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Abstract

Consider reinforced Pólya urns on the vertices of infinite graphs with
bounded degree, where the edges of each vertex correspond to a colour in
the respective urn and weights on the edges correspond to the number
of balls of the respective colour. Increments happen based on atoms in
independent homogeneous Poisson clocks with inhomogeneous intensities.
For this highly interactive model, consider the case of sublinear reinforce-
ment, i.e. with a Pólya-exponent α ∈ (0, 1). After exploring a sensible
notion of equilibrium distributions for these dynamics, this thesis shows
that for infinite graphs of bounded degree and a subset of α the edge
weights converge to the unique equilibrium distribution.
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Chapter 1

Introduction

In [1] van der Hofstadt et al. define a model of Pólya urns with graph-based
competition on finite graphs and discuss the case of strong reinforcement. The
interest in this model comes from its interpretation as a simplified model of
the learning process in the human brain with the edge weights standing for
the strength of a synapse. Hirsch et al. generalize the discussion to classes of
infinite graphs and in particular all graphs of bounded degree in [2].
This thesis seeks to extend the discussion on infinite graphs to the weak
reinforcement case. For this, this thesis extends the notion of equilibrium
presented in [1] to infinite graphs and it shows existence of non-trivial equilib-
rium distributions on graphs of bounded degree. Convergence to a generalised
homogeneous phase, described by the equilibrium distribution, is shown for
all graphs of bounded degree for a Pólya coefficient of α ∈ (0, 1/2), for vertex
transitive graphs for α ∈ (0, αd) with αd > 1/2 and for Z for α ∈ (0, 1). This
is in contrast to the results in the strong reinforcement case in which Hirsch et
al. show that, for graphs of bounded degree and even some random graphs,
the weights localize on forests where each component has a bounded number
of edges (whisker trees) for all α > 1.
The existence of the equilibrium distributions on graphs of bounded degree
result from the application of fixed point theory and in particular the Schauder
fixed point theorem on topological vector spaces. The convergence to the
homogeneous phase is achieved by bounding the possible accumulation points
of the edge weights away from zero and then iteratively tightening the bound
through a repeated worst-case estimate which ends with almost surely deter-
mined edge weights.
In Section 1.1 the model for the graph based Pólya urns is defined, Section 1.2
lists the main results of this thesis, Section 1.3 discusses the results and gives
an outlook on open problems and Section 1.4 gives an overview of the structure
of this thesis.
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Chapter 1. Introduction 2

1.1 Model definition

Let G = (V,E,∼, d) denote an infinite graph with countable vertex set V ,
bounded degree and distance metric d : V ×V → N Denote edges by e = {v, w}
for v, w ∈ V . Then, v ∈ e and w ∈ e. The explicit mention of ∼ and d is
usually omitted so that G = (V,E). If not explicitly stated otherwise, the
distance metric will be the standard graph metric d(v, w) of number of vertices
contained in the shortest paths from v to w. For the sake of convenience,
define the distance between two edges as the shortest distance between the
vertices contained in the edges. Denote by Ev = {e ∈ E|v ∈ e} the set of edges
incident to v ∈ V . Investigate a system of random variables

Nt = {N e
t }e∈E

of interacting Pólya-type urns on the edge set E at continuous time t ∈ R+ :=
[0,∞) on a probability space (Ω,P). The dynamics of Nt are a continuous-time
analog of the process considered in [1]. Loosely speaking, every vertex has a
Poisson clock and whenever that clock rings the dynamics choose and increment
the weights on one of the adjacent edges by one.
The choice of the edge happens using

polv,e(Nt) :=
(N e

t )α∑
e′∈Ev (N e′

t )
α α > 0 , (1.1)

which is the power-weighted Pólya-scheme considered in [1]. More precisely,
initially the starting weight distribution {N e

0}e∈E is a family of independent
and identically distributed (i.i.d.) bounded random variables with N e

0 > N0

for every edge e ∈ E and some N0 > 0. Denote the Lebesgue measure by L
and let {λv}v∈V be a family of bounded positive real values λv ∈ [Λ,Λ], where
Λ ≥ 1 ≥ Λ > 0. Then, the dynamics of Nt are governed by an i.i.d family of
Poisson point processes {Pv}v∈V on [0,∞)× [0, 1] giving the probability

P (Pv (T × U) = n) = Poi(λv · L(T ) · L(U);n)

of having n ∈ N events fire on the vertex v ∈ V for T × U ⊂ [0,∞) × [0, 1]
and v ∈ V . If the process Pv contains an atom of the form (t, u) for some
u ∈ [0, 1] and t ∈ [0,∞) increment the mass of an edge ei ∈ {ei}i∈[1,|Ev |] by 1
if u ∈ Uv,ei , where {Uv,ei}i∈[1,|Ev |] is a partition of [0, 1] given by

Uv,e1 = [0, polv,e1(Nt)] (1.2)

Uv,ei = (polv,ei−1
(Nt),polv,ei−1

(Nt) + polv,ei(Nt)] . (1.3)

1.2 Main results

Let

Xt =
Nt

t
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denote the normalized particle system. This thesis concerns itself with the
existence and convergence of the limiting configuration

X∞ = lim
t→∞

Xt

and in particular will analyse the smallest interval

Ce :=

[
lim inf
t→∞

Xe
t , lim sup

t→∞
Xe
t

]
containing all accumulation points of Xe

t for α ∈ (0, 1) and e ∈ E.
The limiting edge weight distribution as t→∞ is, in general, not constant

but will follow an equilibrium distribution. State the definition of equilibrium
here for completeness and refer to Section 2.4 for a detailed discussion.

Definition 1.1. Call a measure µG ∈ RE+ an equilibrium distribution for the
graph G with firing rates {λv}v∈V of the Poisson processes on the vertices if

µG(e) =
∑
v∈e

λv
µG(e)α∑

e′∈Ev µG(e′)α

for all e ∈ E. If there is no ambiguity, write µ instead of µG.

This thesis proves that equilibrium distributions with µ(e) > 0 for all e ∈ E
exist for all graphs of bounded degree for any distribution of firing rates. The
proof employs fixed point theory results and is contained in Section 3.2.

Theorem 1.2. Let α ∈ (0, 1/2) and G be infinite, connected and of bounded
degree and Nt as in Section 1.1. Then, there exists a unique equilibrium
distribution µ with µ(e) > 0 for all e ∈ E and Xt converges almost surely to
the deterministic process distributed according to the equilibrium distribution.

