properly ordered basis state of the representation space of the

2d diffeomorphism algebra.

Suppose that the element µi appears in a given string αk exactly l times. Then

the number of distinct states in the set Aαk is

g(αk) =
n∏
j=1
µj 6=µi

(µj + 1)C l(µi + 1),

where

C l(µi + 1) =
(µi + l)!

l!µi!

are the combinations with repetitions. They count the number of different ways

how to choose l elements out of a set of µi + 1 elements, if the order does not

matter and repetitions are allowed.

Now, if there are several values of µj which appear more than once in the string

αk (e.g. {2, 2, 3, 3}), we have to take this into account as well. We denote by s

the number of repeated elements, each of which appears li times and i = 1, . . . , s.

Then the number of distinct states in the set Aαk is

g(αk) =
n∏
j=1
µj 6=µi

(µj + 1) ·
s∏
i=1

C li(µi + 1). (6.40)

The indices µj, li, and s are, however, dependent on the specific string αk chosen,

hence, we add an index k to each of these indices: µjk, lik, sk. The total degeneracy

of the eigenvalue NL which is distributed among n operators L is then

Γn(NL) =

pn(NL)∑
k=1

g(αk).

This corresponds to the number of restricted, colored partitions of an integer num-
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ber NL in exactly n parts with additional condition that the number of colors

depends on the specific partition. The generating function for colored partitions in

the non-restricted case is well-known [31]. However, there is no general solution of

our knowledge for the case of interest.

The total degeneracy of the value NL is

Γ(NL) =

NL∑
n=1

pn(NL)∑
k=1

g(αk). (6.41)

The non-trivial task is to calculate g(αk), as we need to determine the values of

µjk, lik, and sk for every string αk. Still, it is possible to calculate the degeneracy

Γ(NL) nummerically by following the steps which were explained above. The results

are presented in Figure 6.1. From there we conclude that for large values of N the

asymptotic behavior of the degeneracy seems to be

Γ(N) ∼ e2N3/4

.

However, it seems that for higher values of N the degeneracy will deviate from

these asymptotics.

Figure 6.1: The degeneracy of the states as a function of the energy level N .
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6.4.4 Eigenspace of Coupled L1
00, L

2
00 with Central Exten-

sion

Let us finally consider the full two dimensional quantum diffeomorphism algebra

[
L1
nm, L

1
kl

]
= (n− k)L1

n+k,m+l − nk(c1 + c2)(nS1
n+k,m+l +mS2

n+k,m+l), (6.42)[
L2
nm, L

2
kl

]
= (m− l)L2

n+k,m+l −ml(c1 + c2)(nS1
n+k,m+l +mS2

n+k,m+l),[
L1
nm, L

2
kl

]
= mL1

n+k,m+l − kL2
n+k,m+l − (c1mk + c2nl)(nS

1
n+k,m+l +mS2

n+k,m+l).

Because of the appearance of the operators Sinm, the complete representation space

of the algebra (6.42) is no longer spanned by the states (6.32).

To see this, let us first consider a state L−n−mL−k−l |λµ〉, with the ordering

n ≤ k, m ≤ l as explained below eq.(6.32). This is an eigenstate of the operator

A0 = L1
00 +L2

00 with eigenvalue λ+ µ+ n+ k +m+ l, and thus is one of the basis

states of the highest-weight representation of (6.42).

Consider now a state

L−k−lL−n−m |λµ〉

for the same values of indices. The order of the indices is no longer correct, and,

therefore, this is not a basis state. It is still an eigenstate of A0 and, hence, belongs

to the Verma module. This means, that it can be rewritten as a linear combination

of the basis states by using the commutation relations (6.42):

L−k−lL−n−m |λµ〉 = [L−k−l, L−n−m] |λµ〉+ L−n−mL−k−l |λµ〉

= (−k + n)L−k−n,−l−m |λµ〉+ L−n−mL−k−l |λµ〉

− kn(c1 + c2)
(
−kS1

−k−n,−l−m − lS2
−k−n,−l−m

)
|λµ〉 .

