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Abstract

Using the Density Matrix Renormalization Group (DMRG) one can simulate
spin systems without the computation time growing as 2N , making it feasible
to simulate large systems. In this paper, the impact of using the DMRG in
the Schrödinger picture and in the Heisenberg picture is investigated for three
different models, a spin- 12 XX chain, a spin- 12 XXZ chain and a Bose-Hubbard
model. Simulations in the Heisenberg model will turn out to perform better
only in the XX chain for certain operators. For all the other tested models, the
Schrödinger picture is to be preferred. We will also try to shed some light on
why the simulations in the Heisenberg picture fail so quickly.
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Chapter 1

Introduction

Simulating complex spin systems is challenging because the number of calcula-
tions grows exponentially with the size of the system. Systems of more than 40
spin- 12 particles cannot be simulated exactly even by the current supercomput-
ers. Directly diagonalizing the Hamiltonian would mean finding the eigenvalues
and eigenvectors of an sN × sN matrix, where N is the number of particles and
s is the number of possible spins a particle can have, i.e. 2 for a spin- 12 particle.
A spin-12 system consisting of 40 particles would already make a matrix with
240 × 240 = 1.2 × 1024 elements when disregarding any symmetries. However,
there are some approaches that give insight into larger systems. In our case, we
will use the Density Matrix Renormalization Group (DMRG), in which states
and operators are written as Matrix Product States (MPS) and Matrix Product
Operators (MPO) respectively. The idea is to write all of the coefficients in
some superposition as a product of matrices. One matrix will be used for every
site and possible spin value per site. Operators can be written in a similar fash-
ion. Applying an operator to a state will amount to multiplying the matrices
at every site. This multiplication will however increase the dimensions of the
resulting state by a factor d, which is the dimension of the MPO. This will cause
the state to grow exponentially when repeatedly applying operators, since after
applying and MPO T times, one will have a increase in dimensions of dT . The
approximation consists of performing a singular value decomposition (SVD) of
the matrices and dropping the lowest singular values. One is left with a state
consisting of smaller matrices that nonetheless closely resembles the original
state. The same holds for applying operators on other operators.

This method has been used by the group of Ulrich Schollwöck for studying
the time evolution of various initial states. Up until now this was done in the
Schrödinger picture. This thesis will explore the Heisenberg picture, which gen-
erally gives better results for single site operators, albeit at the price of a longer
computation time. To that end, three models will be studied: a 1-dimensional
spin- 12 XX chain, a 1-dimensional spin- 12 XXZ chain and a 1-dimensional Bose-
Hubbard model. The first model is chosen because an analytical solution exists
for the XX chain, which allows us to examine how accurate the simulations are
in both the Schrödinger and Heisenberg picture. This first model will turn out
to have the ‘disadvantage’ that the time evolving MPO will be an exact solution
in the Heisenberg picture, which means that the accuracy will not degrade due
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to the aforementioned approximation. This is however a rare coincidence and to
study the behaviour in the Heisenberg picture properly, the second model was
chosen. Finally, the third model is chosen because the Heisenberg picture could
potentially make a big difference there, because the current simulations in the
Schrödinger picture fail quickly in Bose-Hubbard model. If the simulation in the
Heisenberg picture turns out to outperform the simulations in the Schrödinger
picture significantly, then that would give us a better tool to study such systems.

Why would one expect there to be a difference between calculating an ex-
pectation value in the Schrödinger picture and calculating the same value in the
Heisenberg picture? At first glance, simulating in the Heisenberg picture has
the disadvantage that more calculations have to be done and that one can only
study one operator at a time. The answer to that comes from entanglement.
When the initial state is an entangled state, then the algorithm that compresses
the MPS will throw away information about that entanglement. A single site
operator in the Heisenberg picture, however, starts out without knowledge of
entanglement in the state, since it is only a local operator and works on one
site only. Of course, during the time evolution ‘entanglement’ will be generated,
but the hope is that the compression algorithm for the MPO does not throw
away much information, potentially resulting in better results in the Heisenberg
picture. If the operator in question is a two-site operator, such as correlation
or current density, then the operator is entangled and the results in the Heisen-
berg picture could degrade significantly. It is therefore worth examining both
pictures quantitatively.
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Chapter 2

Overview of the DMRG
and MPSs

The DMRG, albeit still without MPSs, was first presented by White [1, 2] in
1992 as an improvement to the numerical renormalization group procedure by
Wilson[3, 4]. Instead or renormalizing the Hamiltonian, he focused on renor-
malizing the reduced density matrices (hence the name) of subsystems of the
state, by keeping only the states that were the most probable to be used in
the final state. The DMRG has helped to deal with the complexities of many-
body problems. He demonstrated the use of the DMRG with simulations of
Heisenberg antiferromagnetic spin chains with S = 1

2 and S = 1, while being
able to use relatively few computational resources compared to methods like
Monte Carlo calculations and achieving a much greater accuracy on top of that.
This led to a massive adoption of the new method with the original article
by White currently being cited well over a thousand times. The DMRG was
quickly adopted and already the next year his method was successfully used to
show evidence of Bose condensation in the S = 1 antiferromagnetic chain in a
strong field[5]. Followed by insights in Mott insulators and superfluidity[6] and
even for the spin quantum Hall effect in unconventional superconductors[7], the
DMRG method has been very successful. Starting from 1995 the link between
the DMRG and MPSs was demonstrated[8, 9, 10], allowing for a more elegant
description. Since 2004 time evolution came under investigation using Trotter
steps[11, 12, 13]. The application of the DMRG in the Heisenberg picture only
came along in 2009, showing that it can sometimes be more efficient to do the
numerical simulations in the Heisenberg picture[14, 15, 16]. In fact, in some
models, certain local operators can even be simulated exactly in the Heisen-
berg picture[17]. A detailed description about the current state of affairs in the
DMRG can be found in the recent review article by Schollwöck[18].
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Chapter 3

Mathematical framework

Here, we will outline the calculations and approximations that are required for
working with matrix product operators and matrix product states. Most of the
calculations are just matrix multiplications and reordering of indices, but even
so, they are required to translate physical states and operators into matrices.
For simplicity we will only discuss the case of the spin- 12 system, where the σi
stand for either spin up or down. In the case of the Bose-Hubbard model, one
simply uses occupation number instead of spin.

3.1 Matrix product notation

Normally one could write any state as an interpolation of all basis states. For
example if one were to pick |σ1, σ2, . . . σN 〉 as your basis, then any arbitrary
state could be written as: ∑

σ

cσ|σ〉 (3.1)

This sum would run over all the possible combinations for every σi, i.e. 2N

indices. This is not feasible for many particles, so we need an alternative way
of representing states. A state of a system consisting of N sites can also be
represented by matrices as a Matrix Product State (MPS).

|ψ〉 = p
∑
σ

∑
a1,...

Aσ1
a0,a1A

σ2
a1,a2A

σ3
a2,a3 . . . A

σN
aN−1,aN |σ〉 (3.2)

The a0 and aN are dummy index that can only be 1. The only reason it is
not just written as 1, is that it is aesthetically more pleasing. The whole state
is written as a sum of the basis states |σ〉, which is a short hand notation for
|σ1, σ2, σ3, . . . , σN 〉. σi is simply the spin at spin site i. Compare this to the
usual way of writing an arbitrary state in its base components,

∑
cσ|σ〉. The

coefficient, cσ, for each basis state can be obtained by multiplying the matrices
Aσi and the prefactor p.

cσ = pAσ1Aσ2Aσ3 . . . AσN (3.3)

Depending on the state in question, the MPS way of writing down the state
is far more efficient compared to keeping all of the cσ-indices of all the basis
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states in the superposition separately. As an example, let us look at a system
of three spin- 12 sites. Suppose we want to describe a state 1√

2
(| ↑↑↓〉+ | ↓↓↑〉).

This state can then be described by the following six matrices with p = 1√
2
.

A↑1 =
(

1 0
)

A↑2 =

(
1 0
0 0

)
A↑3 =

(
0
1

)

A↓1 =
(

0 1
)

A↓2 =

(
0 0
0 1

)
A↓3 =

(
1
0

) (3.4)

There is no unique choice of matrices to describe a state. This is clear from the
above example; one could easily swap ↑ with ↓ in the above matrices and still
end up with the same state. Also the dimensions of the matrices are arbitrary
(up to some minimum of course), although one obviously strives to use the
smallest matrices possible to keep the number of calculations to a minimum.
When working with kets, one of course also needs bras. Simply taking the
complex conjugate of (3.2) results in the bra.

〈ψ| = p?
∑
σ

∑
a1,...

(AσN†)aN ,aN−1
. . . (Aσ3†)a3,a2(Aσ2†)a2,a1(Aσ1†)a1,a0〈σ| (3.5)

Completely analogous with the MPS, one can also construct a Matrix Product
Operator (MPO)[19]. An MPO for a system containing N sites can be written
as:

Ô = q
∑
σ,σ′

∑
b1,...

B
σ1,σ

′
1

b0,b1
B
σ2,σ

′
2

b1,b2
B
σ3,σ

′
3

b2,b3
. . . B

σN ,σ
′
N

bN−1,bN
|σ〉〈σ′| (3.6)

Again the b0 and bN are just a dummy indices, equal to 1.

3.2 Overlap

To do anything meaningful with MPOs and MPSs one needs to be able to cal-
culate overlaps 〈ψ̃|ψ〉. Calculating the overlap is nothing more than multiplying
all the matrices from (3.2) and (3.5).

〈ψ̃|ψ〉

= p̃?p
∑
σ,σ̃

∑
a1,...

∑
ã1,...

. . . (Ãσ̃3†)ã3,ã2(Ãσ̃2†)ã2,ã1(Ãσ̃1†)ã1,ã0A
σ1
a0,a1A

σ2
a1,a2A

σ3
a2,a3 . . . 〈σ̃|σ〉

= p̃?p
∑
σ

∑
a1,...

∑
ã1,...

. . . (Ãσ3†)ã3,ã2(Ãσ2†)ã2,ã1(Ãσ1†)ã1,ã0A
σ1
a0,a1A

σ2
a1,a2A

σ3
a2,a3 . . .

= p̃?p
∑
σ2,...

∑
a1,...

∑
ã1,...

. . . (Ãσ3†)ã3,ã2(Ãσ2†)ã2,ã1

(∑
σ1

(Ãσ1†)ã1,ã0A
σ1
a0,a1

)
Aσ2
a1,a2A

σ3
a2,a3 . . .
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= p̃?p
∑
σ2,...

∑
a1,...

∑
ã1,...

. . . (Ãσ3†)ã3,ã2(Ãσ2†)ã2,ã1M
(1)
ã1,a1

Aσ2
a1,a2A

σ3
a2,a3 . . .

= p̃?p
∑
σ3,...

∑
a2,...

∑
ã2,...

. . . (Ãσ3†)ã3,ã2

 ∑
σ2,a1,ã1

(Ãσ2†)ã2,ã1M
(1)
ã1,a1

Aσ2
a1,a2

Aσ3
a2,a3 . . .

= p̃?p
∑
σ3,...

∑
a2,...

∑
ã2,...

. . . (Ãσ3†)ã3,ã2M
(2)
ã2,a2

Aσ3
a2,a3 . . .

= . . .

= p̃?p MN
ãN ,aN (3.7)

where we have introduced M
(i)
ãi,ai

=
∑
σi,a1,ãi

(Ãσi†)ãi,ãi−1M
(i−1)
ãi−1,ai−1

Aσiai−1,ai .
Since ãN and aN are dummy variables, the result is simply a scalar, which
stands for the overlap between |ψ̃〉 and |ψ〉.

3.3 Applying an MPO to an MPS

To calculate expectation values and matrix elements we have to be able to apply
an MPO to an MPS. If we write out Ô|ψ〉 using (3.2) and (3.6) we get:

Ô|ψ〉 = qp
∑

σ,σ′,σ′′

∑
b1,...

∑
a1,...

B
σ1,σ

′
1

b0,b1
B
σ2,σ

′
2

b1,b2
. . . A

σ′′1
a0,a1A

σ′′2
a1,a2 . . . |σ〉〈σ′|σ′′〉

= qp
∑
σ,σ′

∑
b1,...

∑
a1,...

B
σ1,σ

′
1

b0,b1
B
σ2,σ

′
2

b1,b2
. . . A

σ′1
a0,a1A

σ′2
a1,a2 . . . |σ〉

= qp
∑
σ

∑
(b1,a1),...

∑
σ′1

B
σ1,σ

′
1

b0,b1
A
σ′1
a0,a1

∑
σ′2

B
σ2,σ

′
2

b1,b2
A
σ′2
a1,a2

 . . . |σ〉

= p̃
∑
σ

∑
ã1,...

Ãσ1

ã0,ã1
Ãσ2

ã1,ã2
Ãσ3

ã2,ã3
. . . |σ〉 (3.8)

In the last step we set p̃ = qp, ãi+jN = (bj , ai) and Ãσiãi−1,ãi
=
∑
σ′i
B
σi,σ

′
i

bi−1,bi
A
σ′i
ai−1,ai .

The resulting MPS is bigger than the original MPS, because the dimensions of
the matrices of the new MPS are the dimensions of the matrices of the MPO
multiplied by the dimensions of the matrices of the old MPS. Applying an MPO
to an MPS repeatedly, like one would do with time evolution, would blow up
the dimensions of matrices in the MPS. This exponential growth is the main
problem in time evolution in the DMRG. From this it is clear that some form
of approximation will be necessary. This will be discussed in section 3.7.

3.4 Multiplying MPOs

Multiplying two MPOs is basically the same as applying an MPO to an MPS.
The only difference is that there is an extra spin index.

Ô = Ô1 · Ô2 (3.9)
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Using

Ô1 = q1
∑
σ,σ′

∑
c1,...

C
σ1,σ

′
1

c0,c1 C
σ2,σ

′
2

c1,c2 C
σ3,σ

′
3

c2,c3 . . . |σ〉〈σ′| (3.10)

Ô2 = q2
∑
σ′′,σ′′′

∑
d1,...

D
σ′′1 ,σ

′′′
1

d0,d1
D
σ′′2 ,σ

′′′
2

d1,d2
D
σ′′3 ,σ

′′′
3

d2,d3
. . . |σ′′〉〈σ′′′| (3.11)

we will end up with

Ô = q1q2
∑

σ,σ′,σ′′,σ′′′

∑
c1,...

∑
d1,...

C
σ1,σ

′
1

c0,c1 C
σ2,σ

′
2

c1,c2 . . . D
σ′′1 ,σ

′′′
1

d0,d1
D
σ′′2 ,σ

′′′
2

d1,d2
. . . |σ〉〈σ′|σ′′〉〈σ′′′|

= q1q2
∑

σ,σ′,σ′′′

∑
c1,...

∑
d1,...

C
σ1,σ

′
1

c0,c1 C
σ2,σ

′
2

c1,c2 . . . D
σ′1,σ

′′′
1

d0,d1
D
σ′2,σ

′′′
2

d1,d2
. . . |σ〉〈σ′′′|

= q1q2
∑
σ,σ′′′

∑
(c1,d1),...

∑
σ′1

C
σ1,σ

′
1

c0,c1 D
σ′1,σ

′′′
1

d0,d1

∑
σ′2

C
σ2,σ

′
2

c1,c2 D
σ′2,σ

′′′
2

d1,d2

 . . . |σ〉〈σ′′′|

= q
∑
σ,σ′′′

∑
b1,...

B
σ1,σ

′′′
1

b0,b1
B
σ2,σ

′′′
2

b1,b2
B
σ3,σ

′′′
3

b2,b3
. . . |σ〉〈σ′′′| (3.12)

Just as in the previous section, we again set q = q1q2, bi+jN = (cj , di) and

B
σi,σ

′′′
i

bi−1,bi
=
∑
σ′i
C
σi,σ

′
i

ci−1,ciD
σ′i,σ

′′′
i

di−1,di
in the last step. This increases the dimension

of the B-matrices compared to the original C- and D-matrices, since ci and di
run only from 1 to N , but bi runs from 1 to N2. Therefore, we will also need
to look at compressing MPOs in section 3.7.

3.5 Canonizing an MPS

For future uses, it would be convenient to normalize the constituent matrices of
an MPS, since this can simplify calculations. There are two norms we can use
for this.

• Left normalization: ∑
σi

Aσi†Aσi = 1 (3.13)

• Right normalization: ∑
σi

AσiAσi† = 1 (3.14)

Left-canonizing consists of left-normalizing all the matrices in the MPS. The
procedure for this is to regroup the indices and apply a QR decomposition. See
appendix B.1 for more details. The decomposition will split the matrix A in
QR, where Q is a unitary matrix and R is an upper triangular matrix with
entries only on and above the diagonal. The Q is reshaped in the form of the
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original A, and R is multiplied into the next A.

|ψ〉 = p
∑
σ

∑
a1,...

A(σ1,a0),a1A
σ2
a1,a2A

σ3
a2,a3 . . . |σ〉

= p
∑
σ

∑
a1,...

∑
r1

Q(σ1,r0),r1Rr1,a1A
σ2
a1,a2A

σ3
a2,a3 . . . |σ〉

= p
∑
σ

∑
a1,...

∑
r1

Qσ1
r0,r1

(
Rr1,a1A

σ2
a1,a2

)
Aσ3
a2,a3 . . . |σ〉

= p
∑
σ

∑
a2,...

∑
r1

Qσ1
r0,r1C

σ2
r1,a2A

σ3
a2,a3 . . . |σ〉 , (3.15)

where Cσ2
r1,a2 =

∑
a1
Rr1,a1A

σ2
a1,a2 . In the second line we silently renamed the

dummy index a0 into the dummy index r0. By repeating this process from
Aσ1 to AσN−1 , one can left-normalize all the matrices in the MPS. The left-
normalizing of the last step requires some special attention, since there is no
subsequent matrix in which to multiply the R. However, in the last step the
dimensions of R are 1 × 1, which means it is only a scalar. This scalar can be
multiplied into the prefactor p.

|ψ〉 = p
∑
σ

∑
r1...

. . . QσN−1
rN−2,rN−1

CσNrN−1,aN |σ〉

= p
∑
σ

∑
r1...

. . . QσN−1
rN−2,rN−1

C(σN ,rN−1),aN |σ〉

= p
∑
σ

∑
r1...

. . . QσN−1
rN−2,rN−1

Q(σN ,rN−1),rNRrN ,aN |σ〉

= p̃
∑
σ

∑
r1...

. . . QσN−1
rN−2,rN−1

QσNrN−1,rN |σ〉 (3.16)

In the last step, we set the prefactor p̃ = p ·RrN ,aN . From (3.7), it is clear that
this prefactor is 1 for a normalized state, since it has to obey 〈ψ|ψ〉 = 1 and
due to the left normalization from (3.13), all the M -matrices in (3.7) are only
identity matrices.

Right canonizing an MPS works in a similar fashion. Instead of using the
QR decomposition we will use the LQ decomposition, which splits any matrix
into a lower triangular matrix L and a unitary matrix Q. Also, the matrices in
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the MPS have to be processed from last until first.

|ψ〉 = p
∑
σ

∑
...,aN−1

. . . AσN−2
aN−3,aN−2

AσN−1
aN−2,aN−1

AσNaN−1,aN |σ〉

= p
∑
σ

∑
...,aN−1

. . . AσN−2
aN−3,aN−2

AσN−1
aN−2,aN−1

AaN−1,(σN ,aN )|σ〉

= p
∑
σ

∑
...,aN−1

∑
`N−1

. . . AσN−2
aN−3,aN−2

AσN−1
aN−2,aN−1

LaN−1,`N−1
×

Q`N−1,(σN ,aN )|σ〉

= p
∑
σ

∑
...,aN−1

∑
`N−1

. . . AσN−2
aN−3,aN−2

(
AσN−1
aN−2,aN−1

LaN−1,`N−1

)
×

Q`N−1,(σN ,aN )|σ〉

= p
∑
σ

∑
...,aN−2

∑
`N−1

. . . AσN−2
aN−3,aN−2

C
σN−1

aN−2,`N−1
Q
σN ,σ

′
N

`N−1,aN
|σ〉 (3.17)

Repeating this process from AσN to Aσ1 results in an MPO containing only
right-normalized matrices. In the final step we are once again left with a scalar,
L1,1, which can be absorbed into the prefactor p.