This is the result with the most general graph class. By limiting the analysis
to graphs of vertex transitive graphs it is possible to extend the range of valid
Pólya coefficients α. In particular the case G = Z allows for α ∈ (0, 1).

Theorem 1.3. Let G = Z, α ∈ (0, 1) and the firing rates {λv}v∈V be con-
stant λv ≡ λ. Furthermore, let all starting values N e

0 be equal to a bounded
random variable NE

0 with NE
0 > N0. Then, Xt converges almost surely to the

deterministic process having weight λ on every edge.

This statement generalizes to vertex transitive graphs at the cost of limiting
the valid α again.

Theorem 1.4. Let G be vertex transitive with degree d, let the firing rates
{λv}v∈V be constant λv ≡ λ. Furthermore, let all starting values N e

0 be
equal to a bounded random variable NE

0 with NE
0 > N0. Then, Xt converges
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almost surely to the deterministic process having weight 2λ/d on every edge
for α ∈ (0, αd), where αd is the choice for α such that

max
x∈(0,2)

(
d

dx
ϕ ◦ ϕ(x)

)
= 1

where

ϕ(x) :=

(
2λ

(d− 1)xα + (2λ/d)α

)1/1−α
.

1.3 Discussion of results and open problems

This thesis marks the beginning of the work on the weakly reinforced process
on infinite graphs and hence does not provide solutions to all the problems it
gives. This sections intends to discuss the new results contained in this thesis
and the problems encountered when trying to generalise the proofs.

Section 3.2 contains the proof for the existence of an equilibrium distribution
on graphs of bounded degree. Hirsch et al. prove the existence of the process
Nt in [2] on graphs of bounded degrees but also on random graphs, e.g. Galton
Watson trees with finite mean offspring. This is achieved by introducing a
more general condition on the graphs (no infinite descending chains) which
implies the existence on those graph classes. The proof for the existence of
equilibrium distributions relies on a fairly direct calculation and the Schauder
fixed point theorem. In order to bring together the graph classes for which
Nt exists and for which an equilibrium distribution µ with µ(e) > 0 for all
e ∈ E exists it might be worthwhile to try to generalise the fixed point theory
approach to random graphs (especially the ones discussed in [2]) or find a new
approach to this problem.

The fixed point theory approach is noteworthy as the Banach fixed point
theorem cannot be applied for all α ∈ (0, 1/2) (see Lemma 3.10). Thus, the
uniqueness statements in the theorems in this thesis can be rephrased as
statements on the uniqueness of fixed points for the functional in Definition 1.1
solved with the help of stochastic processes.

The main caveat of the results in this thesis is that not all α ∈ (0, 1) are
covered. If the discussion of the weak reinforcement regime were extended to all
α ∈ (0, 1), the combination with the results on the α > 1 case presented in [2]
might give insights into the linear case α = 1. The problem with generalising
the results is that worst-case estimates do not allow for better results so it
might be fruitful to devise a more intricate estimate to cover α ∈ (1/2, 1) and
ideally get insights into the linear case α = 1. The vertex transitive case allows
for an iterative repetition of the worst case estimate ending in an almost sure
limit but the proof explicitly uses that the vertices are indistinguishable such
that even the generalisation to quasi vertex transitive graphs proves difficult.
Since the case G = Z worked out with the same technique for all α ∈ (0, 1)
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there might be appropriate estimates for higher-dimensional graphs which are
not direct generalisations of the G = Z case.

The fact that the range for vertex transitive graphs is broader than for
bounded degree graphs and that the boundary αd in Theorem 1.4 is a seem-
ingly arbitrary consequence of the worst case estimate suggests the following
conjecture.

Conjecture 1.5. Let α ∈ (0, 1) and G be of bounded degree and Nt as in
Section 1.1. Then, there exists a unique µ with µ(e) > 0 for all e ∈ E such that
Xt converges almost surely to the deterministic process distributed according
to the equilibrium distribution.

1.4 Structure

Chapter 2 gives an overview of mostly standard material from fixed point theory,
graph theory and the theory of Poisson point processes. This chapter can be
skipped if some basic background knowledge is present with the exception of
Section 2.4 as it motivates and explores the notion of equilibrium distributions
for Xt.

Chapter 3 contains existence proofs for the process on graphs of bounded
degree, adapted from [2], in Section 3.1 and for equilibrium distributions in
Section 3.2.

Finally, Chapter 4 contains the proofs for Theorem 1.2, Theorem 1.3 and
Theorem 1.4.



Chapter 2

Preliminaries

This chapter concerns itself with some preliminary results not directly related
to the theorems which are stated, mostly without proof, for completeness.
Section 2.1 and Section 2.2 discusses core concepts of fixed point respectively
graph theory appearing in this thesis. Section 2.3 adapts standard results
given in [3–5] for Poisson point processes which are relevant for the theorem
proofs. Finally, Section 2.4 defines and motivates the notion of an equilibrium
distribution. Apart from the definition of edge classes, Definition 2.10, Sec-
tion 2.1, Section 2.2 and 2.3 add no new material to standard literature and
can safely be skipped.

2.1 Fixed point theorems and related notions

This section reiterates some basic results in fixed point theory which the proof
for existence of equilibrium distributions and the proof of Theorem 1.2 need.
This section does not reiterate basic notions of topology, like topological spaces,
continuity of functions and the definition of compact sets but it will go over the
definition and results for topological vector spaces as they are a less common
object in mathematics. First, state a standard theorem of fixed point theory
for later reference.

Theorem 2.1 (Banach’s fixed point theorem). Let (X, d) be a complete metric
space and T : X → X a contraction mapping with Lipschitz constant K ∈ (0, 1),
i.e.

d(T (x), T (y)) ≤ Kd(x, y)

for any x, y ∈ X. Then T has a unique fixed point in X.

Proof. See Theorem 5.1 in [6].

The rest of this section deals with topological vector spaces leading up to
the Schauder fixed point theorem Theorem 2.5. For a more detailed account
of the results, see for example [7].

6
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Theorem 2.2 (Tychonov Theorem). The topological product of any family of
compact spaces is compact.

Proof. See [7] for the statement of the theorem and references for topology
books.

Definition 2.3. A topological vector space X is a vector space over a topolog-
ical field K (in this thesis K = R) with a topology such that vector addition
X ×X → X and scalar multiplication K ×X → X are continuous on their
respective spaces.