The last two terms in this expression are new and cannot be expressed in terms of

states (6.32). This leads us to the conclusion that the states in (6.32) do not form

a complete set of linearly independent eigenstates of the operator A0 = L1
00 + L2

00.

In order to resolve this problem, one has to check whether the states Sinm |λµ〉,
i = 1, 2 are eigenstates of L1

00, L
2
00, what are the eigenvalues, and what is the
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physicality condition. Calculation of the L1
00 eigenvalues is straightforward

[
L1

00, S
1
−n−m

]
= L1

00S
1
−n−m |λµ〉 − λS1

−n−m |λµ〉

= −mS2
−n−m |λµ〉

= nS1
−n−m |λµ〉

⇒ L1
00S

1
−n−m |λµ〉 = (λ+ n)S1

−n−m |λµ〉 .

Note, that explicit use of the defining relation (6.23) was made. Similar calculations

allow one to write

L1
00S

i
−nM |λµ〉 = (λ+ n)Si−nM |λµ〉

L1
00S

i
nM |λµ〉 = (λ− n)SinM |λµ〉

L2
00S

i
N,−m |λµ〉 = (µ+m)SiN,−m |λµ〉

L2
00S

i
Nm |λµ〉 = (µ−m)SiNm |λµ〉 .

Hence, states of the form Sinm |λµ〉 are indeed eigenstates of Li00. By anology the

physicality condition reads

Sinm |λµ〉 = 0, n,m > 0. (6.43)

Note that we are using the superscript i instead of specifying which non-central

extension is being used. This is possible since both give the same A0 eigenvalues

and commute with each other. It follows that every descendant state of the form

Si1−n1,−m1
. . . Sik−nk,−mk |λµ〉 with ir = 1, 2, nr,mr > 0,

is a zero norm state. Moreover, any matrix element

〈
λµ|Si1n1m1

. . . Siknkmk |λµ
〉

= 0 ∀nr,mr ∈ Z, (6.44)

because the operators S commute and the state |λµ〉 obeys the physicality condition

(6.43).

Now we would like to construct the full set of basis vectors of the representation
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space of the 2D Virasoro algebra. The defining relation

nS1
nm +mS2

nm = 0 (6.45)

suggests that S1 and S2 are linearly dependent. Even so, if one would like to

replace all S2
−n−m operators with − n

m
S1
−n−m then this would correspond to negative,

mostly non-integer L1
00 and L2

00 eigenvalue states. Hence, both Si should be used

independently as raising operators.

In the section 6.3 we have shown that S1
n0 = δn0S

1
00 and S2

0n = δn0S
2
00. However,

this is not true for the operators S1
0n and S2

n0. Moreover, they cannot be used to

build descendant states, because this would lead to infinitely degenerate ground

state. Indeed,

(L1
00 + L2

00)S1
0−n |λµ〉 =

(
[L1

00, S
1
0−n] + [L2

00, S
1
0−n] + (λ+ µ)S1

0−n
)
|λµ〉

= −nS2
0−n |λµ〉+ (λ+ µ)S1

0−n |λµ〉

= (λ+ µ)S1
0−n |λµ〉 .

A general basis state of the Fock space is then

|λ′µ′〉 =
∏̃l

i=0
(L1

0,−i)
α0i(L1

−1,−i)
α1i . . . (L1

−ni,−i)
αnii
∏̃m

j=0
(L2

0,−j)
β0j(L2

−1,−j)
β1j . . . (L2

−nj ,−j)
βnjj

∏̃l̃

p=1
(S1
−1,−p)

η1p . . . (S1
−np,−p)

ηnpp
∏̃m̃

r=1
(S2
−1,−r)

ρ1rj . . . (S2
−nr,−r)

ρnrr |λµ〉 ,

(6.46)

where the previous notations are used and operators are always ordered as L1L2S1S2.

Also α00 = β00 = 0, because this corresponds to the highest-weight state itself.