3.6 Canonizing an MPO

By using the same procedure as for the canonizing of the MPS, the MPO can
also be canonized. First one needs to define a new norm, since there is an extra
spin index involved.

• Left normalization: ∑
σi,σ′i

Bσi,σ
′
i†Bσi,σ

′
i = 1 (3.18)

• Right normalization: ∑
σi,σ′i

Bσi,σ
′
iBσi,σ

′
i† = 1 (3.19)

The canonizing can be done by reshaping B
σ1,σ

′
1

1,b1
to B(σ1,σ′1,1),b1

and, as before,
performing a QR decomposition on this.

Ô = q
∑
σ,σ′

∑
b1,...

B(σ1,σ′1,b0),b1
B
σ2,σ

′
2

b1,b2
B
σ3,σ

′
3

b2,b3
. . . |σ〉〈σ′|

= q
∑
σ,σ′

∑
b1,...

∑
r1

Q(σ1,σ′1,r0),r1
Rr1,b1B

σ2,σ
′
2

b1,b2
B
σ3,σ

′
3

b2,b3
. . . |σ〉〈σ′|

= q
∑
σ,σ′

∑
b1,...

∑
r1

Q
σ1,σ

′
1

r0,r1

(
Rr1,b1B

σ2,σ
′
2

b1,b2

)
B
σ3,σ

′
3

b2,b3
. . . |σ〉〈σ′|

= q
∑
σ,σ′

∑
b2,...

∑
r1

Q
σ1,σ

′
1

r0,r1 C
σ2,σ

′
2

r1,b2
B
σ3,σ

′
3

b2,b3
. . . |σ〉〈σ′| (3.20)

This results in a new MPO with C
σ2,σ

′
2

r1,b2
=
∑
b1
Rr1,b1B

σ2,σ
′
2

b1,b2
. Also note that

we renamed b0 into r0, which is allowed since both are dummy indices anyway.
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This process can be iterated so that the end MPO contains only left-normalized

Q
σi,σ

′
i

si−1,si matrices. The last step needs a bit of special treatment as before.

Ô = q
∑
σ,σ′

∑
s1...

. . . Q
σN−1,σ

′
N−1

rN−2,rN−1 C
σN ,σ

′
N

sN−1,bN
|σ〉〈σ′|

= q
∑
σ,σ′

∑
s1...

. . . Q
σN−1,σ

′
N−1

rN−2,rN−1 C(σN ,σ′N ,rN−1),bN |σ〉〈σ
′|

= q
∑
σ,σ′

∑
r1...

. . . Q
σN−1,σ

′
N−1

sN−2,sN−1 Q(σN ,σ′N ,rN−1),rNRrN ,bN |σ〉〈σ
′|

= q̃
∑
σ,σ′

∑
r1...

. . . U
σN−1,σ

′
N−1

rN−2,rN−1 Q
σN ,σ

′
N

rN−1,rN |σ〉〈σ
′| , (3.21)

where q̃ = q ·RrN ,bN is simply a scalar, since rN and bN are both dummy indices.

For right-canonizing the same principle applies as for left-canonizing, but

instead of starting on the first matrix, we now start on the last matrix, B
σN ,σ

′
N

bN−1,bN
,

keeping all the L’s from the LQ decomposition.

Ô = q
∑
σ,σ′

∑
...,bN−1

. . . B
σN−2,σ

′
N−2

bN−3,bN−2
B
σN−1,σ

′
N−1

bN−2,bN−1
B
σN ,σ

′
N

bN−1,bN
|σ〉〈σ′|

= q
∑
σ,σ′

∑
...,bN−1

. . . B
σN−2,σ

′
N−2

bN−3,bN−2
B
σN−1,σ

′
N−1

bN−2,bN−1
BbN−1,(σN ,σ′N ,bN )|σ〉〈σ′|

= q
∑
σ,σ′

∑
...,bN−1

∑
`N−1

. . . B
σN−2,σ

′
N−2

bN−3,bN−2
B
σN−1,σ

′
N−1

bN−2,bN−1
LbN−1,`N−1

×

Q`N−1,(σN ,σ′N ,bN )|σ〉〈σ′|

= q
∑
σ,σ′

∑
...,bN−1

∑
`N−1

. . . B
σN−2,σ

′
N−2

bN−3,bN−2

(
B
σN−1,σ

′
N−1

bN−2,bN−1
LbN−1,`N−1

)
×

Q`N−1,(σN ,σ′N ,bN )|σ〉〈σ′|

= q
∑
σ,σ′

∑
...,bN−2

∑
`N−1

. . . B
σN−2,σ

′
N−2

bN−3,bN−2
C
σN−1,σ

′
N−1

bN−2,`N−1
(V †)

σN ,σ
′
N

`N−1,bN
|σ〉〈σ′| (3.22)

Repeating this process results in an MPO containing only right normalized
matrices. In the final step the remaining scalar is again absorbed into the
prefactor q̃ = q · UbN ,`N .

3.7 Compression

To speed up calculations involving MPOs and MPSs, it is crucial to try to make
the constituent matrices of the MPOs or MPSs smaller. This is in fact the very
essence of the DMRG: discarding the states that matter least. In order to reduce
the size of the matrices, we need some sort of compression algorithm. We can
further enhance that algorithm by trying to minimize the ‘distance’ between the
original MPS/MPO and the new compressed one.
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3.7.1 Singular value compression

The first choice would be to look at the canonization process in section 3.5
and section 3.6. If instead of a QR/LQ decomposition one were to employ a
Singular Value Decomposition (SVD), one obtains a tool to decrease the size
of the matrices in an MPO/MPS, as we will see. An SVD splits any matrix
into two unitary matrices and a diagonal matrix, A = USV †, where S is the
diagonal matrix containing the singular values of A. See B.2 for more details.
For example, the left canonization of an MPS, as was done in (3.15), looks
similar using an SVD.

|ψ〉 = p
∑
σ

∑
a1,...

A(σ1,a0),a1A
σ2
a1,a2A

σ3
a2,a3 . . . |σ〉

= p
∑
σ

∑
a1,...

∑
s1

U(σ1,s0),s1Ss1,s1(V †)s1,a1A
σ2
a1,a2A

σ3
a2,a3 . . . |σ〉

= p
∑
σ

∑
a1,...

∑
s1

Uσ1
s0,s1

(
Ss1,s1(V †)s1,a1A

σ2
a1,a2

)
Aσ3
a2,a3 . . . |σ〉

= p
∑
σ

∑
a2,...

∑
s1

Uσ1
s0,s1C

σ2
s1,a2A

σ3
a2,a3 . . . |σ〉 (3.23)

This time Cσ2
s1,a2 stands for

∑
a1
Ss1,s1(V †)s1,a1A

σ2
a1,a2 and a0 is renamed to s0.

The right canonizing procedure can be adjusted in the same way by using SVD
instead of LQ decomposition, shown this time for an MPO:

Ô = q
∑
σ,σ′

∑
b1,...

B(σ1,σ′1,b0),b1
B
σ2,σ

′
2

b1,b2
B
σ3,σ

′
3

b2,b3
. . . |σ〉〈σ′|

= q
∑
σ,σ′

∑
b1,...

∑
s1

U(σ1,σ′1,s0),s1
Ss1,s1(V †)s1,b1B

σ2,σ
′
2

b1,b2
B
σ3,σ

′
3

b2,b3
. . . |σ〉〈σ′|

= q
∑
σ,σ′

∑
b1,...

∑
s1

U
σ1,σ

′
1

s0,s1

(
Ss1,s1(V †)s1,b1B

σ2,σ
′
2

b1,b2

)
B
σ3,σ

′
3

b2,b3
. . . |σ〉〈σ′|

= q
∑
σ,σ′

∑
b2,...

∑
s1

U
σ1,σ

′
1

s0,s1 C
σ2,σ

′
2

s1,b2
B
σ3,σ

′
3

b2,b3
. . . |σ〉〈σ′| (3.24)

The basis for the compression lies in the singular values in the matrix S. These
singular values represent the importance of the associated columns and rows
in U and V † respectively. (There is a deeper connection, since in the case
of MPSs, the singular values are equal to the squares of the eigenvalues of
the reduced density matrices[10]). Discarding the lowest singular values and
associated rows and columns for every matrix in an MPS will therefore result
in a good approximation to the original MPO/S. That is, in (3.23) and (3.24),
the sum

∑
s1

runs only over the d largest singular values with d being the
desired maximum dimension of the matrices, i.e. bond dimension. After the
compression, all of the matrices in the now left/right canonized MPO/MPS will
have a dimension of at most d× d. It will turn out that this compression works
remarkably well, even when only retaining a small number of singular values.
Discarding some singular values effects the norm of an MPS, but this is easily
corrected for by renormalizing.
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3.7.2 Iterative compression of an MPS

To further improve the compression, one can try to minimize the ‘distance’
between an MPS, |ψ〉, and some reduced MPS, |ψ̃〉, to get the reduced MPS
as ‘close’ to the original MPS as possible. For that we will need a measure of
distance. The most obvious choice for MPSs is:∥∥∥|ψ〉 − |ψ̃〉∥∥∥2

2
(3.25)

This needs to be minimized with respect to all the matrices in the MPS and their
conjugates. This would lead to a huge system of linear equations. Even though
that would be solvable it is easier to use a more efficient iterative method.

Iterative compression using one matrix

Instead of calculating the minimum by taking the derivative with respect to all
of the elements, we set all of the matrices to be fixed except for some Ãσ̃im,n and

take the derivative of (3.25) with respect to Ãσ̃i?n,m. Setting the latter to zero, one

can solve for Ãσ̃im,n. Doing this one by one for all the matrices in the MPS allows
us to approximate the optimally compressed MPS. By repeating this process,
one should be able to further minimize the distance to the optimally compressed
MPS. Calculating the derivative:

∂

∂Ãσi?n,m

∥∥∥|ψ〉 − |ψ̃〉∥∥∥2
2

= 0

⇒ ∂

∂Ãσ̃i?n,m

(
〈ψ|ψ〉 − 〈ψ|ψ̃〉+ 〈ψ̃|ψ̃〉 − 〈ψ̃|ψ〉

)
= 0

⇒ ∂

∂Ãσ̃i?n,m

(
〈ψ̃|ψ̃〉 − 〈ψ̃|ψ〉

)
= 0 (3.26)

In the last step, the two terms 〈ψ|ψ〉 and 〈ψ|ψ̃〉 were dropped, since they do not
contain any Ãσ̃i?n,m. Continuing from (3.26) and using the second step in (3.7):

⇒ p̃?p̃
∑
σ\σi

(
ÃσN† . . . Ãσi+1†

)
aN ,n

(
Ãσi−1† . . . Ãσ1†

)
m,1
×

Ãσ1 . . . Ãσi−1Ãσ̃iÃσi+1 . . . ÃσN − (3.27)

p̃?p
∑
σ\σi

(
ÃσN† . . . Ãσi+1†

)
aN ,n

(
Ãσi−1† . . . Ãσ1†

)
m,1
× (3.28)

Aσ1 . . . Aσi−1Aσ̃iAσi+1 . . . AσN = 0 (3.29)

Even though it is possible to solve this equation to obtain Ãσi , it looks quite
hideous. This expression simplifies dramatically if |ψ̃〉 is right-canonized from
i+1 to N and left-canonized from 1 to i−1. In addition, the iterative approach
will be numerically more stable. To show this, we calculate the first term in
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(3.26).

∂

∂Ãσ̃i?n,m
〈ψ̃|ψ̃〉

=
∂

∂Ãσ̃i?n,m
p̃?p̃

∑
σ

∑
ã1,...,ãN−1

ÃσN?ãN ,ãN−1
. . . Ãσ2?

ã2,ã1
Ãσ1?
ã1,ã0

×

∑
a1,...,aN−1

Ãσ1
1,a1

Ãσ2
a1,a2 . . . Ã

σN
aN−1,aN

= |p̃|2
∑
σ\σi

∑
ã1,...,ãi−2,ãi+1,...,ãN−1

a1,...,aN−1

ÃσN?ãN ,ãN−1
. . . Ã

σi+1?
ãi+1,n

×

Ã
σi−1?
m,ãi−2

. . . Ãσ1?
ã1,ã0

Ãσ1
a0,a1Ã

σ2
a1,a2 . . . Ã

σi−1
ai−2,ai−1

×

Ãσ̃iai−1,aiÃ
σi+1
ai,ai+1

. . . ÃσNaN−1,aN (3.30)

In the last step Ãσi?ãi,ãi−1
has disappeared due to the derivative. This equation

can be simplified, because we know that |ψ̃〉 is left-canonized from 1 to i − 1.
Looking at the sum over σ1 in the above equation, one can simplify due to Ãσ1

being left-normalized, using (3.13) and noting that ã0 = a0 = 1.∑
σ1

Ãσ1?
ã1,ã0

Ãσ1
a0,a1 = δã1,a1 (3.31)

Looking at the next sum over σ2 shows another simplification due to Ãσ2 being
left-normalized.∑

σ2

∑
a1,ã1

Ãσ2?
ã2,ã1

δã1,a1Ã
σ2
a1,a2 =

∑
σ2

∑
a1

Ãσ2?
ã2,a1

Ãσ2
a1,a2 = δã2,a2 (3.32)

This can be continued until σi−1 and one is left with simply δãi−1,ai−1
. One can

use the right canonization in a similar fashion. Since ÃσN is right-normalized,
one can simplify the sum over σN using (3.5).∑

σN

ÃσN?ãN ,ãN−1
ÃσNaN−1,aN =

∑
σN

ÃσNaN−1,aN Ã
σN?
ãN ,ãN−1

= δãN−1,aN−1
(3.33)

Repeatedly applying this for all of the right-normalized matrices leaves one with
only δãi,ai . Therefore (3.30) reduces to:

|p̃|2
∑

ai,ai−1

δm,ai−1Ã
σ̃i
ai−1,aiδn,ai = |p̃|2 Ãσ̃im,n (3.34)

Now the complicated expression of (3.30) has been simplified to one simple
matrix, which is exactly the matrix we were looking for, so the solution of
(3.26) is simply:

Ãσ̃im,n =
1

|p̃|2
∂

∂Ãσ̃i?n,m
〈ψ̃|ψ〉 (3.35)
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This can be written out explicitly:

=
1

|p̃|2
∂

∂Ãσ̃i?n,m
p̃?p

∑
σ

∑
ã1,...,ãN−1

ÃσN?ãN ,ãN−1
. . . Ãσ2?

ã2,ã1
Ãσ1?
ã1,ã0

×

∑
a1,...,aN−1

Aσ1
a0,a1A

σ2
a1,a2 . . . A

σN
aN−1,aN

=
p

p̃

∑
σ\σi

∑
ã1,...,ãi−2,ãi+1,...,ãN−1

a1,...,aN−1

ÃσN?ãN ,ãN−1
. . . Ã

σi+1?
ãi+1,n

×

Ã
σi−1?
m,ãi−2

. . . Ãσ1?
ã1,ã0

Aσ1
a0,a1A

σ2
a1,a2 . . . A

σi−1
ai−2,ai−1

Aσ̃iai−1,ai ×

Aσi+1
ai,ai+1

. . . AσNaN−1,aN

=
p

p̃

∑
ai−1,ai

∑
σi−1

Ãσi−1†

(
. . .
∑
σ2

Ãσ2†

(∑
σ1

Ãσ1† ×

Aσ1

)
Aσ2 . . .

)
Aσi−1

)
m,ai−1

× Aσ̃iai−1,ai ×∑
σi+1,...,σN

(Aσi+1 . . . AσN )ai,aN

(
ÃσN† . . . Ãσi+1†

)
ãN ,n

=
p

p̃

∑
ai−1,ai

∑
σi−1

Ãσi−1†

(
. . .
∑
σ2

Ãσ2†

(∑
σ1

Ãσ1† ×

Aσ1

)
Aσ2 . . .

)
Aσi−1

)
m,ai−1

× Aσ̃iai−1,ai ×∑
σi+1

Aσi+1

(
. . .
∑
σN

AσN ÃσN† . . .

)
Ãσi+1†


ai,n

(3.36)

In the last step, all the summations over the spins have been grouped in a similar
fashion as for the overlap in section 3.2.

Iterative compression using two matrices

One can also perform iterative compression with two matrices simultaneously,
which has the advantage of being a little more crude and therefore has the
potential to get out of possible local minima. It works basically the same as
with one matrix, but instead of differentiating with respect to the composite

matrix
(
Ãσk+1†Ãσk†

)
n,m

. This time we still need Ãσ1 to Ãσi−1 to be left-

canonized, but only Ãσi+2 to ÃσN need to be right-canonized. This then leaves
us with an expression similar to (3.35).(

Ãσ̃iÃσ̃i+1

)
m,n

=
1

|p̃|2
∂

∂
(
Ãσ̃i+1†Ãσ̃i†

)
n,m

〈ψ̃|ψ〉 (3.37)
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This can be worked out in a similar fashion as (3.36), but now leaving two
matrices in the middle.

=
p

p̃

∑
ai−1,ai,ai+1

∑
σi−1

Ãσi−1†

(
. . .
∑
σ2

Ãσ2†

(∑
σ1

Ãσ1† ×

Aσ1

)
Aσ2 . . .

)
Aσi−1

)
m,ai−1

× Aσ̃iai−1,aiA
σ̃i+1
ai,ai+1

×∑
σi+2

Aσi+2

(
. . .
∑
σN

AσN ÃσN† . . .

)
Ãσi+1†


ai,n

(3.38)

Since this will give us the product of two matrices, we still need to unravel it to
give us the two separate matrices. We can obtain those by reshaping, performing
an SVD, multiplying the square root of the singular values into both matrices
and finally reshaping back.(

Ãσ̃iÃσ̃i+1

)
m,n

=
(
Ã[i]Ã[i+1]

)
(σ̃i,m),(σ̃i+1,n)

=
(
USV †

)
(σ̃i,m),(σ̃i+1,n)

=
∑
`

(
U
√
S
)
(σ̃i,m),`

(√
SV †

)
`,(σ̃i+1,n)

(3.39)

This way, we obtain the new A-matrices, Ãσ̃im,` =
(
U
√
S
)
(σ̃i,m),`

and Ã
σ̃i+1

`,n =(√
SV †

)
`,(σ̃i+1,n)

. One could also choose not to factor the matrix S in
√
S
√
S,

but instead to multiply the entire matrix S in either Ãσ̃im,` or Ã
σ̃i+1

`,n . The ad-
vantage of that is that the other matrix is immediately right- or left-canonized
respectively.

3.7.3 Iterative compression of an MPO

The formal way of finding the best compression is to minimize the distance be-

tween the original operator, Ô, and a compressed operator, ˆ̃O. Following the
example of the states, we now seek to minimize the distance between opera-
tors. Of course, we need some way of specifying what the distance is between
operators. One way this can be done is by rewriting the operator as a ‘state’
(compare to (3.6)), since this will allow us to follow the same procedure as for
MPSs in section 3.7.2.

|O〉 =
∑
σ,σ′

∑
b1,...

B
σ1,σ

′
1

b0,b1
B
σ2,σ

′
2

b1,b2
B
σ3,σ

′
3

b2,b3
. . . |σ〉 ⊗ |σ′〉 (3.40)

After writing the operator in this form, we can calculate the distance between
the ‘states’, which is effectively just the sum of the squares of the difference of
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every matrix element. ∥∥∥|O〉 − |Õ〉∥∥∥2
2

(3.41)

=
(
〈O| − 〈Õ|

)(
|O〉 − |Õ〉

)
(3.42)

=〈O|O〉 − 〈Õ|O〉 − 〈O|Õ〉+ 〈Õ|Õ〉 (3.43)

This norm is in effect the same as the Frobenius norm for matrices, since it is

equal to the quadratic sum of all matrix elements of the operator Ô − ˆ̃O.