Remark 2.4. Let G = (V,E) be a graph. The space

{µ : E → R+}

of functions mapping edges to positive real numbers (weight distributions
in the context of this thesis) is a topological vector space. This follows by
identifying the function space with the product space RE+ and endowing it with
the product topology.

Theorem 2.5 (Schauder’s fixed point theorem). Let X be a locally convex
Hausdorff topological vector space, C a non empty closed convex subset of X
and T a continuous mapping of C into a compact subset of C. Then T has a
fixed point in K.

Proof. See the proof due to Singbal in the Appendix of [8].

2.2 Graph theory related concepts

Most of the notation and notions in this section stem from [9]. Following that
notation, let G = (V,E) denote a graph with its vertex set V and edge set E
and ∅ = (∅, ∅) the empty graph. Note that ∅ also denotes the empty set, but
this ambiguity should not be further confusing based on the context in which
∅ appears. Let the degree deg(v) of a vertex v ∈ V be the cardinality of the
set Ev := {e ∈ E | v ∈ e}.

Definition 2.6. Let G = (V,E), G′ = (V ′, E′) and G′′ = (V ′′, E′′) be graphs.

• The graph G′ is a subgraph of G if V ′ ⊂ V and E ⊂ E′.

• For G′, G′′ subgraphs of G, define the intersection of two subgraphs as
G′ ∩G′′ = (V ′ ∩ V ′′, E′ ∩ E′′).

• The subgraphs G′ and G′′ are disconnected, or G′ ∪ G′′ is disjoint, if
G′ ∩G′′ = ∅, otherwise they are connected.

• Define the union of two graphs as G′ ∪G′′ = (V ′ ∪ V ′′, E′ ∪ E′′).
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Remark 2.7. Note that this notion of intersection is dependent on G′ and G′′

being subgraphs of the same graph G and G having a countable vertex set
because then G′ and G′′ inherit a counting from G which allows for the unique
comparison of vertices and edges.

Contrasting this, the notion of union is directly generalizable: The union
of two arbitrary graphs G′, G′′, which are not explicitly given as subgraphs, is
the disjoint union G = G′ ∪G′′ such that G′ ∩G′′ = ∅.

In this thesis a map f : G → G′ between two graphs G = (V,E), G′ =
(V ′, E′) denotes a map between their respective vertex sets, i.e. f : V → V ′

unless explicitly stated otherwise. Similarly v, w ∈ G is equivalent to v, w ∈ V .
This notation helps reduce the clutter by not having to introduce the vertex
sets explicitly.

Definition 2.8. Consider two graphs G = (V,E) and G′ = (V ′, E′) and a
map f : V → V ′.

• The map f is an isomorphism from G to G′ if it preserves neighbourhoods,
i.e. if {v, w} ∈ E if and only if {f(v), f(w)} ∈ E′.

• The graphs G and G′ are isomorphic if there exists an isomorphism
between G and G′.

• An isomorphism from G to itself is an automorphism of G.

This thesis does not differentiate between isomorphic graphs and identifies
equivalence classes of isomorphic graphs with any of their representatives.
Denote by [n] for n ∈ N the set {1, . . . , n} of natural number smaller or equal
to n.

Definition 2.9. A graph G = (V,E) is vertex transitive if, for any two vertices
v, w ∈ V , there is an automorphism of G mapping v to w.

The graph G is quasi vertex transitive if there exists a partition {Vi}i∈[m]

for some m ∈ N of pairwise disjoint subsets of the vertex set V such that for any
pair of vertices v, w ∈ Vj for any j ∈ [m] there exists a graph automorphism f
of G such that f(v) = w.

An example for a vertex transitive graph is Zd or the graph given in Figure 1
and for a quasi vertex transitive graph in Figure 2 in Section 3.3.

Quasi vertex transitivity gives a finite amount of vertices with differing
neighbourhoods, which implies that there is an analogous notion of finite
amounts of equivalent neighbourhoods of edges. Formalize this concept for
edges as edge classes.

Definition 2.10. A graph G = (V,E) has m ∈ N edge classes if there exists
a partition {Ei}i∈[m] of pairwise disjoint subsets of the edge set E such that
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for any pair e = {v, w}, e′ = {v′, w′} ∈ Ej for any j ∈ [m] there exist graph
automorphisms f, g of G such that either

f(v) = v′ and g(w) = w′

or

f(v) = w′ and g(w) = v .

Remark 2.11. Using two graph homomorphisms f, g instead of one f = g
ensures that graphs with mirror symmetries have lower numbers of edge classes.
An example for this is the ladder graph missing every second rung as in Figure 2.
If f = g were a condition in Definition 2.10 the graph would have three edge
classes event though intuitively, based on mirror symmetry, it should have two.
Definition 2.10 fulfills this heuristic expectation.

Remark 2.12. Refer to the vertex subsets Vj respectively edge subsets Ej (or
any representative thereof) as vertex classes respectively edge classes.

Edge classes provide an equivalent definition of quasi vertex transitive
graphs.

Lemma 2.13. A graph G = (V,E) is quasi vertex transitive if and only if it
has a finite number of edge classes.

Proof. First, assume that G is quasi vertex transitive and let {Vi}i∈[m] be the
partition in vertex classes. Then the partition

{{(v, w) | v ∈ Vj and w ∈ Vk} ∩ E}j,k∈[m],j≥k

forms a finite partition of pairwise disjoint subsets of the edge set E. The graph
homomorphism property from Definition 2.10 follows immediately from the
graph homomorphism property of {Vi}i∈[m] and thus G has at most 1

2m(m+ 1)
edge classes.

Assume now that G has m edge classes {Ej}j∈[m]. Then, per definition,
there are two vertex sets Vj1 and Vj2 of vertices contained in the edges e in Ej
for any j ∈ [m] such that for any pair of vertices v, w ∈ Vj1 or v, w ∈ Vj2 there
exists a graph homomorphism such that v = f(w). Thus, G has at most 2m
vertex classes and is quasi vertex transitive.

Corollary 2.14. Let G be vertex transitive, then G has one edge class.

Proof. Follows from the previous proof as G has 1 vertex class and thus at
most 12 = 1 edge class.

Remark 2.15. Note that having one edge class is not equivalent to the graph
being edge symmetric. To see this consider the graph in Figure 1. As every
vertex has the same neighbourhood it is vertex transitive and thus has a single
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Figure 1: Example for a vertex transitive graph which is not edge transitive.

edge class. It is not edge transitive though, as there is no graph homomorphism
mapping the edges connecting the four nodes in a square formation to the
edges connecting the square formations.