All descendant states with the number of S operators exceeding the number of

L operators are zero norm states. It follows from (6.44) and the commutation

relation [L, S] ∼ S. For further remarks let us calculate the norm of a state

88



6.5 Speculations

L1
−n−mS

1
−k−l |λµ〉:

〈λµ|S1
klL

1
nmL

1
−n−mS

1
−k−l |λµ〉 =

= 〈λµ|S1
kl

(
[L1

nm, L
1
−n−m] + L1

−n−mL
1
nm

)
S1
−k−l |λµ〉

= 〈λµ|S1
kl

(
2nL1

00 + n2(c1 + c2)(nS1
00 +mS2

00)
)
S1
−k−l |λµ〉+ 〈λµ|S1

klL
1
−n−m[L1

nm, S
1
−k−l] |λµ〉

= 2n 〈λµ|S1
kl

(
[L1

00, S
1
−k−l] + S1

−k−lL
1
00

)
|λµ〉 − l 〈λµ|S1

klL
1
−n−mS

2
n−k,m−l |λµ〉

= −l 〈λµ| [S1
kl, L

1
−n−m]S2

n−k,m−l |λµ〉

= l2 〈λµ|S2
k−n,l−mS

2
n−k,m−l |λµ〉 .

This is only non-zero if n = k and m = l. Therefore we conclude that only the

states with the total sum of the first (second) indices of L operators being larger 1

than the sum of the corresponding indices of S operators can have non-zero norm.

The L1
00 eigenvalue N1 of the state (6.46) is the sum of the first indices of all

the raising operators. To see this let us calculate the L1
00 eigenvalue of the state

|φ〉 ≡ L1
−n−mL

2
−k−lS

1
−g−f |λµ〉 as an example

L1
00 |φ〉 =

[
L1

00, L
1
−n−mL

2
−k−lS

1
−f−g

]
|λµ〉+ λ |φ〉

= L1
−n−mL

2
−k−l

[
L1

00, S
1
−f−g

]
|λµ〉+

[
L1

00, L
1
−n−mL

2
−k−l

]
S1
−f−g |λµ〉+ λ |φ〉

= L1
−n−mL

2
−k−l(−g)S2

−f−g |λµ〉+ L1
−n−m

[
L1

00, L
2
−k−l

]
S1
−f−g |λµ〉

+
[
L1

00, L
1
−n−m

]
L2
−k−lS

1
−f−g |λµ〉+ λ |φ〉

= (λ+ n+ k + f) |φ〉 .

The degeneracy of the L1
00 + L2

00 eigenvalue thus increases. However, by analogy

with the previous chapter, we conclude that the asymptotics still remain as in

Figure 6.1.

6.5 Speculations

In this section we would like to point out some analogies between the Fock space

spanned by the states (6.46) and the Fock space of the string theory spanned by

(3.67). We will then reveal the difficulties arising in the case of two dimensional

diffeomorphisms.

1Indices n, m are positive integers
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Let us start with rewriting the state (6.46) in the form:

|{α, β} , λµ〉 =
∞∏

n,m=0

(L1
−n−m)α

1
nm(L2

−n−m)α
2
nm(S1

−n−m)β
1
nm(S2

−n−m)β
2
nm |λµ〉 . (6.47)

Here {α} = {α1, α2} and {β} = {β1, β2} are strings of non-negative integers and

α1
00 = α2

00 = β1
00 = β2

00 = 0. Comparison with equations (3.67) and (3.72) to-

gether with commutation relations (3.65) and (6.22) leads to several observations.

First, the operators S and the operators K of string theory obey very similar com-

mutation relations with diffeomorphism generators and they both appear in the

basis states of the corresponding Fock spaces. We know that the operators K were

crucial for proving that the states (3.67) are indeed linearly independent. With

appropriate ordering we were able to bring the inner product matrix MP in the

form (3.70), which ensured that det(MP ) 6= 0. Therefore one could ask whether

the same procedure can be performed here, but with operators S “playing the role”

of the operators K? Without going into details, we just mention that it is possible

to define an ordering of states (6.47) similar to the ordering, which was used in

string theory [17]. However, several elements on the minor diagonal are zero as a

consequence of the fact that S1
n0 = S2

0n = 0 if n 6= 0. This property of S operators

followed from the defining relation nS1
nm + mS2

nm = 0, which is not present in the

1D case. Hence, the determinant of the two dimensional analogue of the ordered

matrix MP is zero, and we conclude that the operators S cannot be associated to

the operators K.