Iterative compression using one matrix

To find the minimum of (3.43) we can take the derivative of it with respect

to every matrix element B̃
σi,σ

′
i?

bi,bi−1
and B̃

σi,σ
′
i

bi−1,bi
and set this to zero. As before,

instead of doing this for every matrix element at the same time, we do this
iteratively by starting with a proposed compressed state and then minimizing
only with respect to one B̃σi,σ

′
i . Since we will only be taking the derivative of

(3.43) with respect to B̃
σi,σ

′
i?

bi,bi−1
, only the terms with 〈Õ| are needed.

∂

∂B̃
σi,σ′i?
bi,bi−1

(
〈Õ|Õ〉 − 〈Õ|O〉

)
= 0

⇒
∑
σσ′

(
B̃σNσ

′
N† . . . B̃σi+1σ

′
i+1†

)
bN ,bi

(
B̃σi−1σ

′
i−1† . . . B̃σ1σ

′
1†
)
bi−1,b0

×

B̃σ1σ
′
1 . . . B̃σNσ

′
N −

∑
σσ′

(
B̃σNσ

′
N† . . . B̃σi+1σ

′
i+1†

)
bN ,bi

×(
B̃σi−1σ

′
i−1† . . . B̃σ1σ

′
1†
)
bi−1,b0

Bσ1σ
′
1 . . . BσNσ

′
N = 0 (3.44)

This expression again simplifies dramatically if |Õ〉 is right-canonized from i+1
to N and left-canonized from 1 to i− 1. First note that:

〈Õ| =
∑
σ,σ′

∑
b̃1,...,b̃N−1

B̃
σN ,σ

′
N?

b̃N ,b̃N−1
. . . B̃

σ3,σ
′
3?

b̃3,b̃2
B̃
σ2,σ

′
2?

b̃2,b̃1
B̃
σ1,σ

′
1?

b̃1,b̃0
〈σ| ⊗ 〈σ′| (3.45)

Then calculate the first term in (3.44).

∂

∂B̃
σi,σ′i?

b̃i,b̃i−1

〈Õ|Õ〉

=
∂

∂B̃
σi,σ′i?

b̃i,b̃i−1

∑
σ,σ′

∑
b̃1,...,b̃N−1

B̃
σN ,σ

′
N?

b̃N ,b̃N−1
. . . B̃

σ2,σ
′
2?

b̃2,b̃1
B̃
σ1,σ

′
1?

b̃1,b̃0
×

∑
b1,...,bN−1

B̃
σ1,σ

′
1

b0,b1
B̃
σ2,σ

′
2

b1,b2
. . . B̃

σN ,σ
′
N

bN−1,bN

=
∑

σ1,...,σi−1,σi+1,...,σN
σ′1,...,σ

′
i−1,σ

′
i+1,...,σ

′
N

∑
b̃1,...,b̃i−2,b̃i+1,...,b̃N−1

∑
b1,...,bN−1

B̃
σN ,σ

′
N?

b̃N ,b̃N−1
. . .×

. . . B̃
σi+1,σ

′
i+1?

b̃i+1,b̃i
B̃
σi−1,σ

′
i−1?

b̃i−1,b̃i−2
. . . B̃

σ1,σ
′
1?

b̃1,b̃0
B̃
σ1,σ

′
1

b0,b1
×

B̃
σ2,σ

′
2

b1,b2
. . . B̃

σN ,σ
′
N

bN−1,bN
(3.46)
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Using the fact that the matrices are left/right-normalized, we can use (3.18),
(3.19) to simplify this equation, just as we used the normalization to simplify
(3.30). Remember that b0, b̃0, bN and b̃N are all dummy indices equal to one.
This allows us to use ∑

σ1,σ′1

B̃
σ1,σ

′
1?

b̃1,b̃0
B̃
σ1,σ

′
1

b0,b1
= δb̃1,b1 (3.47)

and ∑
σN ,σ′N

B̃
σN ,σ

′
N?

b̃N ,b̃N−1
B̃
σN ,σ

′
N

bN−1,bN
=
∑
σN ,σ′N

B̃
σN ,σ

′
N

bN−1,bN
B̃
σN ,σ

′
N?

b̃N ,b̃N−1
= δb̃N−1,bN−1

. (3.48)

By using this canonization, (3.46) can be reduced to

∂

∂B̃
σi,σ′i?

b̃i,b̃i−1

〈Õ|Õ〉 =
∑
bi−1,bi

δb̃i−1,bi−1
δb̃i,biB̃

σi,σ
′
i

bi−1,bi

=B̃
σi,σ

′
i

b̃i−1,b̃i
(3.49)

Putting this result back in (3.44) results in:

B̃
σi,σ

′
i

b̃i−1,b̃i
=

∂

∂B̃
σi,σ′i?

b̃i,b̃i−1

〈Õ|O〉 (3.50)

=
∑

σ1,...,σi−1,σi+1,...,σN
σ′1,...,σ

′
i−1,σ

′
i+1,...,σ

′
N

(
B̃σNσ

′
N† . . . B̃σi+1σ

′
i+1†

)
b̃N ,b̃i

×

(
B̃σi−1σ

′
i−1† . . . B̃σ1σ

′
1†
)
b̃i−1,b̃0

Bσ1σ
′
1 . . . BσNσ

′
N (3.51)

Note that the expression Bσ1σ
′
1 . . . BσNσ

′
N keeps the Bσiσ

′
i explicitly. That is,

it’s not being summed over. It’s more efficient to split out the summations,
grouping the sums over a specific σj as was done with calculating the overlap
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between two MPSs.

B̃
σi,σ

′
i

b̃i−1,b̃i
=

∑
bi−1,bi

 ∑
σi−1,σ′i−1

B̃σi−1σ
′
i−1†

. . . ∑
σ2,σ′2

B̃σ2σ
′
2†

∑
σ1,σ′1

B̃σ1σ
′
1† ×

Bσ1σ
′
1

)
Bσ2σ

′
2 . . .

)
Bσi−1σ

′
i−1

)
b̃i−1,bi−1

× B
σiσ
′
i

bi−1,bi
×∑

σi+1,...,σN
σ′i+1,...,σ

′
N

(
Bσi+1σ

′
i+1 . . . BσNσ

′
N

)
bi,bN

×

(
B̃σNσ

′
N† . . . B̃σi+1σ

′
i+1†

)
b̃N ,b̃i

=
∑
bi−1,bi

 ∑
σi−1,σ′i−1

B̃σi−1σ
′
i−1†

. . . ∑
σ2,σ′2

B̃σ2σ
′
2†

∑
σ1,σ′1

B̃σ1σ
′
1†

Bσ1σ
′
1

)
Bσ2σ

′
2 . . .

)
Bσi−1σ

′
i−1

)
b̃i−1,bi−1

× B
σiσ
′
i

bi−1,bi
× ∑

σi+1,σ′i+1

Bσi+1σ
′
i+1

. . . ∑
σN ,σ′N

BσNσ
′
N ×

B̃σNσ
′
N† . . .

)
B̃σi+1σ

′
i+1†

)
bi,b̃i+1

(3.52)

Iterative compression using two matrices

For an MPO it again works the same as with one matrix, but instead, we

differentiate with respect to the composite matrix
(
B̃σk+1σ

′
k+1†B̃σkσ

′
k†
)
n,m

. This

time we still need B̃σ1σ
′
1 to B̃σi−1σ

′
i−1 to be left-canonized, but only B̃σi+2σ

′
i+2

to B̃σNσ
′
N needs to be right-canonized. This then leaves us with an expression

similar to (3.35).(
B̃σ̃iσ̃

′
iB̃σ̃i+1σ̃

′
i+1

)
m,n

=
1

|q̃|2
∂

∂
(
B̃σ̃i+1σ̃′i+1†B̃σ̃iσ̃

′
i†
)
n,m

〈Õ|O〉 (3.53)

This can be worked out in a similar fashion to (3.36), but now leaving two
matrices in the middle.

=
q

q̃

∑
bi−1,bi,bi+1

 ∑
σi−1σ′i−1

B̃σi−1σ
′
i−1†

. . .∑
σ2σ′2

B̃σ2σ
′
2†

∑
σ1σ′1

B̃σ1σ
′
1† ×

Bσ1σ
′
1

)
Bσ2σ

′
2 . . .

)
Bσi−1σ

′
i−1

)
m,bi−1

× B
σ̃iσ̃
′
i

bi−1,bi
B
σ̃i+1σ̃

′
i+1

bi,bi+1
× ∑

σi+2σ′i+2

Bσi+2σ
′
i+2

. . . ∑
σNσ′N

BσNσ
′
N B̃σNσ

′
N† . . .

 B̃σi+1σ
′
i+1†


bi,n

(3.54)
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Since this will give us the product of two matrices, we still need to unravel it to
give us the two seperate matrices. We can obtain those by reshaping, performing
an SVD, multiplying the square root of the singular values into both matrices
and finally reshaping back.(

B̃σ̃iσ̃
′
iB̃σ̃i+1σ̃

′
i+1

)
m,n

=
(
B̃[i]B̃[i+1]

)
(σ̃i,σ̃′i,m),(σ̃i+1,σ̃′i+1,n)

=
(
USV †

)
(σ̃i,σ̃′i,m),(σ̃i+1,σ̃′i+1,n)

=
∑
`

(
U
√
S
)
(σ̃i,σ̃′i,m),`

(√
SV †

)
`,(σ̃i+1,σ̃′i+1,n)

(3.55)

This way, we obtain the new B-matrices, B̃
σ̃i,σ̃

′
i

m,` =
(
U
√
S
)
(σ̃i,σ̃′i,m),`

and B̃
σ̃i+1σ̃

′
i+1

`,n =(√
SV †

)
`,(σ̃i+1,σ̃′i+1,n)

.

3.8 Other distance measures

One could possibly use other more ‘proper’ distance measures for the matrix,
such as trace distance or fidelity. However, these have the disadvantage that
they do not have such simple expressions as the currently used distance measure.
As an example, let us look at trace distance.

Tr| ˆ̃O − Ô| = Tr

√
( ˆ̃O − Ô)†( ˆ̃O − Ô)

= Tr

√
ˆ̃O† ˆ̃O − ˆ̃O†Ô − Ô† ˆ̃O + Ô†Ô

=
∑
σ

〈
σ

∣∣∣∣∣
√

ˆ̃O† ˆ̃O − ˆ̃O†Ô − Ô† ˆ̃O + Ô†Ô

∣∣∣∣∣σ
〉

(3.56)

There is no easy way to take the derivative of this with respect to some B
σk,σ

′
k?

n,m

as in (3.44), because of the square root. Other distance measures suffer from
the same problem.

3.9 Matrix element

Calculating a matrix element can be done by using the overlap calculation in
conjunction with the section about applying an MPO.

〈ψ̃|Ô|ψ〉 = 〈ψ̃|
(
Ô|ψ〉

)
(3.57)

While this works well when either MPOs or MPSs has a small bond dimension,
it breaks down when the bond dimension for both the MPO and the MPS are
large. This is due to the fact that the bond dimension of Ô|ψ〉 grows as the
product of the bond dimension of Ô and |ψ〉. The amount of memory required
to store this, is then extremely large and impractical. A better solution is to
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calculate 〈ψ̃|Ô|ψ〉 directly:

〈ψ̃|Ô|ψ〉 = p̃ q p
∑
σ

(
ÃσN

)†
. . .
(
Ãσ1

)†
〈σ| ×∑

σ′′σ′′′

Bσ
′′
1 σ
′′′
1 . . . Bσ

′′
Nσ
′′′
N |σ′′〉〈σ′′′|

∑
σ′

Aσ
′
1 . . . Aσ

′
N |σ′〉

= p̃ q p
∑
σ,σ′

(
ÃσN

)†
. . .
(
Ãσ1

)†
Bσ1σ

′
1 . . . BσNσ

′
NAσ

′
1 . . . Aσ

′
N

= p̃ q p
∑
σ,σ′

∑
ã1...

(
ÃσN†

)
ãN ,ãN−1

. . .
(
Ãσ1†

)
ã1,ã0

×

∑
b1...

B
σ1σ
′
1

b0,b1
. . . B

σNσ
′
N

bN−1,bN

∑
a1...

A
σ′1
a0,a1 . . . A

σ′N
aN−1,aN

= p̃ q p
∑
σ\σ1

σ′\σ′
1

∑
ã1...

(
ÃσN†

)
ãN ,ãN−1

. . .
(
Ãσ2†

)
ã2,ã1

×

∑
b1...

B
σ2σ
′
2

b1,b2
. . . B

σNσ
′
N

bN−1,bN

∑
a1...

A
σ′2
a1,a2 . . . A

σ′N
aN−1,aN ×

∑
σ1,σ′1

(
Ãσ1†

)
ã1,ã0

B
σ1σ
′
1

b0,b1
A
σ′1
a0,a1 (3.58)

In the last step everything related to site 1 has been separated out and can be

calculated and replaced by the tensor M
(1)
ã1,b1,a1

:

= p̃ q p
∑
σ\σ1

σ′\σ′
1

∑
ã1...

(
ÃσN†

)
ãN ,ãN−1

. . .
(
Ãσ2†

)
ã2,ã1

×

∑
b1...

B
σ2σ
′
2

b1,b2
. . . B

σNσ
′
N

bN−1,bN

∑
a1...

A
σ′2
a1,a2 . . . A

σ′N
aN−1,aNM

(1)
ã1,b1,a1

= p̃ q p
∑

σ\σ1,σ2

σ′\σ′
1,σ

′
2

∑
ã2...

(
ÃσN†

)
ãN ,ãN−1

. . .
(
Ãσ3†

)
ã3,ã2

×

∑
b2...

B
σ3σ
′
3

b2,b3
. . . B

σNσ
′
N

bN−1,bN

∑
a2...

A
σ′3
a2,a3 . . . A

σ′N
aN−1,aN ×

∑
σ2,σ

′
2

ã1,b1,a1

M
(1)
ã1,b1,a1

(
Ãσ2†

)
ã2,ã1

B
σ2σ
′
2

b1,b2
A
σ′2
a1,a2

= p̃ q p
∑

σ\σ1,σ2

σ′\σ′
1,σ

′
2

∑
ã2...

(
ÃσN†

)
ãN ,ãN−1

. . .
(
Ãσ3†

)
ã3,ã2

×

∑
b2...

B
σ3σ
′
3

b2,b3
. . . B

σNσ
′
N

bN−1,bN

∑
a2...

A
σ′3
a2,a3 . . . A

σ′N
aN−1,aNM

(2)
ã2,b2,a2

(3.59)

Doing this for all the sites, one eventually ends up with a scalar:

〈ψ̃|Ô|ψ〉 = p̃ q pM
(N)
ãN ,bN ,aN

(3.60)
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with

M
(i)
ãi,bi,ai

=
∑
σi,σ

′
i

ãi−1,bi−1,ai−1

M
(i−1)
ãi−1,bi−1,ai−1

(
Ãσi†

)
ãi,ãi−1

B
σiσ
′
i

bi−1,bi
A
σ′i
ai−1,ai . (3.61)

Since Lapack++ does not work well with tensors, we need matrices:

M
(i)
ãi,bi,ai

=
∑
σi,σ

′
i

ãi−1,bi−1,ai−1

(
Ãσi†

)
ãi,ãi−1

M
(i−1)
ãi−1,(bi−1,ai−1)

B
σiσ
′
i

bi−1,bi
A
σ′i
ai−1,ai (3.62)

=
∑
σi,σ

′
i

ãi−1,bi−1

Pσiãi,(bi−1,ai−1)
B
σiσ
′
i

bi−1,bi
A
σ′i
ai−1,ai (3.63)

=
∑
σ′i
ãi−1

 ∑
σi,bi−1

Pσi(ãi,ai−1),bi−1
B
σiσ
′
i

bi−1,bi

A
σ′i
ai−1,ai (3.64)

=
∑
σ′i
ãi−1

Q
σ′i
(ãi,ai−1),bi

A
σ′i
ai−1,ai (3.65)

=
∑
σ′i
ãi−1

Q
σ′i
(ãi,bi),ai−1

A
σ′i
ai−1,ai (3.66)

= M
(i)
(ãi,bi),ai

(3.67)

Since every M (i) is calculated per site, far less memory is needed compared
to calculating (3.57) directly, because the complete MPS Ô|ψ〉, which contains
N × d2

Ô
× d2|ψ〉 × dim(σ) elements does not need to be stored. Instead we only

need the intermediate matrix M (i), which only has a size of dÔ × d2|ψ〉. Here

dÔ stands for the bond dimension of the MPO Ô and d|ψ〉 stands for the bond
dimension of |ψ〉.
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Chapter 4

Physical operators

The MPOs as defined in chapter 3 need to be made explicit for us to be able to
perform simulations. To do so, the Hamiltonian of the system under investiga-
tion is needed, since this determines the time evolution, amongst other things.
In the case of a spin- 12 XX chain, the Hamiltonian is well known:

Ĥ = −J
2

∑
i

(
Ŝ+
i Ŝ
−
i+1 + Ŝ+

i+1Ŝ
−
i

)
(4.1)

Another Hamiltonian we will make use of is the spin- 12 XXZ chain.

Ĥ = −J
2

∑
i

(
Ŝ+
i Ŝ
−
i+1 + Ŝ+

i+1Ŝ
−
i

)
+ Jz

∑
i

Ŝzi Ŝ
z
i+1 (4.2)

And finally the one for the Bose-Hubbard model.

Ĥ = −t
∑
i

(
b̂†i b̂i+1 + b̂†i+1b̂i

)
− U

2

∑
i

n̂i (n̂i − 1)− µ
∑
i

n̂i (4.3)

4.1 Single site operator

Many of the operators that are going to be used are operators that work only
on a single site, Ôi. These operators are easily written in the form of an MPO.

Ôi = 1⊗ 1⊗ . . . 1⊗Oi ⊗ 1 . . .⊗ 1 (4.4)

Where Oj (without the hat) stands for the local operator working in the Hilbert-

space of a single site. All the 1σi,σ
′
i can be written as δσi,σ′i . and the dimension

of every matrix is just 1× 1.

p = 1 (4.5)

B[n] =
[
Oj

]
(4.6)

B[i] =
[

1
]

for i 6= j (4.7)

The local operators we will use for the XX(Z)-chains are:

• Ŝz = 1
2σz, with σz being the Pauli matrix. This means B

σj ,σ
′
j

1,1 = 1
2σ

σj ,σ
′
j

z .
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• Ŝ+ raises the spin, which is written as an MPO matrix as B
σj ,σ

′
j

1,1 =
δσj ,↑δσ′j ,↓.

• Ŝ− lowers the spin, which is written as an MPO matrix as B
σj ,σ

′
j

1,1 =
δσj ,↓δσ′j ,↑.

For the Bose-Hubbard model we are only interested in the expectation value of
the number operator:

• n̂j counts the number of bosons at site j. B
σj ,σ

′
j

1,1 = σjδσj ,σ′j .

Note that in the case of the Bose-Hubbard model, σi does not stand for the spin
at site i, but rather for the number of bosons at site i.

4.2 Total magnetization MPO

We are going to need (4.4) with Sz, but now added up for every site:

M̂ = hSz1⊗1⊗1⊗ . . .⊗1+1⊗hSz2⊗1⊗1⊗ . . .⊗1+ . . .+1⊗ . . .⊗1⊗hSzN (4.8)

The following B-matrices will accomplish just that:

q = h (4.9)

B[1] =
[
Sz 1

]
(4.10)

B[i] =

[
1 0
Sz 1

]
(4.11)

B[N ] =

[
1
Sz

]
(4.12)

Indeed, we see that:

B[1]B[2] . . . B[N ] = h
∑
i

Szi = M (4.13)

4.3 Energy

The energy for the XX chain can be obtained by applying the Hamiltonian,
which has to be written as an MPO. Converting the Hamiltonian from (4.1)
into an MPO is similar to the procedure for the total magnetization MPO. The
−J2 can be put in the q again. The operators themselves are more difficult this
time though, since we now have a sum of operators that work on two sites. Call
one such two-site operator ĥi.