The difference between edge transitivity and edge classes is that edge
transitivity requires the edges to have identical neighbourhoods while edge
classes only ask for identical neighbourhoods on the vertices contained in the
respective edges.

An important consequence of Lemma 2.13 is that graphs of bounded degree,
in general, do not have a finite number of edge classes. This complicates the
handling of non-quasi vertex transitive graphs. For example, proving the
existence of equilibrium distributions on quasi vertex transitive graphs with
m edge classes amounts to solving a nonlinear equation system on an m
dimensional space. Generalising this to infinite edge classes in Lemma 3.7
requires the concept of topological vector spaces.

One such class of non-quasi vertex transitive graphs arises from attaching a
finite amount of vertices to quasi vertex transitive graphs, for example Z+ {v},
given in Figure 3. Formalise this concept of graphs that are quasi vertex
transitive apart from on a finite set.

Definition 2.16. Let G = (V,E) be a graph. G is almost (quasi) vertex
transitive if there exists a finite subgraphGs = (Vs, Es) ofG and a corresponding
(quasi) vertex transitive graph G such that for any neighbourhood Gv around
a v ∈ V \ Vs such that Gs ∩ Gv = ∅ there exists a graph automorphism
f : Gv → Gv to a neighbourhood Gv ⊂ G.
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2.3 Standard results for Poisson Point Processes

Throughout this section, let (Rd,B) and (X,X ) be metric spaces and let (N,N )
be a measurable space where B denotes the set of bounded Borel sets and
(Ω,P) a probability space.

Definition 2.17. A measure µ on a state space X is locally finite if any point
x ∈ X has a neibhourhood Nx such that µ(Nx) <∞.

Definition 2.18. Let µ be a locally finite measure on X. A Poisson point
process with intensity measure µ is a point process Π on X with the following
two properties:

1. For every B ∈ X the distribution of Π(B) is Poisson with parameter
µ(B), that is to say P(Π(B) = k) = Poi(µ(B); k) for all k ∈ N.

2. For every m ∈ N and all pairwise disjoint sets B1, . . . , Bm ∈ X the
random variables Π(B1), . . . ,Π(Bm) are independent.

The point process Π is a homogeneous Poisson point process with intensity
λ ∈ R+ if it is a Poisson point process with intensity measure µ(B) = λL(b).

Theorem 2.19 (Existence theorem). Let µ be a locally finite measure on X.
Then there exists a Poisson process on X with intensity measure µ.

Proof. See Theorem 3.6 in [5].

The following results allows the identification of the process on the whole
set of vertices and the set of processes {Pv}v∈V .

Theorem 2.20 (Restriction theorem). Let Π be a Poisson process on X with
locally finite intensity measure µ and let C1, C2, . . . ∈ X be pairwise disjoint.
Then ΠC1 , ΠC2 , . . . are independent Poisson processes with intensity measures
µC1, µC2, . . ., respectively.

Proof. See Theorem 5.2 in [5].

The following is the analogue of the strong law of large numbers for Poisson
point processes. The proof is adapted to the case at hand from the Law of
Large numbers in [3].

Lemma 2.21. Let P be a homogeneous Poisson process with intensity λ ∈ R+

on (0,∞)× [0, 1]. Then

lim
t→∞

P ((0, t]× U)

t
= L(U)λ almost surely,

for any Borel set U ⊂ [0, 1].
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Proof. Let U ⊂ [0, 1] Borel. Recall that

E [P ((0, t]× U)] = L(U)λt var [P ((0, t]× U)] = L(U)λt .

Insert this into the Chebyshev inequality (see [10] for example) to get

P

[∣∣∣∣P ((0, t]× U)

t
− L(U)λ

∣∣∣∣ ≥ ε] ≤ L(U)λ

ε2t
(2.1)

for any ε > 0. Taking tk = k2 and inserting it into Eq. (2.1) implies

∞∑
k=1

P

[∣∣∣∣P ((0, k2]× U)

k2
− L(U)λ

∣∣∣∣ ≥ ε] <∞
with which the Borel-Cantelli Lemma (see [10])) gives that∣∣∣∣P ((0, k2]× U)

k2
− L(U)λ

∣∣∣∣ ≥ ε
almost surely only for a finite number of integer values k and thus

lim
k→∞

P ((0, k2]× U)

k2
= L(U)λ

almost surely. To regain the statement for t ∈ R approximate t by natural
numbers, i.e. take k to be the integer part of

√
t, so that, for t > 1,

P
(
(0, k2]× U

)
≤ P ((0, t]× U) ≤ P

(
(0, (k + 1)2]× U

)
and

k2 ≤ t < (k + 1)2 .

Thus,

(k + 1)2

k2
→ 1

implies

lim inf
t→∞

P ((0, t]× U)

t
> lim inf

k→∞

P ((0, k2]× U)

(k + 1)2

= lim
k→∞

k2

(k + 1)2

P ((0, k2]× U)

k2

= L(U)λ

And an analogous calculation for lim sup gives the claim.
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The following direct implication of Markov’s inequality (see Theorem 5.11
in [10]) is necessary to bind Xe

t away from zero (for a more general version see
Lemma 1.2 in [4]).

Lemma 2.22. Let k ∈ N and λ ∈ R+ such that k ≤ λ then

P [Poi(λ) ≤ k] ≤ exp

(
−
(
λ− k + k log

(
k

λ

)))
.

Proof. Let X ∼ Poi(λ). By Markov’s inequality applied to the monotonically
decreasing function f(x) = zx for z ≤ 1

P [X ≤ k] ≤ z−kE
[
zX
]

= z−keλ(z−1) .

Putting z = k/λ completes the proof.

2.4 Equilibrium distributions

This section intends to extend the notion of equilibrium presented in [1] to the
case of infinite graphs and analyse the case at hand.

Let G = (V,E) be a finite graph and µ ∈ ∆E := {µ : E → R with µ ≥
0 and

∫
E µ(e)de = 1 for all e ∈ E} and let

f : ∆E × E −→ R

(µ, e) 7−→ −µ(e) +
∑
v∈e

pEv ·
µ(e)α∑

e′∈Ev µ(e′)α
,

where pEv is the probability that the next incremented edge is in Ev, i.e. that
the next Poisson process that will have an atom is Pv.