Second, we note that in the description of closed two dimensional spacelike

surfaces the physical DDF states of string theory are substituted with the highest-

weight states |λµ〉. While the construction of DDF states is clear and was presented

in section 3.6.3, the physical origin of the states |λµ〉 is unknown. In string theory

it was shown that the physical states are built with the negative frequency modes

of the transverse oscillators αI−n. However, there is no such analogue in general

relativity.

One might exploit the fact that the transverse Virasoro operators are expressed
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via oscillators as

L⊥n =
1

2

∑
m

αIn−mα
I
m, with

[αIn, α
I
m] = nδn+m,0,

and try to find an analogous expansion of operators L1
nm, L

2
nm. Indeed, if one

defines

L1
nm =

1

2

∑
k,l

J1
n−k,m−lJ

1
kl, (6.48)

L2
nm =

1

2

∑
k,l

J2
klJ

2
n−k,m−l

with

[J1
nm, J

1
kl] = nδn+k,0δm+l,0,

[J2
nm, J

2
kl] = mδn+k,0δm+l,0,

then it satisfies the commutation relations [L1
nm, L

1
kl], [L2

nm, L
2
kl] in (6.29). However,

no expansion which would satisfy the mutual commutator [L1
nm, L

2
kl] was found.

The difficulties arise when we are defining the commutation relation [J1
nm, J

2
kl]. If

it is zero, then the operators L1 and L2 commute. If it is a c-number, then the

commutator becomes

[L1, L2] ∼ J1J2.

Such a mixed term is absent in the definitions (6.48). Thus, either the commutator

[J1
nm, J

2
kl] gives some operator, or the expansions (6.48) have to be modified. How-

ever, none of the possibilities is trivial, and therefore there is no obvious expansion

of the operators Linm. If there would exist a construction of the generators of the

2d diffeomorphisms in terms of operators J i, which form an affine Lie algebra, then

the operators could, by analogy with string theory, be used to generate physical

states.

In such a case there would still remain one unanswered question, namely,

whether the states like

|φ〉 = J i−k−l |0〉
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would obey the gauge invariance condition

Linm |φ〉 = 0, ∀n,m > 0?

Recall that in string theory [L⊥n , α
I
−k] = kαIn−k and thus

L⊥n
(
αI−k |0〉

)
= kαIn−k |0〉 = 0, if n ≥ k.

Hence, the operator L⊥n does not “kill” the state αI−k |0〉 in the general case. The

reason why a state built from the transverse oscillators is physical, is that in the

light-cone gauge quantization the constraints of conformal invariance L = L̄ = 0

are solved explicitly, and thus have no longer to be imposed on the quantum states

built with the raising operators αI−n. In general relativity, however, it is not possible

to resolve the constraint equations explicitly, because these are very non-linear. On

the other hand, the issue with non-physical states in string theory arose only due

to the fact that the C0 constraint was used in the definitions of the operators L

and L̄. This, combined with the commutation relation [α0
n, α

0
m] = −nδn+m,0 lead

to negative-norm states. The Virasoro constraints were then used to single out

these negative-norm states. As in the description of 2d spacelike surfaces only the

constraints H1 and H2 were used, we believe that there should be no ghost states

among the states, generated by the “transverse” raising operators J1 and J2.

6.6 Possible Relation with the Quantization of

Black Holes

In sections 5.4 and 5.5 an algebraic description of black holes was presented as it

was proposed by Bekenstein [5]. It follows that a nonrotating black hole can be

described by a closed set of operators {A,Q,Rnqs}, where A is the area operator

with eigenvalues an, Q is the generator of gauge transformations with eigenvalues

labeled by q, and Rnqs is the creation operator of a black hole state Rnqs |0〉 with

eigenvalues an, q, and s, where s is some internal quantum number accounting for

the degeneracy of a given area eigenvalue. These operators satisfy the following
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properties:

[A,Rnqs] = anRnqs, (6.49)

[A,R†nqs] = −anRnqs, (6.50)