ĥi = Ŝ+
i Ŝ
−
i+1 + Ŝ+

i+1Ŝ
−
i (4.14)
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This can still easily be written in MPO form:

q = 1 (4.15)

B[1] =
[

1
]

(4.16)

B[i] =
[
Ŝ+ Ŝ−

]
(4.17)

B[i+1] =

[
Ŝ−

Ŝ+

]
(4.18)

B[N ] =
[

1
]

(4.19)

Adding ĥ1 and ĥ2 will require us to enlarge the matrices, since B[1] of ĥ1 + ĥ2
needs to contain the 1 from the B[1] of ĥ2. We can accommodate both the B[2]s
from ĥ1 and ĥ2 by writing it as:[

B
[2]

ĥ1
0

0 B
[2]

ĥ2

]
(4.20)

Supplementing B[1] and B[3] appropriately, the sum of ĥ1 and ĥ2 can be written
as an MPO:

q = 1 (4.21)

B[1] =
[
Ŝ+ Ŝ− 1

]
(4.22)

B[2] =

 Ŝ− 0 0

Ŝ+ 0 0

0 Ŝ+ Ŝ−

 (4.23)

B[3] =

 1

Ŝ−

Ŝ+

 (4.24)

B[i] =
[

1
]

(4.25)

When we add ĥ3, we can leave B[1] unchanged, since it already contains a

1. This means we can leave the row dimension of B
[2]

ĥ1+ĥ2+ĥ3
unchanged. We

still need to expand the column dimension though, since B
[2]

ĥ3
contains a 1 that

B
[2]

ĥ1+ĥ2
does not. B[3] needs to be adjusted too and for that we can use the
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same tactic as in (4.20). We are then left with the MPO form of ĥ1 + ĥ2 + ĥ3.

q = 1 (4.26)

B[1] =
[
Ŝ+ Ŝ− 1

]
(4.27)

B[2] =

 Ŝ− 0 0 0

Ŝ+ 0 0 0

0 Ŝ+ Ŝ− 1

 (4.28)

B[3] =


1 0 0

Ŝ− 0 0

Ŝ+ 0 0

0 Ŝ+ Ŝ−

 (4.29)

B[4] =

 1

Ŝ−

Ŝ+

 (4.30)

B[i] =
[

1
]

(4.31)

We can keep repeating this process and we will eventually end up with the same
B[i] for i /∈ {1, 2, N − 1, N}.

B[i] =


1 0 0 0

Ŝ− 0 0 0

Ŝ+ 0 0 0

0 Ŝ+ Ŝ− 1

 (4.32)

We can actually write B[2] and B[N−1] in this form too, if we add a 0 to B[1]

and B[N ]. Finally, we can write the full Hamiltonian in a neat compact form.

q = −J
2

(4.33)

B[1] =
[

0 Ŝ+ Ŝ− 1
]

(4.34)

B[i] =


1 0 0 0

Ŝ− 0 0 0

Ŝ+ 0 0 0

0 Ŝ+ Ŝ− 1

 (4.35)

B[L] =


1

Ŝ−

Ŝ+

0

 (4.36)

Note that this choice of matrices is not unique. For example, one could swap
all of the Ŝ− and Ŝ+ or the ones and zeros on the first rows/columns and end
up with the exact same Hamiltonian.

The energy for the XXZ chain becomes a bit more complicated, since this
also involves the Ŝz operator, but following the same steps as before, this Hamil-
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tonian can also be written in MPO form:

q = 1 (4.37)

B[1] =
[

0 −J2 Ŝ
+ −J2 Ŝ

− JzŜ
z 1

]
(4.38)

B[i] =


1 0 0 0 0

Ŝ− 0 0 0 0

Ŝ+ 0 0 0 0

Ŝz 0 0 0 0

0 −J2 Ŝ
+ −J2 Ŝ

− JzŜ
z 1

 (4.39)

B[L] =


1

Ŝ−

Ŝ+

Ŝz

0

 (4.40)

4.4 Time evolution using Suzuki-Trotter decom-
position

The time evolution operator evolves a state or operator from time t0 to time t.
If the Hamiltonian does not depend on time, then the operator has the following
simple form:

Û(t) = exp

(
− i
~
Ĥt

)
(4.41)

In our case we will time-evolve a spin chain of length N and we will assume
only interactions between nearest neighbours. In this case, we can write the
Hamiltonian as a sum of local interaction Hamiltonians

Û(t) = exp

(
− i
~

N−1∑
i=1

ĥit

)
, (4.42)

where ĥi is the local operator that stands for the interaction between site i and
site i+ 1. This needs to be converted into an MPO, but to keep the number of
dimensions low, we ideally would want to split the time evolution operator into
a product of operators that work only on two sites. However, we cannot just
write the exponential of a sum as a product of exponentials because ĥi generally
does not commute with ĥi±1. We can group all of the local operators that do
commute together, splitting the sum into an even and an odd part:

ĤE =

(N−1)/2∑
i=1

ĥ2i (4.43)

ĤO =

(N−1)/2∑
i=1

ĥ2i−1 (4.44)

We want to see what the error would be, if we would simply treat ĤE and ĤO

as commuting. To find that out, we can simply look at the Taylor expansion of
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exp
(
Ât+ B̂t

)
and exp

(
Ât
)

exp
(
B̂t
)

exp
(
Ât+ B̂t

)
= 1 +

(
Ât+ B̂t

)
+

1

2

(
Ât+ B̂t

)2
+ . . .

= 1 + Ât+ B̂t+
1

2
Â2t2 +

1

2
B̂2t2 +

1

2
ÂB̂t2

+
1

2
B̂Ât2 + . . . (4.45)

exp
(
Ât
)

exp
(
B̂t
)

=

(
1 + Ât+

1

2
Â2t2 + . . .

)(
1 + B̂t+

1

2
B̂2t2 + . . .

)
= 1 + B̂t+

1

2
B̂2t2 + Ât+ ÂB̂t2 +

1

2
Â2t2 + . . . (4.46)

Subtracting these two expressions gives us the error we would make by assuming
Â and B̂ commute.

exp
(
Ât+ B̂t

)
− exp

(
Ât
)

exp
(
B̂t
)

=
1

2

(
B̂Â− ÂB̂

)
t2 + . . .

Using small time steps ∆t in the expression above and plugging in the even and
odd part of the Hamiltonian, allows us to approximate Û(∆t).

Û(∆t) = exp

(
− i
~
ĤE∆t+ ĤO∆t

)
= exp

(
− i
~
ĤE∆t

)
exp

(
− i
~
ĤO∆t

)
+O(∆t2) (4.47)

This is called a first order Trotter step. By applying these steps T times, one can
simulate for an arbitrary time t = T ∆t, resulting in a total accuracy of O(∆t),

since T ∝ 1/∆t. We can now proceed to build MPOs out of exp
(
− i

~ĤE∆t
)

and

exp
(
− i

~ĤO∆t
)

separately. These both consist of a product of local operators,

Ûi = exp(− i
~ ĥit), that only work on two sites. Since all of these local operators

work on different Hilbert spaces, it suffices to look at just one local operator, as
all of the others will be the same1. As the Hilbert space one can use |σiσi+1〉,
where σi stands for the possible spin orientations on site i. This local operator
will still need to be transformed into an MPO where every matrix works on just
one site. Reordering the indices for 〈σiσi+1|Ûi|σ′iσ′i+1〉 and performing an SVD
on this allows us to do just that.

〈σiσi+1|Ûi|σ′iσ′i+1〉 = U(σi,σ′i),(σi+1,σ′i+1)

=
∑
k

Ũ(σi,σ′i),k
Sk
(
V †
)
k,(σi+1,σ′i+1)

(4.48)

The singular values Sk can be multiplied into the Ũ and V † resulting in the new
matrices L and R.

L
σiσ
′
i

k = Ũ(σi,σ′i),k

√
Sk (4.49)

R
σi+1σ

′
i+1

k =
√
Sk
(
V †
)
k,(σi+1,σ′i+1)

(4.50)

1Except possibly at the boundaries in some special cases, but at least not in the ones
treated in this thesis. Even then, it is only a boundary effect and as such can be neglected
most of the times anyway.
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Simply adding a dummy index, 1, gives a proper element for an MPO.

Ûi =
∑
k

L
σiσ
′
i

1,k R
σi+1σ

′
i+1

k,1 (4.51)

Since this applies for all of the independent Hilbert spaces that the local operator
worked on, one can write the even part of the Trotter step in MPO form as

exp

(
− i
~
ĤE∆t

)
= δσ1,σ

′
1Lσ2,σ

′
2Rσ3,σ

′
3Lσ4,σ

′
4Rσ5,σ

′
5Lσ6,σ

′
6 . . . , (4.52)

and one can do the same for the odd part.

exp

(
− i
~
ĤO∆t

)
= Lσ1,σ

′
1Rσ2,σ

′
2Lσ3,σ

′
3Rσ4,σ

′
4Lσ5,σ

′
5Rσ6,σ

′
6 . . . (4.53)

The full Trotter step can then be obtained by multiplying these two MPOs using
the method from section 3.4.

The accuracy can be improved by using second order Trotter steps instead
of first order Trotter steps:

Û(∆t) = exp

(
− i

2~
ĤE∆t

)
exp

(
− i
~
ĤO∆t

)
exp

(
− i

2~
ĤE∆t

)
+O(∆t3)

(4.54)
The O(∆t3) arises from the fact that eA+B − eA/2eBeA/2 only has terms of
at least third order in ∆t when one performs a Taylor expansion on it and
substitutes A by − i

~ĤE∆t and B by − i
~ĤO∆t. The total accuracy will be

O(∆t2), since one needs to perform T time steps and T ∝ 1/∆t.
Another possibility is to use Forest-Ruth[20]:

Û(∆t) = exp

(
− iθ

2~
ĤE∆t

)
exp

(
− iθ

~
ĤO∆t

)
exp

(
− i(1− θ)

2~
ĤE∆t

)
×

exp

(
− i(1− 2θ)

~
ĤO∆t

)
exp

(
− i(1− θ)

2~
ĤE∆t

)
× (4.55)

exp

(
− iθ

~
ĤO∆t

)
exp

(
− iθ

2~
ĤE∆t

)
+O(∆t5) (4.56)

The θ is a well chosen constant, θ = 1/(2 − 21/3). Regardless of which MPO
U(∆t) is chosen, we can use it to evolve the MPOs or MPSs in time. In the
Schrödinger picture, we can evolve the MPS by repeatedly applying the MPO
U(∆t).

|ψ(τ ∆t)〉 = (U(∆t))
τ |ψ〉 (4.57)

Similarly, we can evolve the MPO Ô in the Heisenberg picture by applying
U(∆t) repeatedly.

Ô(τ ∆t)〉 =
(
U†(∆t)

)τ
Ô (U(∆t))

τ
(4.58)
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4.5 Current density

The current density can be derived from the equation of continuity.

dŜzi
dt

+
dji
dx

= 0 (4.59)

In this case the d
dx does not mean much, since we don not have a continuous

system, but we will find a discrete substitute later on. For the time derivative,
we can make use of the Heisenberg equation of motion.

dŜzi
dt

= i
[
Ĥ, Ŝzi

]
+
∂Ŝzi
∂t

(4.60)

Because there are two Hamiltonians being used, both need to be looked at
separately. For the XX chain we use the Hamiltonian from (4.1):

dŜzi
dt

= i

−J
2

∑
j

(
Ŝ+
j Ŝ
−
j+1 + Ŝ+

j+1Ŝ
−
j

)
, Ŝzi

+ 0

= −iJ
2

([
Ŝ+
i , Ŝ

z
i

]
Ŝ−i+1 + Ŝ+

i+1

[
Ŝ−i , Ŝ

z
i

]
+

Ŝ+
i−1

[
Ŝ−i , Ŝ

z
i

]
+
[
Ŝ+
i , Ŝ

z
i

]
Ŝ−i−1

)
(4.61)

Using the fact that
[
Ŝ±i , Ŝ

z
i

]
= ∓Ŝ±i , we get the following expression:

dŜzi
dt

= −iJ
2

(
−Ŝ+

i Ŝ
−
i+1 + Ŝ+

i−1Ŝ
−
i − h.c.

)
(4.62)

Now we need to evaluate the spatial derivative in (4.59). Since the coordinates in
our chain are the integer index i, we cannot evaluate the continuous derivative.
We therefore simply define

dji
dx

=
1

a

(
ĵi+1 − ĵi

)
, (4.63)

where a is the lattice constant2. Putting all of this in (4.59) gives a recursive
relation for the current density operator:

ĵi = ĵi+1 − i
aJ

2

(
−Ŝ+

i Ŝ
−
i+1 + Ŝ+

i−1Ŝ
−
i − h.c.

)
(4.64)

To get a proper expression, one can look at ĵN .

ĵN = 0− iaJ
2

(
−0 + Ŝ+

N−1Ŝ
−
N − h.c.

)
= −iaJ

2

(
Ŝ+
N−1Ŝ

−
N − h.c.

)
(4.65)

2There are various possibilities to define this, one could also use the more symmetric
dji
dx

= 1
2a

(
ĵi+1 − ĵi−1

)
, but since we are only interested in comparing simulations, this does

not matter.
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The next step would be

ĵN−1 = ĵN − i
aJ

2

(
−Ŝ+

N−1Ŝ
−
N + Ŝ+

N−2Ŝ
−
N−1 − h.c.

)
= −iaJ

2

(
Ŝ+
N−1Ŝ

−
N − h.c.

)
− iaJ

2

(
−Ŝ+

N−1Ŝ
−
N + Ŝ+

N−2Ŝ
−
N−1 − h.c.

)
= −iaJ

2

(
Ŝ+
N−2Ŝ

−
N−1 − h.c.

)
(4.66)

Continuing this, we eventually end up with:

ĵi = − iaJ
2

(
Ŝ+
i−1Ŝ

−
i − h.c.

)
= − iaJ

2

(
Ŝ+
i−1Ŝ

−
i − Ŝ

+
i Ŝ
−
i−1

)
(4.67)

Only ĵ1 will just be zero, since Ŝ±i−1 does not exist. For the XXZ chain, the
Hamiltonian from (4.2) is used.

dŜzi
dt

= i
[
Ĥ, Ŝzi

]
+
∂Ŝzi
∂t

= i

−J
2

∑
j

(
Ŝ+
j Ŝ
−
j+1 + Ŝ+

j+1Ŝ
−
j

)
+ Jz

∑
j

Ŝzj Ŝ
z
j+1 , Ŝzi

+ 0

= −iJ
2

([
Ŝ+
i , Ŝ

z
i

]
Ŝ−i+1 + Ŝ+

i+1

[
Ŝ−i , Ŝ

z
i

]
+

Ŝ+
i−1

[
Ŝ−i , Ŝ

z
i

]
+
[
Ŝ+
i , Ŝ

z
i

]
Ŝ−i−1

)
+

iJz
∑
j

(
Ŝzj

[
Ŝzj+1, Ŝ

z
i

]
+
[
Ŝzj , Ŝ

z
i

]
Ŝzj+1

)
= −iJ

2

([
Ŝ+
i , Ŝ

z
i

]
Ŝ−i+1 + Ŝ+

i+1

[
Ŝ−i , Ŝ

z
i

]
+

Ŝ+
i−1

[
Ŝ−i , Ŝ

z
i

]
+
[
Ŝ+
i , Ŝ

z
i

]
Ŝ−i−1

)
+ 0

(4.68)

This is in fact the same expression as (4.61), so we get exactly the same operator
for the current density. The final step for both Hamiltonians is to write this
operator in MPO form:

q = − iaJ
2

(4.69)

B[j] =
[

1
]

for j 6= i ∧ j 6= i− 1 (4.70)

B[i−1] =
[
Ŝ+ −Ŝ−

]
(4.71)

B[i] =

[
Ŝ−

Ŝ+

]
(4.72)

The procedure for the Bose-Hubbard model is very similar. Instead of the
operator Ŝzi we only need to use the number operator n̂i in the equation of
continuity and the Heisenberg equation of motion, which means we need to
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calculate
[
Ĥ, n̂i

]
.

[
Ĥ, n̂i

]
=

 ˆ
−t
∑
j

(
b̂
†
j b̂j+1 + b̂

†
j+1b̂j

)
− U

2

∑
j

n̂j (n̂j − 1)− µ
∑
j

n̂j , n̂i


=

 ˆ
−t
∑
j

(
b̂
†
j b̂j+1 + b̂

†
j+1b̂j

)
, b̂†i b̂i


= −t

(
b̂†i b̂i+1b̂

†
i b̂i + b̂†i+1b̂ib̂

†
i b̂i − b̂

†
i b̂ib̂

†
i b̂i+1 − b̂†i b̂ib̂

†
i+1b̂i+

b̂†i−1b̂ib̂
†
i b̂i + b̂†i b̂i−1b̂

†
i b̂i − b̂

†
i b̂ib̂

†
i−1b̂i − b̂

†
i b̂ib̂

†
i b̂i−1

)
= −t

(
b̂†i b̂
†
i b̂ib̂i+1 +

(
1 + b̂†i b̂i

)
b̂ib̂
†
i+1 − b̂

†
i

(
1 + b̂†i b̂i

)
b̂i+1−

b̂†i b̂ib̂ib̂
†
i+1 + b̂†i−1

(
1 + b̂†i b̂i

)
b̂i + b̂i−1b̂

†
i b̂
†
i b̂i−

b̂†i−1b̂
†
i b̂ib̂i − b̂i−1b̂

†
i

(
1 + b̂†i b̂i

))
= −t

(
b̂ib̂
†
i+1 − b̂

†
i b̂i+1 + b̂†i−1b̂i − b̂i−1b̂

†
i

)
(4.73)

Putting this in the Heisenberg equation of motion and subsequently in the equa-
tion of continuity gives us

dji
dx

= i t
(
b̂ib̂
†
i+1 − b̂

†
i b̂i+1 + b̂†i−1b̂i − b̂i−1b̂

†
i

)
. (4.74)

Using the same definition in equation (4.63) allows us to get rid of the continuous
derivative.

1

a

(
ĵi+1 − ĵi

)
= i t

(
b̂ib̂
†
i+1 − b̂

†
i b̂i+1 + b̂†i−1b̂i − b̂i−1b̂

†
i

)
(4.75)

Again applying the boundary condition jN+1 = 0, we have:

ĵN = i a t
(

0− 0 + b̂†N−1b̂N − b̂N−1b̂
†
N

)
(4.76)

This leaves us with the final expression of the current density in the Bose-
Hubbard model:

ĵi = i a t
(
b̂†i−1b̂i − b̂i−1b̂

†
i

)
(4.77)

This is very similar to (4.61), so it comes as no surprise that the MPO-form is
also very similar.

q = −i a t (4.78)

B[j] =
[

1
]

for j 6= i ∧ j 6= i− 1 (4.79)

B[i−1] =
[
b̂† −b̂

]
(4.80)

B[i] =

[
b̂

b̂†

]
(4.81)
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Chapter 5

Schrödinger versus
Heisenberg

5.1 The XX(Z) chain with initial inhomogeneous
state

To compare the use of MPOs and MPSs in the Schrödinger picture and in the
Heisenberg picture, we shall look at the time evolution of both a spin- 12 XX
chain and a spin- 12 XXZ chain, given a specific initial state. Since the results for
the spin- 12 XX chain can be calculated for finite size spin chains (actually also
for infinite size, but we will not use that here), we can compare the theory to
the outcome of the simulations. The Hamiltonian for the XX chain was already
given in (4.1):

Ĥ = −J
2

∑
i

(
Ŝ+
i Ŝ
−
i+1 + Ŝ+

i+1Ŝ
−
i

)
(5.1)

The initial state we shall use is

|ψ(0)〉 = | ↑↑ . . . ↑↓↓ . . . ↓〉 . (5.2)

That is to say, for a chain of N sites, the first N/2 sites will have spin ↑ and
the remaining N/2 sites will have spin ↓. To study the difference between the
Schrödinger and Heisenberg picture, we will compare the expectation values for
the density at site n, 〈Ŝzn〉, the density correlation between two sites m and n,
〈ŜzmŜzn〉, and the current density 〈ĵn〉. For ease of readability and for simplified
calculations in the numerical simulation, we shall now set ~ = 1, J = 1 and
a = 1, which means the physical time in the simulations is in units of ~ and J ,
while the scale of the current density ĵi is in units of ~, J and a.