The notion of next is well-defined since Poisson point processes are memo-
ryless (see Theorem 7.4 in [5]). Thus, the probability of being the next firing
vertex is independent of time.

For finite graphs, pEv ≡ λv/|V |. This is not directly extendible to infinite
graphs as V is an infinite set. Multiplying f by |V | gives a new map

F (µ, e) : ∆× E −→ R

(µ, e) −→ −µ(e) +
∑
v∈e

λv
µ(e)α∑

e′∈Ev µ(e′)α
(2.2)

on ∆ := {µ : E → R} which has no explicit mention of pEv anymore. Thus
results the definition given in Definition 1.1.

Definition 2.23. Call a measure µG ∈ ∆ an equilibrium state for the graph
G if F (µ, e) = 0 for all e ∈ E. If there is no ambiguity, write µ instead of µG.



Chapter 2. Preliminaries 14

The following remark justifies calling this a generalisation of the notion of
equilibrium on finite graphs.

Remark 2.24. Let G be a finite graph and λv ≡ 1. µ ∈ ∆ is an equilibrium
distribution if and only if µ/|V | ∈ ∆E and f(µ/|V |, e) = 0 for all e ∈ E. The
heuristic presented in [1] for this definition of equilibrium is that f(µ/|V |, e) = 0
when µ(e)/|V | is equal to the probability of incrementing the edge e next. The
equilibrium state is the weight distribution corresponding to the distribution
µ/|V |.

The general setting with F (µ, e) = 0 does not query the probability for the
next incrementation but the probability for multiple increments on the edge
e. In the finite graph setting, for example, F (µ, e) = 0 queries for how many
increments out of |V | on the whole graph fall onto e.

On infinite graphs the absolute value does not have a similar nice interpre-
tation. The relation between two edges µ(e)/µ(e′) becomes more interesting
as it looks at how many increments e receives more than e′ which is a sensible
measure independent of graph size. The equilibrium distribution reflects the
ratios of incrementation of an edge in relation to every other edge in the graph.
Finding equilibrium distributions is thus a highly non-local problem.



Chapter 3

Existence proofs

This section concerns itself mostly with existence proofs to show that the set
of graphs to which Theorem 1.2 and Theorem 1.4 apply is not empty.

Section 3.1 contains arguments for the existence of the process Nt on
graphs of bounded degree and Section 3.2 shows the existence of equilibrium
distributions for graphs of bounded degree and shows why the uniqueness
statements in the theorems are noteworthy. Finally, Section 3.3 discusses some
examples.

3.1 Existence of the process

This section seeks to reiterate the arguments given in [2] for the existence of
the set {N e

t }e∈E of edge weights at any time t ∈ R+. For this, the notion
of the Poisson process on the vertex set is more convenient to construct the
probability space on which those processes exist. Before coming to the process
Nt prove the existence of the Poisson process on the vertex set.

Lemma 3.1. Let G be a graph of bounded degree with a countable vertex set V
and {λv}v∈V be a set of bounded positive real numbers. Consider the measure

M(Vs ×B) = L(B)
∑
v∈Vs

λv (3.1)

on the measurable space

(V × (0,∞)× [0, 1], 2V × B((0,∞)× [0, 1]))

with the power set 2V of V . Then, the Poisson point process on V ×(0,∞)×[0, 1]
with intensity measure M exists.

Proof. Let (v, x, b) be a point in V ×(0,∞)×[0, 1]. Consider the neighbourhood

N(v,x,b)

(
{v} ×

(
x

2
,
3x

2

)
× [0, 1]

)
15



Chapter 3. Existence proofs 16

with ε ∈ (0, x). Note that N(v,x,b) is open in V × (0,∞)× [0, 1] and contains
(v, x, b). Then

M(N(v,x,b)) = λvx <∞ .

Thus, M is locally finite. The claim follows by the Existence theorem for
Poisson point processes, Theorem 2.19.

The problem with showing the existence of the process Nt on infinite
graphs is that the weight N e

t on an edge e ∈ E at a time t ∈ R+ might not be
determined by a finite subset of the graph but by infinitely many events in the
past. Formalise this notion of dependence on past events as descending chains.

Definition 3.2. Let M = {(Vn, Tn, Un)} be a Poisson point process on V ×
(0,∞)× [0, 1] and m ≥ 2 a natural number. A sequence {(Vni , Tni , Uni)}i∈[m]

is a descending chain of length m if

1. Vni is adjacent to Vni+1, and

2. Tni > Tni+1,

for every i ∈ [m− 1].
M admits infinite descending chains if there exists an infinite sequence

{(Vni , Tni , Uni)}i≥1 which fulfills the above conditions for all i ≥ 1.

For each vertex v ∈ V and its local weight distribution nv = {n(e)}e∈Ev
define the selection function

selv(·,nv) : [0, 1]→ Ev

by setting selv(u,nv) = e if u ∈ Uv,e for e ∈ Ev and Uv,e as in Equation (1.2)
and Equation (1.3). Note that the sets Uv,e require a counting {ei}ei∈Ev of Ev
which is not specified. An example would be the total ordering of the edges by
their weights and having selv select edges with higher weights the higher u is.
Hirsch et al. use this total ordering of the edges in [2] to derive further results
with applications in the strong reinforcement case. Leave the explicit counting
ambiguous as the results are not relevant for the weak reinforcement case and
thus any counting will do.

Lemma 3.3. Let G = (V,E) be such that it admits no infinite descending
chains. Then the Poisson point process defined in Section 1.1 exists.

Proof. Let (Ω,F ,P) denote a probability space and P = {(Vn, Tn, Un)}n≥1

a Poisson point process on V × [0,∞)× [0, 1] with the intensity as in Equa-
tion (3.1).

Construct a family of approximations (N e
t,i)t≥0,i∈Z+

of the weights N e
t at

time t ≥ 0 and first set N e
t,0 = N e

0 for all e ∈ E. Let VVn denote the set of
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vertices containing Vn and all adjacent vertices. Define the initial layer of
approximations

L1 = {(Vm, Tm, Um) ∈ P : P ∩ (VVm × [0, Tm)× [0, 1]) = ∅}

as the set containing all firing events such that no firing event occurs earlier on
any v ∈ VVm . This set is non-empty because there are no infinite descending
chains. Thus, L1 contains the beginning points of all descending chains.