ARnqsRmq̃t |0〉 = (an + am)RnqsRmq̃t |0〉 , (6.51)

[A,Q] = 0, (6.52)

[Q,Rnqs] = qRnqs. (6.53)

Among the operators in the two dimensional diffeomorphism algebra, there are

two kinds of operators which could be of relevance for the quantum algebra of

a black hole. First, consider the operators Linm with n and m not equal to zero

simultaneously. From the commutation relations (6.31) it follows that these can be

interpreted as the raising and lowering operators of the eigenvalues of the operator

A0 = L1
00 +L2

00. Hence, the properties of the operators A0 and Linm are very similar

to (6.49), (6.50), and (6.51). This suggests that we identify the operator A0 as the

area operator and the operators Linm as the creation-annihilation operators of the

black hole states.

On the other hand, we know that the operators Linm are the generators of the

2d diffeomorphism transformations, and thus should be instead associated to the

operators Q, which account for the gauge transformations. Hence, it seems that the

operators Linm should be used as constraints for identifying physical states which

differ from each other only by a diffeomorphism transformation, instead of creating

and annihilating states that correspond to different values of the black hole horizon

area. However, in analogy with the light-cone gauge quantization in string theory

we could say that the H0 and H3 constraints impose the physicality conditions,

while the H1 and H2 constraints generate the transformations between different

physical states. This is, however, not a solid statement. Nevertheless, we suggest

the identification of the operatos A0 with the area operator and the operators Linm

with the “transverse” creation and annihilation operators.
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7

Conclusions

In this work we have explored the role of diffeomorphism invariance in general

relativity. The possible relation between distinct physical black hole microstates

corresponding to a given area eigenvalue and the quantum states, built by succes-

sive application of the generators of diffeomorphism transformations on the vacuum

state, was investigated. We have, first, reviewed the use of the one dimensional dif-

feomorphism algebra (Virasoro algebra) in string theory and compared it to that of

conformal field theory. The emphasis was laid on the construction of physical state

space in string theory and the highest-weight representation space in conformal

field theory.

We have, further, been looking for a physical justification of the operators which

generate the quantum states of a black hole. The possible relevance of quantum

generators of spatial diffeomorphism transformations to the area quantization of

spacelike surfaces was considered. Two of the spatial constraints of general rela-

tivity were expanded in a Fourier series on a surface with the topology of a torus.

The properties of the resulting two dimensional diffeomorphism algebra were ex-

plored. It was shown that the 2d diffeomorphism algebra does not have a central

extension. Instead, the algebra has a non-central extension, which is given by a set

of operators that were previously absent.

We have found that this algebra can be characterized by highest-weight repre-

sentations, similarily as it was done for the 1d Virasoro algebra in conformal field

theory. The highest-weight representations of the 2d diffeomorphism algebra, con-

sisting of the operators L1
nm and L2

nm, were considered, first, without including the
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non-central extensions. It was then shown that the degeneracy of a given eigen-

value of the diagonal operator A0 = L1
00 + L2

00 is increased in comparison with the

degeneracy of L0 + L̄0 eigenvalues in string and conformal field theories.

Further, the properties of the operators which generate the non-central exten-

sion of the 2d diffeomorphism algebra were explored. It was shown that these

contribute as raising and lowering operators of the highest-weight representation.

Therefore, the Hilbert space which corresponds to the 2d diffeomorphism algebra

with non-central extensions is larger than in the case without extensions. Hence,

the degeneracy of an eigenvalue of the operator A0 also increases.

The operator A0 can be associated with the area operator, as it seems that it

obeys its properties, as listed by Bekenstein [5]. However, not all of the descendant

states, built by repeated action with the raising operators on the highest weight

state, are physical states. Some of them do not satisfy the physicality condition

Linm |φ〉 = 0, ∀n,m > 0. Instead, some of the descendants of a physical state |φ〉
are the states which differ from it by a 2d diffeomorphism transformation. Further

investigation to understand how the physical states of a closed surface could be

produced is needed. The properly modified H0 constraint might happen to be

necessary, as it is responsible for generating dynamics in general relativity [32],

and further work in this direction should be done.
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