5.1.1 Procedure

For convenience, we shall use the convention that site 1 refers to the first site
to the right of the boundary between ↑ and ↓. This state can be represented
as an MPS using a simple set of matrices. The matrices for the first site at
i = −N/2 + 1 are

A↑−N/2+1 =
(

1
)

A↓−N/2+1 =
(

0
)

(5.3)
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and the matrices for sites i = −N/2 + 1 to i = 0 are the same:

A↑i =
(

1
)

A↓i =
(

0
)

(5.4)

The matrices for sites i = 1 to i = N/2− 1 are

A↑i =
(

0
)

A↓i =
(

1
)

(5.5)

and for the same for the last site at i = N/2:

A↑N/2 =
(

0
)

A↓N/2 =
(

1
)

(5.6)

The prefactor p for this MPS is simply 1.

For the numerical simulation, the Trotter steps need to be constructed ac-
cording to the recipe from section 4.4. For the XX chain, one can easily get the
local interaction Hamiltonians from (4.1):

ĥi = −1

2

(
Ŝ+
i Ŝ
−
i+1 + Ŝ+

i+1Ŝ
−
i

)
(5.7)

As basis we use |σiσi+1〉 = {| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉}, which allows us to write ĥi
in matrix form. 

0 0 0 0
0 0 − 1

2 0
0 − 1

2 0 0
0 0 0 0

 (5.8)

For the XXZ chain one can likewise get the local interaction Hamiltonians from
(4.2).

ĥi = −1

2

(
Ŝ+
i Ŝ
−
i+1 + Ŝ+

i+1Ŝ
−
i

)
+ JzŜ

z
i Ŝ

z
i+1 (5.9)

Using the same basis as before, we arrive at ĥi in matrix form.
Jz
4 0 0 0
0 −Jz4 − 1

2 0
0 − 1

2 −Jz4 0
0 0 0 Jz

4

 (5.10)

From either of these, we can calculate Ûi = exp(−iĥit) by diagonalizing.

Ûi = P


e−ie1τ 0

e−ie2τ

e−ie3τ

0 e−ienτ

P−1 (5.11)

Here ei are the four eigenvalues of hi and P is the matrix with the eigenvectors.
Inserting the matrix elements in (4.48), we can do the SVD to get the required

Lσi,σ
′
i and Rσi+1,σ

′
i+1 matrices. From these matrices, we can construct the MPO

Û(∆t) using either (4.47), (4.54) or (4.55). In both the Schrödinger and the
Heisenberg picture, the resulting MPS/MPO needs to be compressed after every
multiplication using the methods from section 3.7. Otherwise the dimensions
of the matrices making up the MPS/MPO, will grow like 4T , where T is the
number of time steps.
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5.1.2 Theory

To be able to say anything about the validity of the simulations, they need to
be compared to theoretical predictions, if available. Luckily, these exist in the
case of the XX chain at zero temperature with initial state | ↑↑ . . . ↑↓ . . . ↓↓〉.
For this, the Hamiltonian from (4.1) needs to be written in a more conve-
nient form, allowing for simpler calculations. This is called a Jordan-Wigner
transformation[21]; it transforms the operators S−i and S+

i into the fermionic

operators ci and c†i respectively. The advantage of this form is that, during the
calculation of the various expectation values, we can now use anticommutation
relations for just two operators, instead of the more complicated commutation
relations for the three operators Ŝ+, Ŝ− and Ŝz. The Jordan-Wigner transfor-
mation is defined as follows:

Ŝ+
n = ĉ†n(−1)φn (5.12)

Ŝ−n = (−1)φn ĉn (5.13)

Ŝzn = ĉ†nĉn −
1

2
, (5.14)

with φn =
∑n−1
j=−N/2+1 ĉ

†
j ĉj . Putting this in the Hamiltonian gives

Ĥ = −J
2

N/2∑
n=−N/2+1

ĉ†n(−1)φn(−1)φn+1 ĉn+1 + h.c. (5.15)

The part (−1)φn(−1)φn+1 can be simplified, since [φn, φm] = 0.

(−1)φn(−1)φn+1 = (−1)φn+φn+1 = (−1)2
∑n−1
j=1 ĉ

†
j ĉj+ĉ

†
nĉn = (−1)ĉ

†
nĉn (5.16)

Continuing,

Ĥ = −J
2

N/2∑
n=−N/2+1

ĉ†n(−1)ĉ
†
nĉn ĉn+1 + h.c.

= −J
2

N/2∑
n=−N/2+1

(
ĉ†n1ĉn+1 + ĉ†niπĉ

†
nĉnĉn+1+

ĉ†n(−π2)ĉ†nĉnĉ
†
nĉnĉn+1 + . . .

)
+ h.c. (5.17)

In the last step, a Taylor expansion was used for the (−1)ĉ
†
nĉn . Every term

except the first one starts with
(
ĉ†n
)2

, so all of these terms are zero, since ĉn is
a fermionic operator.

Ĥ = −J
2

N/2∑
n=−N/2+1

ĉ†nĉn+1 + h.c. (5.18)

The time evolution of the initial state can now be calculated, since this Hamil-
tonian is of the form

Ĥ =

N∑
i,j

Ti,j ĉ
†
i ĉj (5.19)
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Hamiltonians of this form can be solved exactly by diagonalizing only the N×N
matrix T instead of the usual 2N × 2N matrix belonging to (4.1). The matrix
T for (5.18) can simply be read off:

T = −J
2



0 1 0 0 0
1 0 1 0
0 1 0 1
0 0 1 0

. . .

0 1 0 0
1 0 1 0
0 1 0 1

0 0 0 1 0


(5.20)

The eigenvalues are the energies, εk, and the normalized eigenvectors of T form
a unitary transformation U because T is Hermitian. We can use U to transform
the creation operators, ĉi, in the original basis into the new diagonalized creation
operators, d̂i. This yields a diagonal Hamiltonian:

Ĥ =

N/2∑
i,j=−N/2+1

ĉ†iTi,j ĉj =
∑
i,j

N∑
k=1

ĉ†iUi,kεk
(
U†
)
k,j
ĉj =

N∑
k=1

εkd̂
†
kd̂k , (5.21)

where d̂†k =
∑
i ĉ
†
iUi,k and d̂k =

∑
j

(
U†
)
k,j
ĉj . The old operators can thus be

written as

ĉ†i =

N∑
k=1

d̂†k
(
U†
)
k,i

(5.22)

ĉi =

N∑
k=1

Ui,kd̂k (5.23)

Note that the k-indices can simply run from 1 to N , since the index k does not
have any special meaning. We can then proceed to study the time evolution
of the initial state. In our case the initial state is |ψ〉(0) = | ↑↑ . . . ↑↓ . . . ↓↓〉,
which can be written as

|ψ〉(0) =

0∏
i=−N/2+1

ĉ†i | ↓〉 (5.24)

Note that this notation has some ambiguity with the sign, since the ĉ†i are
fermionic operators, but this does not matter, since we are interested in the
expectation values only and the sign will drop out anyway. In the new basis
(5.24) becomes

|ψ〉(0) =

0∏
i=−N/2+1

N∑
k=1

d̂†k
(
U†
)
k,i
| ↓〉 (5.25)
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We know the time evolution of d̂k, because of (5.21) and the Heisenberg equation
of motion.

d d̂k
dt

= i
[
Ĥ, d̂k

]
+
∂d̂k
∂t

= i

N∑
`=1

ε`

[
d̂†` d̂`, d̂k

]
+ 0

= i

N∑
`=1

ε`

(
d̂†` d̂`d̂k − d̂kd̂

†
` d̂`

)
= i

N∑
`=1

ε`

(
d̂†` d̂`d̂k −

(
δk,` − d̂†` d̂k

)
d̂`

)
= i

N∑
`=1

ε`

(
d̂†` d̂`d̂k − δk,`d̂` − d̂

†
` d̂`d̂k

)
= −i εkd̂k (5.26)

Solving this differential equation gives the time evolution of d̂k.

d̂k(t) = d̂k(0)e−iεkt (5.27)

This can be inserted in (5.25) to get the time evolution of the initial state.

|ψ〉(t) =

0∏
i=−N/2+1

N∑
k=1

d̂†k(0)eiεkt
(
U†
)
k,i
| ↓〉 (5.28)

Now we need to go back to the original operators again, since the expectation
values we are interested in, such as 〈Ŝzn〉 = 〈ĉ†nĉn〉 − 1

2 , are all given in ĉn. We
have,

|ψ〉(t) =

0∏
i=−N/2+1

N∑
k=1

N/2∑
`=−N/2+1

ĉ†`U`,ke
iεkt
(
U†
)
k,i
| ↓〉 (5.29)

Density operator Ŝzn

From (5.14) it is already known what the density operator looks like expressed
in the fermionic annihilation operators ĉn, which is Ŝzn = ĉ†nĉn− 1

2 . We can then
proceed to calculate the expectation value.

〈ψ|Ŝzn|ψ〉(t) =〈
↓

∣∣∣∣∣∣
0∏

j=−N/2+1

N∑
k′=1

N/2∑
`′=−N/2+1

ĉ`′
(
U†
)
k′,`′

eiεk′ tUj,k′

∣∣∣∣∣∣ ĉ†n ×
ĉn

∣∣∣∣∣∣
0∏

i=−N/2+1

N∑
k=1

N/2∑
`=−N/2+1

ĉ†`U`,ke
−iεkt

(
U†
)
k,i

∣∣∣∣∣∣ ↓
〉
− 1

2
(5.30)

Introducing A`,i(t) =
∑N
k=1 U`,ke

iεkt
(
U†
)
k,i

simplifies the notation somewhat.

Note that this means that A(t) = eiT t. We only need to look at the right half
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of the above expression, since the left half is simply the complex conjugate of
the right half.

|Ψn〉 = ĉn

0∏
i=−N/2+1

N∑
k=1

N/2∑
`=−N/2+1

ĉ†`U`,ke
−iεkt

(
U†
)
k,i
| ↓〉

= ĉn

0∏
i=−N/2+1

N/2∑
`=−N/2+1

ĉ†`A`,i(t)| ↓〉

= ĉn

 N/2∑
`1=−N/2+1

ĉ†`1A`1,−N/2+1(t)

 ×

 N/2∑
`2=−N/2+1

ĉ†`2A`2,−N/2+2(t)

 . . . ×

. . .

 N/2∑
`N/2=−N/2+1

ĉ†`N/2A`N/2,0(t)

 | ↓〉
=

(
An,−N/2+1(t)−

∑
`1

ĉ†`1A`1,−N/2+1(t)ĉn

)
×(∑

`2

ĉ†`2A`2,−N/2+2(t)

)
. . . ×

. . .

∑
`N/2

ĉ†`N/2A`N/2,0(t)

 | ↓〉 (5.31)

Introducing another shorthand B̂†i =
∑N/2
`=−N/2+1 ĉ

†
`A`,i(t), we get a more com-

pact form:

= An,−N/2+1(t)B̂†−N/2+2 . . . B̂
†
0| ↓〉 − B̂

†
−N/2+1ĉn ×(

N∑
`2=1

ĉ†`2A`2,−N/2+2(t)

)
. . .

 N∑
`N/2=1

ĉ†`N/2A`N/2,0(t)

 | ↓〉
= An,−N/2+1(t)B̂†−N/2+2 . . . B̂

†
0| ↓〉 −

B̂†−N/2+1An,−N/2+2(t)B̂†−N/2+3 . . . B̂
†
0| ↓〉 +

B̂†−N/2+1B̂
†
−N/2+2ĉn

(
N∑
`3=1

ĉ†`3A`3,−N/2+3(t)

)
. . . ×

. . .

 N∑
`N/2=1

ĉ†`N/2A`N/2,0(t)

 | ↓〉
= An,−N/2+1(t)B̂†−N/2+2 . . . B̂

†
0| ↓〉 −

B̂†−N/2+1An,−N/2+2(t)B̂†−N/2+3 . . . B̂
†
0| ↓〉 +

B̂†−N/2+1 . . . B̂
†
−1An,0(t)| ↓〉 (5.32)
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The shorthand B̂†i turns out to be a fermionic creation operator in itself.

{
B̂†i , B̂

†
j

}
=


N/2∑

`=−N/2+1

ĉ†`A`,i(t),

N/2∑
`′=−N/2+1

ĉ†`′A`′,j(t)


=

N/2∑
`=−N/2+1

N/2∑
`′=−N/2+1

A`,i(t)A`′,j(t)
{
ĉ†`, ĉ

†
`′

}
= 0 (5.33)

{
B̂i, B̂j

}
=


N/2∑

`=−N/2+1

ĉ`A
∗
i,`(t),

N/2∑
`′=−N/2+1

ĉ`′A
∗
j,`′(t)


=

N/2∑
`=−N/2+1

N/2∑
`′=−N/2+1

A?i,`(t)A
?
j,`′(t) {ĉ`, ĉ`′}

= 0 (5.34)

{
B̂i, B̂

†
j

}
=


N/2∑

`=−N/2+1

ĉ`A
?
i,`(t),

N/2∑
`′=−N/2+1

ĉ†`′A`′,j(t)


=

N/2∑
`=−N/2+1

N/2∑
`′=−N/2+1

A?i,`(t)A`′,j(t)
{
ĉ`, ĉ

†
`′

}

=

N/2∑
`=−N/2+1

N/2∑
`′=−N/2+1

A?i,`(t)A`′,j(t)δ`,`′

=

N/2∑
`=−N/2+1

A?i,`(t)A`,j(t)

=
(
e−iT

†teiT t
)
i,j

=
(
e−iT teiT t

)
i,j

= δi,j (5.35)

In the last steps, we used the fact that T is Hermitian, i.e. T = T †. The fact
that the B̂†i are fermionic creation operator means that every term in (5.32)
creates a different state, which are orthonormal to the states created by the
other terms.

〈ψ|Ŝzn|ψ〉(t) = 〈Ψn|Ψn〉 −
1

2

=

0∑
i=−N/2+1

|An,i(t)|2 −
1

2

=

0∑
i=−N/2+1

∣∣∣∣∣
N∑
k=1

Un,ke
iεkt
(
U†
)
k,i

∣∣∣∣∣
2

− 1

2
(5.36)
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Figure 5.1: The analytical solution for various expectation values 〈Ŝz
n〉. Shown is n = −10,

-8, -6, -4, -2, 0, 1, 3, 5, 7, 9 and 11 from bottom to top on a chain with length N = 40. One
can clearly see the boundary effect from t = 30. One can also see that the boundary effects
come into play later for smaller |n|.

The result of this has been plotted in figure 5.1 for N = 40.

Correlation operator ŜzmŜ
z
n

Writing out the correlation operator in the fermionic creation/annihilation op-
erators ĉ†n and ĉn gives

〈ψ|ŜzmŜzn|ψ〉 = 〈ψ|
(
ĉ†mĉm −

1

2

)(
ĉ†nĉn −

1

2

)
|ψ〉

= 〈ψ|ĉ†mĉmĉ†nĉn|ψ〉 −
1

2
〈ψ|ĉ†mĉm|ψ〉 −

1

2
〈ψ|ĉ†nĉn|ψ〉+

1

4
(5.37)

The terms of the form 〈ψ|ĉ†i ĉi|ψ〉 are already known from the calculation of the
density operator. For the first term we can apply Wick’s factorization.

〈ψ|ĉ†mĉmĉ†nĉn|ψ〉 = 〈ψ|ĉ†mĉm|ψ〉〈ψ|ĉ†nĉn|ψ〉 − 〈ψ|ĉ†mĉn|ψ〉〈ψ|ĉ†nĉm|ψ〉 (5.38)
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Figure 5.2: The analytical solution for various expectation values for the correlation,
〈Ŝz

1−nŜ
z
n〉. Show is n = 1, 3, 5, 7, 9 and 11 from left to right on a chain with length

N = 40. The boundary effect comes into play again from roughly t = 30. It is also clearly
visible that the solution for n = 1 does not suffer from boundary effects until at least t = 34.
This is exactly what one would expect, since the sites that Ŝz

0 Ŝ
z
1 works on is further from the

boundaries than the sites that, for example, Ŝz
−10Ŝ

z
11 works on.

We can then use (5.32) again to calculate the expectation value for the correla-
tion:

〈ψ|ŜzmŜzn|ψ〉(t) =

〈Ψm|Ψm〉〈Ψn|Ψn〉 − 〈Ψm|Ψn〉〈Ψn|Ψm〉 −
1

2
〈Ψm|Ψm〉 −

1

2
〈Ψn|Ψn〉+

1

4

=

 0∑
i=−N/2+1

|An,i(t)|2
 0∑

j=−N/2+1

|Am,j(t)|2
−

∣∣∣∣∣∣
0∑

i=−N/2+1

A?m,i(t)An,i(t)

∣∣∣∣∣∣
2

−

1

2

0∑
i=−N/2+1

|Am,i(t)|2 −
1

2

0∑
i=−N/2+1

|An,i(t)|2 +
1

4
, (5.39)

the result of which has been plotted for a chain of length N = 40 in figure 5.2.

Current density ĵn

The current density as given in (4.67) needs to be converted using the Jordan-
Wigner transformation as well. Recall that both J and a have been set to
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1.

ĵn =

(
− i

2
Ŝ+
n−1Ŝ

−
n

)
+ h.c.

=

(
− i

2
ĉ†n−1(−1)φn−1(−1)φn ĉn

)
+ h.c.

=

(
− i

2
ĉ†n−1(−1)

∑n−2
i=−N/2+1

ĉ†i ĉi(−1)
∑n−1
i=−N/2+1

ĉ†i ĉi ĉn

)
+ h.c.

=

(
− i

2
ĉ†n−1(−1)ĉ

†
n−1ĉn−1 ĉn

)
+ h.c. (5.40)

Since
[
ĉ†n−1ĉn−1, ĉn

]
= 0, we can just swap the last two terms.

ĵn =

(
− i

2
ĉ†n−1ĉn(−1)ĉ

†
n−1ĉn−1

)
+ h.c.

The factor (−1)ĉ
†
n−1ĉn−1 can be left out, since the only non-zero contribution

comes from states |σ−N/2+1, σ−N/2, . . . , σN/2−1, σN/2〉 with σn−1 =↓ and σn =↑.
For any other state the operator ĉ†n−1ĉn will give zero. Thus, in the non-zero
case we have

(−1)ĉ
†
n−1ĉn−1 |σ−N/2+1, . . . , σn−2, ↓, ↑, σn+1, . . . , σN/2〉
= (−1)0 |σ−N/2+1, . . . , σn−2, ↓, ↑, σn+1, . . . , σN/2〉
= |σ−N/2+1, . . . , σn−2, ↓, ↑, σn+1, . . . , σN/2〉 (5.41)

We can thus just drop the whole (−1)ĉ
†
n−1ĉn−1 altogether.

ĵn =

(
− i

2
ĉ†n−1ĉn

)
+ h.c. (5.42)

Calculating the expectation value for our initial state:

〈ψ|ĵn|ψ〉(t) =

(
− i

2
〈ψ|ĉ†n−1ĉn|ψ〉

)
+ h.c.

=

(
− i

2
〈Ψn−1|Ψn〉

)
+ h.c.

= 2 Im

(
1

2
〈Ψn−1|Ψn〉

)

= Im

 0∑
i=−N/2+1

A?n−1,i(t)An,i(t)

 (5.43)

This equation has been plotted for a spin chain of length N = 40 in figure 5.3.