For every (Vm, Tm, Um) ∈ L1 and e ∈ EVm define the next weight approxi-
mation step as

N e
t,1 = N e

t,0 + 1{
t≥Tm,selVm

(
Um,{Ne′

Tm−,0}e′∈EVm

)
=e

} , (3.2)

where Tm− denotes a time infinitesimally smaller than Tm. Note that this is
well defined because the probability for two atoms of P to occur at the same
time is zero, which follows since the intensity measure of P has no atoms (for
details see Section 2.1 of [3]). For the edges e ∈ E \ EVm put N e

t,1 = N e
t,0.

Proceed recursively for i ≥ 1 by defining the (i+ 1)th layer

Li+1 = {(Vm, Tm, Um) ∈ P : P ∩ (VVm × [0, Tm)× [0, 1]) ⊂ Li}

as the family of all firing events such that all earlier firing events at this or
adjacent vertices are in layer Li, i.e. the next link in a descending chain. For
every (Vm, Tm, Um) ∈ Li+1 \ Li and e ∈ EVm update the weights analogously
to Eq. (3.2)

N e
t,i+1 = N e

t,i + 1{
t≥Tm,selVm

(
Um,{Ne′

Tm−,i}e′∈EVm

)
=e

} ,
leaving the edges e ∈ E \ EVm the same.

Since N e
t,i is increasing in i and N e

t,i ≤ |{(Xm, Tm, Um) : Tm ≤ t,Xm ∼ e}|,
the limit

N e
t := lim

i→∞
N e
t,i

is well-defined and almost surely finite. Finally, as there are no infinite
descending chains ∪i≥0Li = P and thus these layers account for every firing.

The existence of the processes, where {Pv}v∈V governs the dynamics, follows
by defining the processes

Pv = P ∩ {v} × [0,∞)× [0, 1]

as restrictions to the individual vertices using Theorem 2.20. Since the intensity
measure of P contains the sum over the firing rates,∑

v∈Vs

Pv
d
= P|Vs

as both are Poisson point processes with the same intensity measure. Thus,
the above arguments apply to {Pv}v∈V and the claim follows.
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The following is the key Lemma of this section stating that no graphs
appearing in this thesis admit infinite descending chains.

Lemma 3.4. Let G be a graph of bounded degree, then G does not admit
infinite descending chains.

Proof. Let P = {(Vn, Tn, Un)}n≥1 be a Poisson point process on V × [0,∞)×
[0, 1] with the intensity measure M from Equation (3.1) with {λv}v∈V positive
and bounded λv ∈ [Λ,Λ] and let d ∈ N be the maximal degree of G. For a
fixed finite set V0 ⊂ V the probability that there is an infinite descending chain
{Vni , Tni , Uni}i≥1 with Vni ∈ V0 for all i is 0.

To see this assume that there exists such an infinitely descending chain
{Vni , Tni , Uni}i≥1. Take a vertex v0 ∈ V0 such that Vni = v0 for infinitely many
i and assume that there exists a vertex v ∈ V with Vni = v for at most finitely
many i and v ∼ v0. Then, on the event that the process forms a descending
chain, the probability of choosing v after v0 equals

P(Vni+1 = v | Vni = v0) =
λv∑

v′∈Vv0
λv′

as the Poisson Point Process chooses a vertex with a probability proportional
to the firing rate λv. Denote by {ñi}i≥0 the indices such that Vñi = v0 for all i
then

∞∑
i=0

P(Vñi+1 = v) =∞

and thus, by Borel-Cantelli, Vni = v for infinitely many i contrary to the
assumption.

Since G is countable, all finite subsets of G have finite vertex sets. Thus,
an infinite descending chain exists if and only if an infinite descending chain
{Vni , Tni , Uni} with {Vni}i≥1 all distinct exists.

Let t > 0 and v ∈ V . Using the above argument, the claim follows by
showing that the expected number of descending chains of distinct vertices and
length n ≥ 1 starting at v before time t tends to 0 as n→∞. Let 〈v1, . . . , vn〉
be a fixed self-avoiding path of length n in G starting from v1 = v. Then, let
L〈v1,...,vn〉 denote the number of descending chains {(Vki , Tki , Uki)}i∈[n] such

that Vni = vi and t > Tki > Tki+1
for every i ∈ [n]. By the multivariate Mecke

formula

E
[
L〈v1,...,vn〉

]
= E

 ∑
{(V1,T1,U1),...,(Vn,Tn,Un)}⊂P

1{V1=v1,...,Vn=vn}1{T1>···>Tn}


=

∑
v′1,...,v

′
n∈V

∫
[0,t]n

1{v′1=v1,...,v′n=vn}1{t1>···>tn}

n∏
i=1

µ(v′i, dti)



Chapter 3. Existence proofs 19

=
tn

n!

n∏
i=1

λvi

≤ tn

n!
Λ
n
.

Since the graph has maximum degree d there are at most dn self-avoiding
paths of length n originating at the same vertex v and hence by

lim sup
n→∞

(
dtΛ
)n

n!
= 0

there are almost surely no self-avoiding walks of infinite length originating
from any v ∈ V , which completes the proof.

The property that a graph does not admit infinite descending chains is less
strict than the property of bounded degree. Even some random graphs admit
no infinite descending chains (see [2]).

3.2 Existence of equilibrium

The existence of equilibrium distributions can be shown for the same class of
graphs as the existence of processes, i.e. graphs of bounded degree. Furthermore,
this section shows that the uniqueness statement for equilibrium distributions
given by the Banach fixed point theorem on quasi vertex transitive graphs is
weaker than Theorem 1.2.

The following condition specifies which existence is required.

Condition 3.5. The graph G is infinite, connected and of bounded degree such
that it admits an equilibrium distribution µ with µ(e) > 0 for all edges e ∈ E.

Before treating the general case, the vertex transitive case is especially easy
to handle and thus treated apart.

Lemma 3.6. Let G be vertex-transitive of degree d and infinite with {λv}v∈V
constant λv ≡ λ > 0. Then Condition 3.5 holds.

Proof. For vertex transitive graphs the vertices are indistinguishable and thus
there is an equilibrium distribution µ which is constant, i.e. where µ(e) ≡ µ
for µ > 0 and α ∈ (0, 1). Inserting that into Eq. (2.2) gives

µ =
∑
v∈e

λ
µα∑

e′∈Ev µ
α

=
∑
v∈e

λ
1∑

e′∈Ev 1

=
2λ

d
.
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Thus, vertex transitive graphs admit a equilibrium distributions with non zero
weights and hence Condition 3.5 holds.