5.1.3 Parameters

There are several parameters that can influence the accuracy of the simulations:

• Time step ∆t.
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Figure 5.3: The various expectation values for the current density, 〈ĵn〉, according to the
analytical solution. Shown is n = 1, 3, 5, 7, 9 and 11 from left to right on a chain with length
N = 40. The current for n = −1 is the same as for n = 3 and the one for n = −3 is the same
as for n = 5, etc.. The boundary effect is visible from t = 30.

• Chain length N .

• Total physical time.

• Order of Trotter step.

• Bond dimension d.

• Number of iterative compressions using one matrix.

• Number of iterative compressions using two matrices.

Ideally, the time step should approach zero, but this would cause the compu-
tation time required for a simulation to approach infinity. The accuracy depends
on the order of the Trotter step, but in the case of a second order Trotter step,
the inaccuracy due to a single time step will be O(∆t3). Of course, the smaller
∆t is, the more time steps we will need. Since the number of time steps scales
as 1/∆t, we will in effect have O(∆t2). For these simulations a time step of
∆t = 0.005 (in units of ~) was chosen, giving an inaccuracy of O(10−5), which
will do just fine for our purposes.

The influence of the chain length comes from the interaction with the bound-
aries. These boundary effects have the potential to interfere with the comparison
between the Schrödinger and Heisenberg picture, because, for example we will
want to see later on how the correlation operators hold up in the Heisenberg
picture as we increase the distance between the two sites. We will therefore aim
to minimize the boundary effect. The effect of the boundary could already be
seen in the graphs for the analytical results (in figures 5.1, 5.2 and 5.3). To de-
termine when the boundary is interfering, we need to look at the infinite-length
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chain. Fortunately there exists an analytical solution for that too. For the Szi
operator the expectation value is given as[22]:

〈Ŝzn〉(t) = −1

2

n−1∑
j=1−n

J2
j (t) (5.44)

Jj(t) is the Bessel function of the first kind. Using this formula and the ana-
lytical solution from (5.36), it is possible to see how long a simulation can run,
while remaining free of boundary effects. This is what is plotted in figure 5.4,
where a graph is displayed showing runtime against chain length. The runtime
is defined as the physical time that it takes for the finite case to differ from the
infinite case by more then 10−8. Since a physical time of 30 will suffice, we will

Figure 5.4: Comparison between the analytical solution of 〈Ŝz
n〉 for a finite length chain,

(5.36), and for the infinite-length chain, (5.44). On the x-axis the chain length is plotted and
on the y-axis the runtime is plotted. Runtime is defined as the maximum physical time for
which the difference between the finite and infinite case is still smaller than 10−8. Plotted are
sites n = 1 (uppermost line) to n = 10 (lowest line). Note that this shows that the boundary
effects propagate through the system with a speed of roughly 1.4± 0.1 sites per physical time
unit.

keep the length of the chain at N = 64, which gives a maximum physical time
of 43.3 for n = 1 and 34.8 for n = 11. This is only a lower boundary though,
since in the actual simulation we will be comparing the finite case model directly
to the results of the simulation. How much the boundary effects will actually
interfere with the comparison between the Schrödinger picture and the Heisen-
berg picture is difficult to specify.

All of the errors coming from the Trotter steps will also invariably add up,
limiting the total physical time that the simulation can run accurately. However,
the deviation between the simulation and the analytical solutions, resulting from
the compression algorithm will be rather dramatic. The effect of the compres-
sion will completely drown out the noise from the Trotter steps, except of course
in the rare case that either the MPO or MPS is an exact solution, where the
compression will be without effect. The total physical time is in that case only
limited by boundary effects and bond dimensions. As mentioned in section 4.4,
the order of the Trotter step determines the inaccuracies coming from the size of
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Figure 5.5: Computation time per physical time unit as function of d. The red dotted line
is a fit with a 3rd order polynomial, indicating that the simulation is O(d3). This is in the
Schrödinger picture with a chain of length N = 64. Left is in the Schrödinger picture and
right is in the Heisenberg picture.

the time step. It ranges from O(∆t2) for a first order Trotter step to O(∆t5) for
a Forest-Ruth Trotter step. Of course the order of the Trotter step can be in-
creased as much as one likes at the cost of many more MPO multiplications. For
these simulations, we will stick with second order Trotter steps, O(∆t3), since
it gives satisfactory results while not increasing the computation time too much.

The bond dimension is the maximum size for the matrices making up an
MPS/MPO as well as the maximum number of singular values per site in an
MPS/MPO. It determines how rigorous the compression will be. This bond
dimension, d, will be varied throughout the comparisons. The computational
time a simulation takes in both the Schrödinger and the Heisenberg picture is
plotted in figure 5.5. A fit through the data shows that the simulation is most
likely O(d3), which is what one would expect, since the bulk of the calculations
during a simulation involves the SVD, which is O(N3) with N being the dimen-
sion of the matrix. It also shows that simulations in the Schrödinger picture are
roughly eight times faster than simulations in the Heisenberg picture.

Improving the MPS/MPO after it has been compressed by iteratively ap-
proaching the original MPS/MPO, gives a small but still appreciable increase in
accuracy for large time steps, such as ∆t = 0.05 and low bond dimension, such
as d = 8. In the realm where we will be simulating, ∆t = 0.005, d = 40 . . . 100
the effect even becomes negligible, as can be seen in figure 5.6. However us-
ing two matrices to iteratively approach the compressed MPS/MPO did not
have any effect during the simulations, if the same number of single matrix ap-
proaches was applied afterwards. This appears to indicate, that local minima
are not a problem. In conclusion, even the small increase in accuracy that the
single matrix approaches give, is drowned out by the major effect from the bond
dimension. Since the iterative approach is quite a costly operation (SVDs are
O(mn2) for m × n matrices, m ≥ n), the simulation is much faster without it.
However, it does have its merits when the SVD algorithm fails, as discussed in
section B.2. In that case, the iterative compression can do ‘damage control’ by
repairing the more inaccurate fall-back SVD, allowing the simulation to continue
unhindered.
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Figure 5.6: The effects of iterative compression. The deviation from the analytical solution of
the XX model, starting from the inhomogeneous state, is shown for various levels of iterative
compression. Red indicates no iterative compression, green indicates one sweep, blue is two
sweeps and finally purple is three sweeps. The left graph is of the spin at site n = 1 and the
right graph is of the spin at site n = 11. Both simulations were run with ∆t = 0.005, N = 40
and d = 60 in the Schrödinger picture.

5.1.4 Results of comparison

With the analytical result and the effect of all possible parameters known, it
is now time to turn our attention to the results of the simulations and to see
how the simulations in the Schrödinger picture compare to simulations in the
Heisenberg picture.

Density operator

In figure 5.7 the result of simulations in both the Schrödinger and the Heisenberg
picture is plotted in one graph at N = 20 and d = 40. It clearly shows that the
simulation in the Heisenberg picture just keeps going, which is exactly the effect
described in [17]. The compression algorithm does nothing in this case, since
the operator can always be described by an MPO with d ≥ 4. The accuracy
of a simulation depends mainly on the level of compression, so in this case,
simulating in the Heisenberg picture will be far more accurate than simulating
in the Schrödinger picture. In figure 5.8, the graph is shown for 〈Ŝz1 〉 and 〈Ŝz11〉,
but this time the evolution is in the XXZ-model.

Current density operator

In figure 5.9, a comparison is shown between a simulation in the Schrödinger
picture and in the Heisenberg picture for 〈ĵ1〉 and, in figure 5.10, for 〈ĵ11〉. One
can see that once again the simulation in the Heisenberg picture does not suffer
from compression, since changing the bond dimension has no effect.

Correlation operator

For 〈Ŝz0 Ŝz1 〉, a comparison is shown between the Schrödinger and Heisenberg
picture in figure 5.11. Runtimes have been plotted in 5.12. The runtime is
defined as the simulated physical time that the simulation stays within 10−6 of
the analytical result.
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Figure 5.7: Simulations in the XX-model with N = 20 in both the Schrödinger picture (blue)
and in the Heisenberg picture (purple) with the maximum bond dimension d = 40. The y-axis

is the difference between simulations and the analytical solution for 〈Ŝz
1 〉.

Figure 5.8: Simulations for 〈Ŝz
1 〉 (left) and 〈Ŝz

11〉 (right) in the XXZ-model with N = 64 in
both the Schrödinger picture (bright colours) and in the Heisenberg picture (dark colours).
The y-axis is the difference between a simulation with bond dimension d and a simulation
with bond dimension d + 20. Red is between d = 40 and d = 60, green between d = 60 and
d = 80 and, finally, blue is between d = 80 and d = 100.
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Figure 5.9: Simulations with N = 64 in the XX model in both the Schrödinger picture (left
graph) and in the Heisenberg picture (right graph) for different values of the maximum bond
dimension d: d = 40 (red), d = 60 (green), d = 80 (light blue) an d = 100 (purple). The
y-axis is the difference between the simulations and analytical solution for 〈ĵ1〉. One can see
that in the Heisenberg picture the simulation is independent of the bond dimension.

Figure 5.10: Simulations with N = 64 in the XX model in both the Schrödinger picture (left
graph) and in the Heisenberg picture (right graph) for different values of the maximum bond
dimension d: d = 40 (red), d = 60 (green), d = 80 (light blue) an d = 100 (purple). The
y-axis is the difference between the simulations and analytical solution for 〈ĵ11〉. One can see
that in the Heisenberg picture the simulation is independent of the bond dimension.
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Figure 5.11: Simulations in the XX chain with N = 64 in both the Schrödinger picture (upper
graph) and in the Heisenberg picture (lower graph) for different values of the maximum bond
dimension d: d = 40 (red), d = 60 (green), d = 80 (light blue) an d = 100 (dark blue). The

y-axis is the difference between the simulations and analytical solution for 〈Ŝz
0 Ŝ

z
1 〉.
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Figure 5.12: Physical time the simulations of 〈Ŝz
mŜ

z
n〉 in the XX chain stay within 10−6 of

the analytical solution for increasing |m − n|. From bottom to top: d = 40, d = 60, d = 80
and d = 100. The left graph is in the Schrödinger picture and the right in the Heisenberg
picture. On the right only the case of d = 40 is visible. The other cases run for longer than
60 physical time units and behaviour similar to figure 5.7 is expected. That is, the simulation
will go on almost indefinitely.

5.1.5 Discussion

All the operators that have been simulated for the XX chain appear to have
greater accuracy in the Heisenberg picture after a certain minimal bond dimen-
sion is used. In the case of the Ŝzn operators, the simulation in the Heisenberg
picture is already extremely accurate for d ≥ 4. Even the more complex cor-
relation operator ŜzmŜ

z
n reaches a minimal d for which the simulation in the

Heisenberg picture becomes extremely accurate, albeit for a higher minimal d
which lies between 40 and 60. For the current density ĵn this minimal d lies
even beneath 40, based on [16] this minimal d is probably 16. So, in the case
of the XX-chain, the simulation can best be run in the Heisenberg picture, pro-
vided that a minimal d is used, which varies per operator. For the XXZ-chain
the story is unfortunately very different. In that system, the simulation in the
Heisenberg picture fails very quickly even for a local operator. To investigate
why this would be the case, a similar simulation was run in the Heisenberg
picture that recorded the Frobenius norm of the difference between the MPO
before and after compression. As can be seen from figure 5.13 the difference
between the MPOs increases exponentially after a certain time, depending on
the maximum bond dimension used. This is what causes the simulation in the
Heisenberg picture to break down so fast. Attempts to correct for this using
the iterative approach from subsection 3.7.3 did help somewhat, but not enough
to stave off the large deviations seen in figure 5.8. A closer inspection of the
singular values can also be seen in figure 5.13. One can see that at t = 0 only
one non-zero singular value exists, but that as time progresses, other singular
values increase significantly. This is more clearly visible in figure 5.14 where the
decay of the singular values is shown as si versus i, with si being the sorted
singular values. Even though there is still an exponential decay of the singular
values, it is simply not strong enough, because after every compression, three
quarters of the singular values will be thrown away. This is due to the fact that
the Trotter MPO has a bond dimension of d = 4, so after every multiplication
with the MPO that is being evolved in time, the bond dimension of the time
evolving MPO will increase fourfold. Coupled with the fact that the singular
values rise rapidly, a substantial loss of accuracy occurs. To further examine
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Figure 5.13: The left graph shows the Frobenius norm of the difference between the MPO
before and after compression. From left to right, the bond dimension is d = 40, 60, 80 and 100.
The graph on the right shows the singular values of the matrix of the MPO corresponding to
site n = 1 before compression. Both simulations were run in the Heisenberg picture with a
chain length of N = 32, while calculating the expectation value of Ŝz

1 in the XXZ chain.

Figure 5.14: The left graph shows the distribution of singular values, si, for t = 0 and the right
graph for t = 4. Both graphs are a slice of the right graph in figure 5.13 at t = 0 and t = 4
respectively. One can see that at t = 0 there is only one singular value that really matters,
so the compression will not have much influence. However, as time progresses, the singular
values become more distributed. Then the compression will throw away singular values that
do matter. From the graph at t = 4, it is clear that it is still an exponential decay (red dotted

line), but the decay is not as strong as it was in the beginning. Both graphs are for the Ŝz
1

operator in the XXZ chain.

why this occurs, it is instructive to define something similar to entanglement
entropy, but now for an MPO. The exact definition we will use, is given in ap-
pendix D. In figure 5.15, a plot is displayed for the ‘entanglement entropy’ of
Ŝz1 . One can see that in the XXZ model, the ‘entanglement’ increases linearly.
In the XX model, however, the ‘entanglement’ becomes constant. Normally, in
the case of the Schrödinger picture, entanglement indicates how fast one would
need to make the bond dimension grow to keep the same level of accuracy, which
goes as d ∝ exp(αS) [23]. Assuming we can make a similar statement in the
case of MPOs, then one can see that linear behaviour in the entropy means
and exponential increase in required bond dimension. Since we keep the bond
dimension constant in our simulations, one can see that the accuracy will drop
off quickly, as indeed it does.
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Figure 5.15: The ‘entanglement entropy’ for the operator Ŝz
1 in the XXZ-chain (left) and the

XX-chain (right).

5.2 The XXZ chain quench

Another system that may yield interesting results, is the quench of an XXZ chain
by suddenly increasing Jz = 0 to Jz = 1. Recall from (4.2) the Hamiltonian,

Ĥ = −J
2

∑
i

(
Ŝ+
i Ŝ
−
i+1 + Ŝ+

i+1Ŝ
−
i

)
+ Jz

∑
i

Ŝzi Ŝ
z
i+1 . (5.45)

The initial state we shall use, is thus the ground state of the XX chain, since
this is also the ground state for the XXZ chain with Jz = 0 and it has the
bonus that this ground state can easily be constructed analytically. The time
evolution for the XXZ chain is the same as in subsection 5.1.1.

5.2.1 Initial state

The ground state of the spin- 12 XX chain can be calculated analytically. For

this, we need to apply all of the d̂†k operators from (5.21) that contribute a
negative energy, i.e. all k for which εk < 0. Since the matrix T was Hermitian,
this amounts to the first half of all the eigenvalues, assuming they are sorted
from lowest to highest. The ground state can then be written as,

|GS〉 =

N/2∏
k=1

d̂†k

 | ↓〉 =

N/2∏
k=1

N/2∑
i=−N/2+1

ĉ†iUi,k

 | ↓〉 . (5.46)

There is no easy way to write this in MPS form. However, it is possible to convert
the sum over the creation operators to an MPO and apply that repeatedly to
| ↓〉. In MPS form | ↓〉 can be written as,

A↑−N/2+1 =
(

0
)

A↑i =
(

0
)

A↑N/2 =
(

0
)

A↓−N/2+1 =
(

1
)

A↓i =
(

1
)

A↓N/2 =
(

1
) . (5.47)

The MPO representing Ôk =
∑N/2
i=−N/2+1 ĉ

†
iUi,k is more difficult to write down,

since the fermionic operator ĉ†i is not really a local site operator, because its sign
depends on the spin of all of the previous sites. This can be solved by reversing
the Jordan-Wigner transformation from (5.12):

ĉ†i = Ŝ+
i (−1)

∑i−1
j ( 1

2+Ŝ
z
j ) (5.48)

53



This is a product of local site operators and can therefore be written as an MPO.
Actually, we are interested only in the whole sum, expressed in the Ŝ operators:

Ôk =

N/2∑
i=−N/2+1

Ŝ+
i (−1)

∑i−1
j ( 1

2+Ŝ
z
j )Ui,k (5.49)

After a bit of puzzling, one can write this in an MPO form with a bond dimension
of d = 2:

Ôk =



B
[−N/2+1]
k =

(
U−N/2+1,kŜ

+ (−1)
1
2+Ŝ

z
)

B
[i]
k =

(
1 0

Ui,kŜ
+ (−1)

1
2+Ŝ

z

)
B

[N/2]
k =

(
1

UN/2,kŜ
+

) (5.50)

The index k is the same k as used in the product in (5.46). Now that everything
from (5.46) is either an MPO or an MPS, we can write down the ground state:

|GS〉 = Ô1 · . . . · ÔN/2 · | ↓〉 (5.51)

This would however make the bond dimension very large, namely d = 2N/2,
because we need to apply an MPO with bond dimension d = 2 for N/2 times.
Therefore, we will need to apply compression after every multiplication.

5.2.2 Operators

Since every Ôi is a sum of creation operators, applying N/2 of them will make
the ground state consist of all of the basis states that have N/2 spin ↑ and N/2
spin ↓. Furthermore, since the Hamiltonian of the XX-chain, 4.1, is symmetric
under a spin flip of the whole system, for every basis state in the ground state
there is a spin flipped basis state with the same amplitude. The consequence
of this is that the expectation value of the Ŝzn operator will always be zero,
because for every contribution to the expectation value of one basis state, there
is an inverse contribution by the spin-flipped version of that basis state. Since
the expectation value of the spin operator is always zero for every site, the

current density, ĵn, will also be zero for every site, because it depends on dŜz

dt

through the equation of continuity. The correlation operator, ŜzmŜ
z
n, however,

is an operator that can have a non-zero expectation value. The correlation will
therefore be the only operator that we will study. To examine the behaviour
of the simulation in both the Schrödinger and the Heisenberg picture, we will
restrict ourselves to the expectation values 〈Ŝz0 Ŝz1 〉, 〈Ŝz−2Ŝz3 〉, 〈Ŝz−4Ŝz5 〉, 〈Ŝz−6Ŝz7 〉
and 〈Ŝz−8Ŝz9 〉.

5.2.3 Results

The results of 〈Ŝz0 Ŝz1 〉 can be seen in figure 5.16. It shows clearly that, in this
case, the simulation in the Schrödinger picture is better than the simulation in
the Heisenberg picture. In figure 5.17, the runtimes are plotted as a function
of |i− j| for all of the operators Ŝzi Ŝ

z
j , where runtime is defined as the physical
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Figure 5.16: Simulation of the expectation value 〈Ŝz
0 Ŝ

z
1 〉 on a chain of length N = 64 in both

the Schrödinger (left) and the Heisenberg picture (right) for various bond dimensions: d = 40
(blue), d = 60 (purple), d = 80 (brown) and d = 100 (green).

time that the simulations stay within either 10−4 or 10−6 of the simulation with
a higher bond dimension. Of course this does not portray the ‘real’ accuracy,
as it would with a comparison with an analytical solutions, since the simulation
with a higher bond dimension already has some inaccuracy in itself. However,
without an analytical solution available, this is the next best option. Also, it
is clear from figure 5.16 how the simulations in both pictures behave. One can
see that the accuracy of either picture varies with the distance |i− j| and even
with the tolerance. In this case, the simulation in the Schrödinger picture would
still be better because it requires far less computational resources than the sim-
ulation in the Heisenberg picture. A plot was also made of the ‘entanglement
entropy’ in the Heisenberg picture as discussed in 5.1.5 and more detailed in
appendix D. This plot can be seen in figure 5.18. It shows that the entangle-
ment increases linearly. After a while, it becomes constant at roughly S = 3.5,
but this is purely due to the upper limit created by the compression algorithm
as described in appendix D. We used a bond dimension of d = 40, so the upper
limit would be S = ln 40 = 3.69. The graph also shows that the further m and
n are apart in ŜzmŜ

z
n, the longer the entropy stays low. This explains why the

runtime of the simulations in the Heisenberg picture increases in the left graph
of figure 5.17. However, the obtained accuracy is similar to the accuracy in the
simulations in the Schrödinger picture. Thus, the few cases where the simu-
lations in the Heisenberg picture performed better then the simulations in the
Schrödinger picture, certainly do not weigh up to the fact that the simulations
in the Heisenberg picture take roughly a factor sixteen longer than the same
simulations in the Schrödinger picture.
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Figure 5.17: Runtime as a function of |i − j| of the expectation value 〈Ŝz
i Ŝ

z
j 〉. Runtime is

defined as the physical time the simulation with bond dimension d stays within either 10−4

(left) or 10−6 (right) of a simulation with a bond dimension of d+20. The dotted bright lines
correspond to simulations in the Schrödinger picture and the dark solid lines to simulation in
the Heisenberg picture. Red is for d = 40, green for d = 60 and blue for d = 80.

Figure 5.18: The ‘entanglement entropy’ as a function of time if the XXZ chain in the Heisen-
berg picture with bond dimension d = 40. From left to right, the ‘entropy’ of the operators
Ŝz
0 Ŝ

z
1 , Ŝz

−2Ŝ
z
3 , Ŝz

−4Ŝ
z
5 , Ŝz

−6Ŝ
z
7 and Ŝz

−8Ŝ
z
9 are shown. It shows that the further m and n are

apart in Ŝz
mŜ

z
n, the longer it takes for the entropy to increase. Note that the effect of the

upper limit of S = 3.68, which was calculated in appendix D.
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5.3 XX chain with excitation on ground state,
Ŝ+

1 |GS〉
Another interesting case is that of the XX chain with a disturbance of the ground
state. One starts with the ground state of the XX chain and one applies the
spin raising operator on the site n = 1. The system will be kicked out of its
ground state and the ensuing dynamics can be followed.

5.3.1 Initial state

For the initial state, one can use (5.51) again, but this time apply the MPO
from (4.4) with Ŝ+

1 .

|Ψ〉 = Ŝ+
1 Ô1 · . . . · ÔN/2 · | ↓〉 (5.52)

The state still needs to be normalized to arrive at the actual excited state.

|ES〉 =
1

‖Ψ‖
|Ψ〉 (5.53)

5.3.2 Operator

We will try to calculate the expectation value,

〈GS|Ŝ−n (t)Ŝ+
1 (0)|GS〉 = 〈GS|Ŝ−n (t)|ES〉 . (5.54)

This expectation value normally can be used to calculate the spectrum after
a Fourier transform in both space and time, but here a disadvantage of the
Heisenberg picture comes in, which is that only one operator can be simulated
per simulation. To get the spectrum, one would have to run the simulation for
all N sites. However, since we are only interested in how the DMRG in the
Schrödinger picture compares to the Heisenberg picture, we will only examine
a few sites, namely n ∈ {−10, 0, 1, 10}.

5.3.3 Results

In figure 5.19, the expectation value 〈GS|Ŝ−11(t)|ES〉 has been plotted. In figure
5.20 one can see a plot of the runtime. Runtime is the physical time that a
simulation with bond dimension d stays within 10−4 of a simulation with bond
dimension d + 20. From both figures, it is clear that the simulation performs
far better in the Schrödinger picture than it does in the Heisenberg picture.
This is rather unexpected, since the time evolution is still that of the XX chain.
Based on the results of section 5.1, one might expect that there is a certain bond
dimension, d, for which the Heisenberg picture would become exact. Especially
since Ŝ−n is a local operator that is being evolved in time, similar to the case of
Ŝz. However this turns out not to be the case for Ŝ±. See appendix C for the
detailed calculation. In short, the Jordan-Wigner transformation introduces a
troublesome factor which cancels out in the case of Ŝz, but unfortunately does
not for Ŝ±. Figure 5.21 show the ‘entanglement entropy’ of the operator as
defined in appendix D.
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Figure 5.19: The time evolution of the expectation value 〈GS|Ŝ−11(t)|ES〉 in the Schrödinger
picture (left) and in the Heisenberg picture (right). Red indicates bond dimension d = 40,
green for d = 60, cyan for d = 80 and purple for d = 100. It is clear that the simulation in
the Heisenberg picture performs much worse than in the Schrödinger picture.

Figure 5.20: Runtime versus bond dimension. Runtime is defined as the physical time that
a simulation with bond dimension d stays within 10−4 of a simulation with bond dimension
d + 20. The dotted lines are from the simulation in the Schrödinger picture, while the solid
lines are from the simulation in the Heisenberg picture. This is for several expectation values,
〈GS|Ŝ−n (t)|ES〉, for n ∈ {−10, 0, 1, 11}.

Figure 5.21: The ‘entanglement entropy’ of the Ŝ− operator in the XX chain of length N = 64.
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5.4 Bose-Hubbard Model

A completely different system to consider, is the Bose-Hubbard model, a system
where the DMRG normally fails after simulating only a few physical time units.
The Hamiltonian for this system is:

Ĥ = −t
∑
i

(
b̂†i b̂i+1 + b̂†i+1b̂i

)
− U

2

∑
i

n̂i (n̂i − 1)− µ
∑
i

n̂i (5.55)

Here, b̂i is the bosonic annihilation operator and n̂i is the number operator
b̂†i b̂i. As the initial state we will use |0, 1, 0, 1, . . .〉. Only in certain cases does
there exist an analytical solution for this system, for example for U = µ = 1, in
which case the method of solving the system is essentially the same as for the
XX-chain.

5.4.1 Initial state

Writing down the initial state |0, 1, 0, 1, . . .〉 as an MPS is not as straightforward
as it was for the spin- 12 particles, since there is now an infinite number of basis
states, |σ〉. One needs to limit how many bosons are allowed at a single site, to
get a finite number of basis states.

A0odd =
(

1
)

A0even =
(

0
)

A1odd =
(

0
)

A1even =
(

1
)

Aσodd =
(

0
)

Aσeven =
(

0
)

For σ ≥ 2
(5.56)

5.4.2 Time evolution

To create the Trotter steps, we need a local interaction operator again1:

ĥi = −t
(
b̂†i b̂i+1 + b̂†i+1b̂i

)
− U

2
n̂i (n̂i − 1)− µn̂i (5.57)

The last site needs some special treatment, since we need to account for n̂N/2.

ĥN/2−1 = −t
(
b̂†N/2−1b̂N/2 + b̂†N/2b̂N/2−1

)
− U

2
n̂N/2−1

(
n̂N/2−1 − 1

)
− µn̂N/2−1 −

U

2
n̂N/2

(
n̂N/2 − 1

)
− µn̂N/2 (5.58)

The size of the resulting matrix depends on the maximum number of bosons we
will allow per site during the simulation. In the case of at most 2 bosons, the
matrix will already be 9× 9. To wit, using the basis { |0, 0〉, |0, 1〉, |0, 2〉, |1, 0〉,

1There are other possibilities. One could for example distribute the n̂i evenly,

in which case one would get ĥi = −t
(
b̂†i b̂i+1 + b̂†i+1b̂i

)
− 1

2

(
U
2
n̂i (n̂i − 1)− µn̂i

)
−

1
2

(
U
2
n̂i+1 (n̂i+1 − 1)− µn̂i+1

)
, but then one would have to deal with both h−N/2+1 and

hN/2 separately.
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Figure 5.22: Computation time in seconds versus the maximum number of bosons per site
(left) and versus the bond dimension of the Trotter MPO, D̃ (right). The red dotted line
in the left graph is a fit with a third degree polynomial, suggesting that the algorithm is
O(N3

b ) in the number of bosons per site. In the right graph a fit was made with a first degree

polynomial, which shows that the algorithm is O(D̃) in the bond dimension of the Trotter
MPO.

|1, 1〉, |1, 2〉, |2, 0〉, |2, 1〉, |2, 2〉 }, we have:

0 0 0 0 0 0 0 0 0
0 0 0 −t 0 0 0 0 0

0 0 0 0 −
√

2t 0 0 0 0
0 −t 0 −µ 0 0 0 0 0

0 0 −
√

2t 0 −µ 0 −
√

2t 0 0
0 0 0 0 0 −µ 0 −2t 0

0 0 0 0 −
√

2t 0 −U − 2µ 0 0
0 0 0 0 0 −2t 0 −U − 2µ 0
0 0 0 0 0 0 0 0 −U − 2µ


(5.59)

This can be entered in (4.42) to get the time evolution MPO. The maximum
number of bosons per site, Nb, can play an important role during the simulation.
In figure 5.22, the computation time is plotted against the maximum number
of bosons per site. From this graph, it can be concluded that our algorithm is
O(N3

b ). It turns out that even for the chosen initial state with only at most one
boson per site, the simulation will not be accurate until at least seven bosons
per site are allowed, and even then only up to three physical time units. This
is evident from figure 5.23, where simulations are shown for various values of
Nb. However, this will lead to a rather large matrix of 64 × 64. Fortunately,
for the case of t = 1, U = 0, µ = 0, a singular value decomposition will result in
eight singular values that are zero. We can therefore compress the matrix down
to 56 × 56 without any ill effects. This should already provide a speed-up of
12.5%, since the program is O(D̃) in the bond dimension of the Trotter MPO,
D̃, according to figure 5.22. Further compression is of course desirable and for
that reason, several simulations were run at d = 100 and N = 32 with varying
compression of the Trotter MPO. The results of these can be seen in figure 5.24.
One can see that a D̃ of 16 works well. Higher D̃ are only drowned out by the
inaccuracies arising from the fact that we only allow at most seven bosons per
site.
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Figure 5.23: The results of several simulations of n̂0 in the Schrödinger picture on a chain of
length N = 32, using a bond dimension of d = 100 and a trotter bond dimensions of D̃ = 16.
From left to right, the deviation from the analytical solution is plotted for Nb = 1 to Nb = 7.
It clearly shows that the maximum number of bosons per site, Nb, has a great impact on the
physical time scale one can simulate accurately.

Figure 5.24: Comparison of several different maximum bond dimensions, D̃, of the Trotter
MPO with a maximum of 7 bosons per site. D̃ ∈ {4, 8, 16, 32, 42}. The simulation was run on
a lattice of N = 32 and bond dimension d = 100 in the Schrödinger picture. One can see that
starting from D̃ = 16, the simulations are equivalent. The cut-off of at most seven bosons per
site becomes the main source of inaccuracy at t = 2.6.
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Figure 5.25: Analytical calculation of 〈n̂0〉 (red) and 〈n̂1〉 (green) as a function of physical
time in the Bose-Hubbard model. The initial state was |0, 1, 0, 1, . . .〉 on a system consisting
of 32 sites. The parameters for this calculation are t = 1, U = 0 and µ = 0.

5.4.3 Analytical solution

As mentioned, there is an analytical solution in the case of U = µ = 0. In
fact one can follow the same derivation as for the density operator in subsection
5.1.2 to get the predicted expectation value 〈b̂†i b̂i〉. One needs only to throw
away the extra − 1

2 that one gets in the calculation in subsection 5.1.2 and,
in addition, the sum does not run over all of the sites on the left, but rather
over all of the even sites, since our initial state is now |0, 1, 0, 1, . . .〉 instead of
| ↑↑ . . . ↑↓↓ . . . ↓〉:

〈b̂†i b̂i〉(t) =

N/4∑
i=−N/4+1

∣∣∣∣∣
N∑
k=1

Un,ke
iεkt
(
U†
)
k,2i

∣∣∣∣∣
2

Since the DMRG fails quickly with the Bose-Hubbard model , it is sufficient to
simulate a smaller system than before. A plot is shown for N = 32 in figure
5.25. The current density is practically the same as the one for the XX-chain
in (5.42) except one uses bosonic operators instead of the fermionic ones. The
calculation remains the same though, so the end result is the same, except for
the different initial state. The result is shown in figure 5.26.

〈ĵn〉(t) = Im

 N/4∑
i=−N/4+1

A?n−1,2i(t)An,2i(t)

 (5.60)

5.4.4 Results

In figure 5.27, the deviation from the analytical solution is plotted for a simu-
lation of the number operator, n̂i, at sites −10, 0, 1 and 11 and in figure 5.28,
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Figure 5.26: Analytical calculation of 〈ĵ0〉 (red) and 〈ĵ1〉 (green) as a function of physical time
in the Bose-Hubbard model. The initial state was |0, 1, 0, 1, . . .〉 on a system consisting of 32
sites. The parameters for this calculation are t = 1, U = 0 and µ = 0.

the expectation values of n̂0 and n̂1 are plotted. One can see that the DMRG
fails very quickly in the Bose-Hubbard model. In the Heisenberg picture, the
deviation of simulations from the analytical solution is already greater than 0.01
at t = 0.5. Even though the simulation in the Schrödinger picture reaches only
three time units before having a deviation of 0.01, it still fares substantially
better. One can see that in the Schrödinger picture, the simulations have the
same error, independent of the bond dimension, until roughly t = 2. This is
because the error coming from the limitation on the number of bosons per site is
dominant there. Also, the computation time in the Heisenberg picture is about
sixteen times of that in the Schrödinger picture, while the memory requirement
increases by a factor eight. These increases in computation time and memory
requirement are due to the extra spin index that arises in MPO multiplications
compared to applying an MPO to an MPS. Unfortunately, then, our hope that
simulating in the Heisenberg picture would lead to better results for local site
operators, seems to be unfounded. Figure 5.29 show the ‘entanglement entropy’
of the operator as defined in appendix D. A linear increase is clearly visible.
Although the entropy appears to increase slower than in the other models, keep
in mind that the compression is also more aggressive, due to the larger size of
the Trotter MPO.

Some final words need to be said about the computation time required to
perform simulations in both the Schrödinger and Heisenberg picture, since es-
pecially in simulating the Bose-Hubbard model, the difference in computation
time is at its greatest. The simulation in the Schrödinger picture until t = 0.4
with d = 80 took almost two days. In comparison, the same simulation in the
Heisenberg picture too eleven days to simulate just until t = 0.1. That’s roughly
a factor of 220 slower. Likewise in the case of d = 40, where the simulation in
the Heisenberg got until t = 1 after eleven days, while the simulation in the

63



Figure 5.27: Simulation of 〈n̂i〉 for i ∈ {−10, 0, 1, 11} compared to the analytical results as
a function of physical time in the Bose-Hubbard model. The initial state was |0, 1, 0, 1, . . .〉
on a system consisting of 32 sites. The parameters for this calculation are t = 1, U = 0 and
µ = 0 with at most seven bosons allowed per site. The squares belong to the simulation in the
Heisenberg picture and the discs to the simulation in the Schrödinger picture. The simulation
was run for four bond dimensions, d = 40 (red), d = 60 (green), d = 80 (light blue) and
d = 100 (purple). The points for d = 100 are missing for the simulations in the Heisenberg
picture, because the memory requirements for that were larger than was available. Also, note
that there is only one point visible for d = 80 in the Heisenberg picture. This is due to the
fact that that single point already took 11 days to calculate.

Figure 5.28: Simulation of 〈n̂0〉 (left) and 〈n̂1〉 (right) in the Bose-Hubbard model. The initial
state was |0, 1, 0, 1, . . .〉 on a system consisting of 32 sites. The parameters for this calculation
are t = 1, U = 0 and µ = 0 with at most seven bosons allowed per site. The bond dimension in
both cases was d = 40. The simulation in the Schrödinger picture is displayed in red and the
simulation in the Heisenberg picture is green. The blue dotted line is the analytical solution.
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Figure 5.29: The ‘entanglement entropy’ for the n̂0 operator in the Bose-Hubbard model on
a chain of length N = 16.

Schrödinger picture performed the same feat in just over seven hours. In that
case the Heisenberg picture is a factor of 147 slower. Combined with the de-
plorable accuracy, the Heisenberg picture seems to be woefully unqualified to
simulate the Bose-Hubbard model in.
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Chapter 6

Conclusion

Of the four studied models, only the spin- 12 XX chain turned out to be more ac-
curate in the Heisenberg picture. This was solely due to the fact that the time
evolving operators, Ŝzi (t), ĵi(t) and ˆSzi S

z
j (t), could be described by an MPO

with a small bond dimension, d. The compression procedure therefore has little
effect in that case. The question if simulations perform better in the Heisenberg
picture depends on both the Hamiltonian and on the studied operator. This
became clear from the time evolution of the Ŝ−i operator. The time evolving
version of that operator could not be described as an MPO with a small bond
dimension d. Consequently, the simulation in the Heisenberg picture showed
the same degradation as it did for the spin- 12 XXZ chain and the Bose-Hubbard
model. The left graph in figure 5.13 shows most strikingly why simulations
in the Heisenberg picture break down. The compression procedure causes the
operator to deviate exponentially from the truncated operator, because the sin-
gular values of the operator that are being thrown away are becoming to big.
In the case of the XXZ chain, three quarters of the singular values are thrown
away after every compression because the Trotter MPO has an bond dimension
of d = 4, and therefore multiplying it with the time evolving MPO will increase
the size of the latter by a factor four. In the case of the Bose-Hubbard model
it is even worse, since with a compressed Trotter MPO of d = 16, a fraction
of 15

16 of the singular values are discarded. One therefore needs a very steep
exponential decay of the singular values, but unfortunately the time evolution
causes this exponential decay to become more shallow over time, as the right
graph in figure 5.13 shows. Even though this is also the case in the Schrödinger
picture, it appears to have less effect there, possibly due to the fact that the
compression occurs twice as often, since the Trotter MPOs have to be applied to
both sides of the operator. In the end, we must conclude that using the DMRG
in the Heisenberg picture is only preferable if the operator under study can be
described as an MPO with a small bond dimension as it evolves in time. In all
other cases, the DMRG in the Schrödinger picture is preferable. Not only is it
more accurate, DRMG in the Schrödinger picture is also at least three times
faster than the DMRG in the Heisenberg picture and uses less memory in the
process.
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Appendix A

Abbreviations

A full list of abbreviations used throughout this thesis.

• DMRG: Density matrix renormalization group

• MPO: Matrix product operator

• MPS: Matrix product state

• SVD: Singular value decomposition
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Appendix B

Decompositions

Calculations with MPOs and MPSs rely heavily on the various matrix decom-
positions. Therefore, these matrix decompositions are described here in more
detail. Especially the SVD needs to be investigated, since the library used,
Lapack++ 3.5.2, had trouble calculating complex SVDs.

B.1 QR and LQ decomposition

One way to get unitary matrices out of a matrix is to use a QR decomposition or
similarly an LQ decomposition. It is preferred over an SVD, since it is generally
faster. A QR decomposition of an M×N matrix with M ≤ N isO(N) compared
to O(MN2) for an SVD. The downside is that one does not get the singular
values. With a QR decomposition, any M × N matrix A can be decomposed
into a unitary M ×M matrix Q and an upper triangular M ×N matrix R.

A = QR (B.1)

More specifically for M > N :

A =
[
Q1 Q2

] [ R
0

]
= Q1R (B.2)

Where Q1 is an M×N matrix, Q2 is an M×(M−N) matrix and R is an N×N
matrix. The matrix Q2 therefore does not contain any useful information about
A, but is still needed to have a unitary matrix Q. And for M < N :[

A1 A2

]
=
[
Q
] [

R1 R2

]
(B.3)

Here A is divided in an M ×M matrix A1 and an M × (N −M) matrix A2 and
likewise for R. One only needs to solve the QR decomposition for A1 to get Q
and R1. The remaining matrix R2 can then be calculated from A2 using the
fact that Q is unitary:

A2 = QR2 ⇒ R2 = Q†A2 (B.4)

One can use the QR decomposition to left-canonize MPOs/MPSs, but for right
canonization, one can use an LQ decomposition, which splits a matrix A into a
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left triangular M ×N matrix L and a unitary N ×N matrix Q. One can obtain
the LQ decomposition from a QR decomposition by taking the QR decomposi-
tion of A†.