The case of bounded degree graphs does not admit such an easy analysis
as the equilibrium distribution could theoretically take an infinite amount of
different values.

Lemma 3.7. Let G be connected and of bounded degree. Then Condition 3.5
holds for all α ∈ (0, 1).

Proof. A map

µ : E → Rd+

is an equilibrium distribution if it fulfills

µ(e) =
∑
v∈e

λv
µ(e)α∑

e′∈Ev µ(e′)α
.

The existence of an equilibrium distribution is thus a problem of finding a
fixed point of the functional

g : RE+ −→ RE+

µ(·) 7−→
∑
v∈·

λv
µ(·)α∑

e′∈Ev µ(e′)α

on the topological vector space RE+ which is locally convex and Hausdorff as
a product space of the locally convex and Hausdorff R+. Define the infinite
product set

C =


 min

e∈E

{∑
v∈e

λv

}
max
v∈V

deg(v) ·
(

max
e∈E

{∑
v∈e

λv

})α


1
1−α

,max
e∈E

{∑
v∈e

λv

}
E

and note that C is convex and closed as a product of convex and closed sets
(using the product topology) and especially µ(e) > 0 for µ ∈ C. C is also
compact by the Tychonov theorem as a product of compact spaces. If

g |C= C (3.3)

holds then the claim follows by the Schauder fixed point theorem.
Note that, for µ ∈ RE+,

g(µ(·)) =
∑
v∈·

λv
µ(·)α∑

e′∈Ev µ(e′)α
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≤ max
e∈E

{∑
v∈e

λv

}
,

which follows since v ∈ e implies that e ∈ Ev and thus

µ(e)α∑
e′∈Ev

µ(e′)α
≤ 1 .

Furthermore, for µ ∈ C,

g(µ(·)) =
∑
v∈·

λv
µ(·)α∑

e′∈Ev µ(e′)α

≥
∑
v∈·

λv
µ(·)α

max
v′∈V

deg(v′) ·
(

max
e∈E

{∑
v∈e

λv

})α

≥

 min
e∈E

{∑
v∈e

λv

}
max
v∈V

deg(v) ·
(

max
e∈E

{∑
v∈e

λv

})α
µ(·)α

≥

 min
e∈E

{∑
v∈e

λv

}
max
v∈V

deg(v) ·
(

max
e∈E

{∑
v∈e

λv

})α

α+ α

1−α

≥

 min
e∈E

{∑
v∈e

λv

}
max
v∈V

deg(v) ·
(

max
e∈E

{∑
v∈e

λv

})α


1
1−α

.

Hence, Equation (3.3) holds and the claim follows.

The proof not only gives the existence but also the range for non-zero
equilibrium distributions.

Corollary 3.8. Any equilibrium distribution µ with µ(e) > 0 for all e ∈ E is
bounded by

µ(e) ∈


 min

e∈E

{∑
v∈e

λv

}
max
v∈V

deg(v) ·
(

max
e∈E

{∑
v∈e

λv

})α


1
1−α

,max
e∈E

{∑
v∈e

λv

}
for all e ∈ E.
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The existence of equilibrium distributions on all graphs appearing in this
thesis is the main result of this section. The rest of this section is a long remark
on the importance of the uniqueness statement in Theorem 1.2, Theorem 1.3
and Theorem 1.4 since standard fixed point theory does not give an equivalent
statement.

These results concern quasi vertex transitive graphs on which the related
notion of quasi stationarity has to be defined first.

Definition 3.9. Let {λv}v∈V be a family of positive real values. Call {λv}v∈V
quasi stationary if the family λv = λv′ for v, v ∈ V if there exists a graph
automorphism f : G→ G such that f(v) = v′.

This allows the statement of the condition for uniqueness of equilibrium
due to fixed point theory.

Lemma 3.10. Let G be a quasi vertex transitive graph with m ∈ N different
edge classes. Then, for quasi stationary {λv}v∈V

1. there exists an equilibrium distribution µ as in Condition 3.5 only taking
at most m different values for all α ∈ (0, 1).

2. there exists αmax ∈ (0, 1) such that the equilibrium distribution µ as in
Condition 3.5 is unique for all α ∈ (0, αmax).

Proof. Denote edges of the m edge classes by {ei}i∈[m] = {(vi, wi)}i∈[m] and
let µ be a weight distribution taking m different values

{µ(e)}e∈E = {µj}j∈[m]

where µj denotes the values for the edge weights for the respective edge class

ej . Let {njv}j∈[m] denote the amount of edges of class j incident to the vertex
v ∈ V . Then, the characterising function

µj =
∑
v∈ej

λv
µαj∑

e′∈Ev µ(e′)α

= λvj
µαj∑m

i=1 n
i
vjµ

α
i

+ λwj
µαj∑m

i=1 n
i
wjµ

α
i

(3.4)

for an equilibrium distribution µ ∈ RE+ is invariant under change of repre-
sentatives of edge classes and thus the solutions of Equation (3.4) give an
euqilibrium distribution as required in the first part of the claim.

The function g from the proof of Lemma 3.7 becomes

g : Rn+ −→ Rn+
µ 7−→ (g1(µ), . . . , gm(µ))
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where

gj(µ) := λvj
µαj∑m

i=1 n
i
vjµ

α
i

+ λwj
µαj∑m

i=1 n
i
wjµ

α
i

.

The claim follows by showing that if there exists a convex subset C ⊂ Rd+ for
which the Banach fixed point theorem is applicable, there exists a unique fixed
point of g on C.

The function g is differentiable as a concatenation of differentiable functions
and straight-up calculation gives the required result (proven later to keep the
argument at hand concise).

Lemma 3.11. There exists a nonempty, compact, convex subset C of Rd+
which does not intersect any axes such that

g|C : C → C

for all α ∈ (0, 1) and there exists an αmax ∈ (0, 1) and a K ∈ (0, 1) such that

‖Dg(µ)‖op := sup
‖x‖=1

‖Dg(µ) · x‖ = sup
x∈Rd

‖Dg(µ) · x‖
‖x‖

≤ K

for all µ ∈ C, α ∈ (0, αmax) where Dg is the Jacobian matrix of g and Dg(µ) ·x
emphasizes that the product is a matrix-vector product.