A =
(
A†
)†

= (Q′R′)
†

= R′†Q′† = LQ. (B.5)

In the last step R′† is renamed to L, since the complex conjugate of a right
triangular matrix is a lower triangular matrix. The desired unitary matrix Q is
simply the complex conjugate of the Q′ from the QR decomposition of A†.

B.2 Singular Value Decomposition

In order to perform many of the above calculations, it is crucial to have an
accurate way of calculating the SVD. In our simulations Lapack++ 2.5.3 was
used to calculate the SVDs. Unfortunately, the calculation can occasionally fail
due to the SVD not converging; most likely because Lapack++ 2.5.3 uses an
iterative method to calculate the SVD and the particular matrix it would fail
on, would just need to many iterative steps. When that happens, the simula-
tion would normally fail altogether. Fortunately, there are alternative ways to
calculate the SVD, although they are slower and more memory-intensive. Since
the SVD from Lapack++ only fails rarely, this is not a problem. There are two
alternative methods of calculating the SVD of a complex M by N matrix A.

• Eigenvalues of A†A or AA†.

• Real-valued SVD of

[
AR −AI
AI AR

]
, where AR is the real part of A and

AI is the imaginary part of A.

Since the real-valued SVD still relies on the Lapack++ routine, it can still fail.
The best approach is to try the real-valued SVD first and if that fails too, then
to use the A†A-method.

B.2.1 Eigenvalues of A†A or AA†

One method to find the SVD is to find the eigenvalues of A†A or AA† when
M > N or M ≤ N respectively. These eigenvalues will be the squares of the
singular values. For A†A:

A†A~vi =
(
USV †

)†
USV †~vi = V STU†USV †~vi

= V STSV †~vi = V STSêi = V s2i êi = s2i~vi (B.6)

The vectors vi are the columns of V and are also the eigenvectors of A†A. Thus
once one has the eigenvalues and eigenvectors, one can already construct S and
V . U can be obtained by

A = USV † ⇒ AV = US ⇒ U = AV S−1 (B.7)

The matrix S−1 contains 1
si

on the diagonal entries. For AA†, the calculation
is similar.

AA†~ui = USV †
(
USV †

)†
~ui = USV †V STU†~ui

= USSTU† ~ui = USSTêi = Us2i êi = s2i ~ui (B.8)
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The vectors ui are the columns of U and are also the eigenvectors of AA†.
Meaning one can again use the eigenvalues and eigenvectors to construct S and
U . V can be obtained by

A† = V STU† ⇒ A†U = V ST ⇒ V = A†U
(
ST
)−1

(B.9)

The matrix
(
ST
)−1

again contains the entries 1
si

on the diagonal. However, in
both (B.7) and (B.9), one has to divide by the singular values si. Since some of
these singular values can be quite small and indeed sometimes 0, this can lead
to problems. The accuracy will decrease drastically for the columns of U or
V respectively, where si is very small. In that case, one must avoid using this
method to calculate the columns of U or V respectively that belong to small
singular values. Instead, one can use the Gram-Schmidt process to generate
vectors that are orthonormal to the columns that belong to the large singular
values. Since these generated vectors belong to small singular values, they will
not influence the calculated SVD much, but they do introduce an inaccuracy.
It’s therefore better to try the routine from Lapack++ first, and if that fails to
try the real-valued SVD. Only if the latter method fails too, should this routine
be used as a last resort.

B.2.2 Real-valued SVD

Since complex SVD’s are generally more difficult to calculate, another approach

is to calculate the SVD of the matrix

[
AR −AI
AI AR

]
, where AR is the real part

of A and AI is the imaginary part of A. To see why this is so, consider the
definition of an SVD:

A~vj = sj~uj (B.10)

A†~uj = sj~vj (B.11)

Where the sj denote the singular values and ~uj , and ~vj are the left and right
singular vectors respectively. If we explicitly write out the real and imaginary
part for (B.10), we get the following:

A~vj = sj~uj (B.12)

⇒ (AR + iAI)
(
~vRj + i~vIj

)
= sj

(
~uRj + i~uIj

)
(B.13)

⇒AR~vRj +AI~vIj + i
(
AI~vRj +AR~vIj

)
= sj~uRj + isj~uIj (B.14)

One can then split the real and imaginary part, which gives two equations:{
AR~vRj −AI~vIj = sj~uRj
AI~vRj +AR~vIj = sj~uIj

(B.15)

These can be written in matrix form:
[
AR −AI

] [ ~vRj
~vIj

]
= sj~uRj[

AI AR
] [ ~vRj

~vIj

]
= sj~uIj

(B.16)
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These two equations can be combined into one:[
AR −AI
AI AR

] [
~vRj
~vIj

]
= sj

[
~uRj
~uIj

]
(B.17)

And similarly with (B.11):

A†~uj = sj~vj

⇒
(
AT
R − iAT

I

) (
~uRj + i~uIj

)
= sj

(
~vRj + i~vIj

)
⇒AT

R~uRj +AT
I ~uIj + i

(
−AT

I ~uRj +AT
R~uIj

)
= sj~vRj + isj~vIj

⇒
{
AT
R~uRj +AT

I ~uIj = sj~vRj
−AT

I ~uRj +AT
R~uIj = sj~vIj

⇒


[
AT
R AT

I

] [ ~uRj
~uIj

]
= sj~vRj[

−AT
I AT

R

] [ ~uRj
~uIj

]
= sj~vIj

⇒
[

AT
R AT

I

−AT
I AT

R

] [
~uRj
~uIj

]
= sj

[
~vRj
~vIj

]
⇒
[
AR −AI
AI AR

]T [
~uRj
~uIj

]
= sj

[
~vRj
~vIj

]
(B.18)

This shows that the SVD of

[
AR −AI
AI AR

]
will also give us the singular values

and matrices U and V . The singular values from the original matrix A will now
appear twice in the larger matrix because of the following identity[

AR −AI
AI AR

]
=

[
0 1
−1 0

] [
AR −AI
AI AR

] [
0 −1
1 0

]
(B.19)

Inserting this in (B.17) gives us another solution with the same singular values
as (B.17): [

0 1
−1 0

] [
AR −AI
AI AR

] [
0 −1
1 0

] [
~vRj
~vIj

]
= sj

[
~uRj
~uIj

]
⇒
[
AR −AI
AI AR

] [
−~vIj
~vRj

]
= sj

[
0 −1
1 0

] [
~uRj
~uIj

]
⇒
[
AR −AI
AI AR

] [
−~vIj
~vRj

]
= sj

[
−~uIj
~uRj

]
(B.20)

This means that every singular value will appear twice with two different vectors.
Sorting the singular values appropriately, we can write the SVD of the large
matrix as follows:[

AR −AI
AI AR

]
=

[
UR −UI
UI UR

] [
S 0
0 S

] [
VR −VI
VI VR

]T
(B.21)

Note that in (B.20) an arbitrary sign can be introduced. This means that the
second column of the ‘U ’ and ‘V ’ of the large matrix can have a different sign.
Normally, one would need to take care with degenerate singular values, because
the accompanying vectors may not be orthonormal. Luckily, Lapack++ takes
care of this for us and it should always provide us with unitary matrices.
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Appendix C

Minimal bond dimension
for exact solution

In the case of the spin- 12 XX chain the time evolution of the Ŝz operator can be
described by an MPO with a bond dimension of only d = 4 [17]. As a prelude
for the Ŝ+ operator, we will show the case of the Ŝz operator again. First, the
Jordan-Wigner transformation of (5.14) has to be performed again:

Ŝzn = ĉ†nĉn −
1

2
(C.1)

This can be written in the diagonalized operators from (5.22) and we can drop
the 1

2 for simplicity:

ĉ†nĉn =

N∑
k=1

d̂†k
(
U†
)
k,n

∑
`=1

Un,`d̂` (C.2)

We can insert the time evolution from (5.27) and convert back to the previous
fermionic operators:

=

N∑
k=1

d̂†k(0)eiεkt
(
U†
)
k,n

N∑
`=1

Un,`d̂`(0)e−iε`t

=

N∑
k=1

N/2∑
i=−N/2+1

ĉ†iUi,ke
iεkt
(
U†
)
k,n

N∑
`=1

N/2∑
j=−N/2+1

Un,`e
−iε`t

(
U†
)
`,j
ĉj (C.3)

Finally, we can reverse the Jordan-Wigner transformation to arrive at an op-
erator we can write in MPO form. To shorten the notation, we can write
Ui,ke

iεkt
(
U†
)
k,n

=
(
eiT t

)
i,n

, where T is the Hermitian matrix from (5.20):

=

N/2∑
i=−N/2+1

Ŝ+
i (−1)φi

(
eiT t

)
i,n

N/2∑
j=−N/2+1

(
e−iT t

)
n,j

(−1)φj Ŝ−j (C.4)

This is essentially a product of two MPOs, which can be seen by looking at the
first part and plugging in the definition of φi from the Jordan-Wigner transfor-
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mation:

N/2∑
i=−N/2+1

(−1)
∑i−1
m=−N/2+1(Ŝ

z
m+ 1

2 )Ŝ+
i

(
eiT t

)
i,n

(C.5)

=

N/2∑
i=−N/2+1

 i−1∏
m=−N/2+1

(−1)Ŝ
z
m+ 1

2

 Ŝ+
i

(
eiT t

)
i,n

(C.6)

This complicated looking expression is actually only an MPO with a bond di-
mension of d = 2:

B[−N/2+1] =
[
Ŝ+ (−1)Ŝ

z+ 1
2

]
(C.7)

B[i] =

[
1 0

Ŝ+ (−1)Ŝ
z+ 1

2

]
(C.8)

B[N/2] =

[
1

Ŝ+

]
(C.9)

The same is true for the second part of (C.4), which can also be written as an
MPO with a bond dimension of d = 2. Multiplying both MPOs gives an MPO
with a bond dimension of d = 4.

Now that it is clear how it works for the Ŝz operator, let us look at the Ŝ+

operator. We again apply the Jordan-Wigner transformation:

Ŝ+
n = ĉ†n(−1)φn = ĉ†n

n∏
m=−N/2+1

(−1)ĉ
†
mĉm , (C.10)

and again plug in the diagonal operators with their time evolution:

=

N∑
k=1

d̂†k(0)
(
U†
)
k,n

eiεkt ×

n∏
m=−N/2+1

(−1)
∑N
i=1 d̂

†
i (0)(U

†)
i,m

eiεit
∑
j=1 Um,j d̂j(0)e

−iεjt

(C.11)

Reverting back to the fermionic operators again and undoing the Jordan-Wigner
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transformation, we have,

=

N∑
k=1

N/2∑
`=−N/2+1

ĉ†` U`,k e
iεkt
(
U†
)
k,n

×

n∏
m=−N/2+1

(−1)
∑N
i=1

∑N/2

r=−N/2+1
ĉ†rUr,i(U

†)
i,m

eiεit ×

�
×
∑N
j=1

∑N/2

s=−N/2+1
Um,j ĉs(U†)

j,s
e−iεjt

=

N/2∑
`=−N/2+1

Ŝ+
` (−1)φ`

(
eiT t

)
`,n

×

n∏
m=−N/2+1

(−1)
∑N/2

r=−N/2+1
Ŝ+
r (−1)φr (eiTt)

r,m

∑N/2

s=−N/2+1(e
−iTt)

m,s
(−1)φs Ŝ−s ,

(C.12)

where the black square only indicates that the exponent continues from the
previous line. The first part of this expression can again be written as an MPO
with a bond dimension of d = 2, but the product of the (−1)...’s can not easily
be written as an MPO, especially since nothing in the exponent commutes. This
is why the Ŝ+ operator of section 5.3 does not reach an exact solution in the
Heisenberg picture, as the Ŝz operator did in section 5.1, even though both use
the time evolution of the spin- 12 XX chain.
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Appendix D

‘Entanglement entropy’ for
MPOs

It is well known that one can use the Von Neumann entropy to measure the
level of entanglement in states. Such a thing makes no sense for operators of
course, but one could use the same method to calculate such a quantity from
MPOs in exactly the same way one would for MPSs. To make this clear, we
shall briefly show how one can obtain the entanglement entropy from an MPS.

We start with a system of N sites and divide this into two parts. For the
sake of convenience, we will just split it right through the middle. This means
we will focus on the entanglement that the left part, A, of the system has with
the right part, B. One can then write the state of the system as a Schmidt
decomposition:

|Ψ〉 =
∑
i

λi|ψi〉A|φi〉B (D.1)

The states |ψi〉A and |φi〉B are the basis states of the systems A and B re-
spectively. The real number λi is known as the Schmidt coefficient. The Von
Neumann entropy for a reduced density matrix, ρA is defined as:

S(ρA) = −TrA (ρA ln ρA) (D.2)

We therefore need to rewrite the state |Ψ〉 in the density matrix formalism:

ρ = |Ψ〉〈Ψ| =
∑
i

λi|ψi〉A|φi〉B
∑
j

λj〈ψj |A〈φj |B (D.3)

The reduced density matrix, ρA, is obtained by tracing out system B:

ρA = TrB (ρ)

=
∑
m

〈φm|B
∑
i

λi|ψi〉A|φi〉B
∑
j

λj〈ψj |A〈φj |B |φm〉B

=
∑
m

∑
i

λi|ψi〉Aδmi
∑
j

λj〈ψj |Aδjm

=
∑
m

λ2m|ψm〉〈ψm|A (D.4)

75



Plugging this into (D.2) gives us a formula for the entropy:

S = −
∑
m

λ2m ln
(
λ2m
)

(D.5)

To actually calculate this quantity, we need to know what the Schmidt coeffi-
cients are. This is especially easy in the case of an MPS, since the form is already
very similar to the Schmidt decomposition. Recall from (3.2) the definition of
an MPS:

|Ψ〉 = p
∑
σ

∑
a1,...

Aσ1
a0,a1A

σ2
a1,a2A

σ3
a2,a3 . . . A

σN
aN−1,aN |σ〉 (D.6)

We need to split this into two parts, which can be accomplished by performing
a suitable SVD:

|Ψ〉 = p
∑
σ

∑
a1,...

. . . A
σN/2−1
aN/2−1,aN/2A

σN/2
aN/2,aN/2+1

A
σN/2+1
aN/2+1,aN/2+2

. . . |σ〉

= p
∑
σ

∑
a1,...

. . . A
σN/2−1
aN/2−1,aN/2A(σN/2,aN/2),aN/2+1

A
σN/2+1
aN/2+1,aN/2+2

. . . |σ〉

= p
∑
sN/2

∑
σ

∑
a1,...

. . . A
σN/2−1
aN/2−1,aN/2U(σN/2,aN/2),sN/2SsN/2,sN/2 ×

(V †)sN/2,aN/2+1
A
σN/2+1
aN/2+1,aN/2+2

. . . |σ〉

= p
∑
sN/2

∑
σ

∑
a1,...

. . . A
σN/2−1
aN/2−1,aN/2U

σN/2
aN/2,sN/2SsN/2,sN/2 ×

(V †)sN/2,aN/2+1
A
σN/2+1
aN/2+1,aN/2+2

. . . |σ〉 (D.7)

This is exactly the form of (D.1), when we make the following observations:

i = sN/2 (D.8)

λi = SsN/2,sN/2 (D.9)

|ψi〉A = p
∑

σ1,...,σN/2

∑
a1,...,aN/2

. . . A
σN/2−1
aN/2−1,aN/2U

σN/2
aN/2,i

|σ1 . . . σN/2〉 (D.10)

|φi〉B =
∑

σN/2+1,...,σN

∑
aN/2+1,...,aN−1

(V †)i,aN/2+1
×

A
σN/2+1
aN/2+1,aN/2+2

. . . |σN/2+1 . . . σN 〉 (D.11)

One can see that the Schmidt coefficients are the same as the singular values.
Better yet, these singular values are already calculated during the compression
algorithm in section 3.7.

There is nothing stopping us from doing the same thing for an MPO. The
only difference is that the calculated quantity does not have a physical meaning,
as it did for an MPS. Nevertheless, it behaves in the same way and, as such,
gives us more insight into the behaviour of simulations in the Heisenberg picture.
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We obtain the singular values in the same way as we did in (D.7):

|Ψ〉 = q
∑
σ,σ′

∑
b1,...

. . . B
σN/2−1,σ

′
N/2−1

bN/2−1,bN/2
B
σN/2,σ

′
N/2

bN/2,bN/2+1
B
σN/2+1,σ

′
N/2+1

bN/2+1,bN/2+2
. . . |σ〉〈σ′|

= q
∑
σ,σ′

∑
b1,...

. . . B
σN/2−1,σ

′
N/2−1

bN/2−1,bN/2
B(

σN/2,σ
′
N/2

,bN/2

)
,bN/2+1

×

B
σN/2+1,σ

′
N/2+1

bN/2+1,bN/2+2
. . . |σ〉〈σ′|

= q
∑
sN/2

∑
σ,σ′

∑
b1,...

. . . B
σN/2−1,σ

′
N/2−1

bN/2−1,bN/2
U(

σN/2,σ
′
N/2

,bN/2

)
,sN/2

×

SsN/2,sN/2(V †)sN/2,bN/2+1
B
σN/2+1,σ

′
N/2+1

bN/2+1,bN/2+2
. . . |σ〉〈σ′|

= q
∑
sN/2

∑
σ,σ′

∑
b1,...

. . . B
σN/2−1,σ

′
N/2−1

bN/2−1,bN/2
U
σN/2,σ

′
N/2

bN/2,sN/2
SsN/2,sN/2 ×

(V †)sN/2,bN/2+1
B
σN/2+1,σ

′
N/2+1

bN/2+1,bN/2+2
. . . |σ〉〈σ′| (D.12)

The singular values, SsN/2,sN/2 , can be used as the λm in (D.2), providing us
with a sort of ‘entanglement entropy’ for MPOs.

A few more words need to be said about the maximum entropy, since this is
dependent on the number of singular values, d, and therefore influenced by the
compression algorithm. To calculate the maximum entropy, we can simply take
the derivative with respect to every variable with the constraint that they add
up to 1 (in the case of canonized MPOs). If we set xm = λ2m in (D.5) for ease
of calculation, we need to minimize

S = −
d∑

m=1

xm lnxm . (D.13)

Since we have the constraint
∑d
m=1 xm = 1, we can substitute xd = 1 −∑d−1

m=1 xm in the above equation.

S = −
d−1∑
m=1

xm lnxm −

(
1−

d−1∑
m=1

xm

)
ln

(
1−

d−1∑
m=1

xm

)
(D.14)

Taking the derivative with respect to an xi yields:

∂

∂xi
S = − lnxi −

xi
xi

+ ln

(
1−

d−1∑
m=1

xm

)
+

(
1−

∑d−1
m=1 xm

)
(

1−
∑d−1
m=1 xm

)
= − lnxi + ln

(
1−

d−1∑
m=1

xm

)
(D.15)

77



Setting this to zero gives d− 1 equations, which are all the same:

− lnxi + ln

(
1−

d−1∑
m=1

xm

)
= 0 ⇒

xi = 1−
d−1∑
m=1

xm ⇒

2xi = 1−
d−1∑
m=1
m 6=i

xm (D.16)

Since all of these equations are the same, and it is a system of d−1 equations with
d− 1 variables, this means that every xi is necessarily the same, i.e. x = xi ∀i.
Plugging this in the equation above gives

2x = 1− (d− 2)x ⇒ d x = 1 ⇒ x =
1

d
. (D.17)

By using the constraint, one can see that also xd is equal to 1
d . Plugging this

result back into the formula for the entropy, (D.13), one ends up with the
maximum possible entropy:

S = −
d∑

m=1

xm lnxm (D.18)

= −
d∑

m=1

1

d
ln

1

d
(D.19)

= ln d (D.20)

Since d is the maximum allowed bond dimension, one can see that the compres-
sion algorithm, which always truncates the matrices in an MPO to at most d
singular values, will create an upper limit of the ‘entanglement entropy’ for an
MPO to ln d.
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at zero temperature: Emergence of flat magnetization profiles,” Phys. Rev.
E, vol. 59, pp. 4912–4918, May 1999.
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