Using this Lemma the rest of the proof is standard for fixed-point theory.
Let C, αmax and K as in Lemma 3.11. The first part of the claim follows by the
Schauder fixed point theorem as a simplification of the proof for Lemma 3.7.

Let µ, ν ∈ C and α ∈ (0, αmax). As C is convex, C contains all points on
the straight line µ+ t(ν − µ) from µ to ν for t ∈ [0, 1]. By the chain rule for
Jacobian matrices applied to G(t) := g(µ+ t(ν − µ))

dG

dt
(t) = G′(t) = Dg (µ+ t(ν − µ)) · (ν − µ)

and thus by the fundamental theorem of calculus

g(ν)− g(µ) = G(1)−G(0)

=

∫ 1

0
G′(t)dt

=

∫ 1

0
Dg (µ+ t(ν − µ)) · (ν − µ)dt .

Since ‖Ax‖ ≤ ‖A‖op‖x‖ for any linear operator A on Rd and x ∈ Rd, g is a
contraction on C since g : C −→ C and

‖g(ν)− g(µ)‖ =

∥∥∥∥∫ 1

0
Dg (µ+ t(ν − µ)) (ν − µ)dt

∥∥∥∥
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≤
∫ 1

0
‖Dg (µ+ t(ν − µ)) (ν − µ)‖dt

≤
∫ 1

0
‖Dg (µ+ t(ν − µ)) ‖op‖(ν − µ)‖dt

≤ K‖ν − µ‖ .

By the Banach fixed-point theorem there exists a unique fixed point µ and
since C does not intersect any axes µ(e) > 0 for all e ∈ E and thus the claim
follows.

Proof of Lemma 3.11. Take

C :=


 min

e∈E

{∑
v∈e

λv

}
(

max
e∈E

{∑
v∈e

λv

})α
max
v∈V

deg(v)


1

1−α

,max
e∈E

{∑
v∈e

λv

}
d

from Corollary 3.8 which is a convex subset of Rd+ that does not intersect any
axes and, by analogous calculations to the proof of Lemma 3.7, g : C → C.

The claim follows by showing that there is a K ∈ (0, 1) bounding the
operator norm of the Jacobian Dg of g (formally the Jacobian of g|C but the
leave out the explicit mention of C for increased clarity). This is an explicit
calculation. The entries of the Jacobian read as

∂gj
∂µj

(µ) = αµα−1
j

∑
v∈ej

λv

∑m
i=1;i 6=j n

i
vµ

α
i

(
∑m

i=1 n
i
vµ

α
i )2

∂gj
∂µk

(µ) = −αµαj µα−1
k

∑
v∈ej

λvn
k
v

(
∑m

i=1 n
i
vµ

α
i )2

for [m] 3 k 6= j and µ ∈ C. Thus, for x ∈ Rd

‖Dg(µ) · x‖ =

√√√√ m∑
j=1

(
m∑
k=1

∂gj
∂µk

(µ)xk

)2

=

√√√√√ m∑
j=1

α2µ2α
j

∑
v∈ej

λv

∑m
k=1;k 6=j n

k
vµ

α
k

(
xk
µk
− xj

µj

)
(
∑m

i=1 n
i
vµ

α
i )2

2

=

√√√√√ m∑
j=1

α2µ2α
j

∑
v∈ej

λv

∑m
k=1 n

k
vµ

α
k

(
xk
µk
− xj

µj

)
(
∑m

i=1 n
i
vµ

α
i )2

2

.
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For µ ∈ C

µαk

(
xk
µk
− xj
µj

)
<

(
µα−1
k +

µαk
µj

)

≤ 2


(

max
e∈E

{∑
e∈v

λv

})α(2−α)

max
v∈V

deg(v)

min
e∈E

{∑
v∈e

λv

}


1
1−α

for all j, k ∈ [m] and any x ∈ Rd with ‖x‖ = 1. Furthermore, using that the
number niv of edges of class i ∈ [m] adjacent to a vertex v fulfills

m∑
i=1

niv = deg(v)

gives

µαj(
m∑
i=1

nivµ
α
i

)2 ≤
µαj(

m∑
i=1

niv

)2


(

max
e∈E

{∑
v∈e

λv

})α
max
v∈V

deg(v)

min
e∈E

{∑
v∈e

λv

}


2α
1−α

≤ 1

deg(v)2


(

max
e∈E

{∑
v∈e

λv

}) 1+α
2

max
v∈V

deg(v)

min
e∈E

{∑
v∈e

λv

}


2α
1−α

and √√√√√√√ m∑
j=1

∑
v∈ej

λv

m∑
k=1

nkv

deg(v)2


2

=
1

min
v∈V

deg(v)

√√√√√ m∑
j=1

∑
v∈ej

λv

2

≤

√
mmax

e∈E

{∑
v∈e

λv

}
min
v∈V

deg(v)
.

Then, the operator norm of the Jacobian has the upper limit

||Dg(µ)||op = sup
‖x‖=1

||Dg(µ) · x||

<α

√√√√√ m∑
j=1

∑
v∈ej

λvµαj

(
∑m

i=1 n
i
vµ

α
i )2

m∑
k=1

nkv

(
µα−1
k +

µαk
µj

)2
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≤α
√
m

min
v∈V

deg(v)

max
e∈E

{∑
v∈e

λv

}
max
v∈V

deg(v)

min
e∈E

{∑
v∈e

λv

}


1+2α
1−α

(3.5)

for any µ ∈ C. This gives

‖Dg(µ)‖op|α=0 = 0 .

Since

max
v∈V

deg(v),

max
e∈E

{∑
e∈v

λv

}
min
e∈E

{∑
v∈e

λv

} ≥ 1

and the map

α 7→ 1 + 2α

1− α

is strictly increasing, the right hand side of Eq. (3.5) also increases with α
increasing. Thus, there exists αmax ∈ (0, 1) such that for any α ∈ (0, αmax)
there exists K ∈ (0, 1) with

‖Dg(µ)‖op ≤ K

from which the claim follows.

Lemma 3.11 gives a condition for α for the equilibrium distribution to be
unique.

Corollary 3.12. The upper limits of uniqueness αmax in Lemma 3.10 is the
minimum solution for α in

1 = α

√
m

min
v∈V

deg(v)

max
e∈E

{∑
v∈e

λv

}
max
v∈V

deg(v)

min
e∈E

{∑
v∈e

λv

}


1+2α
1−α

. (3.6)

Then, there exists a unique equilibrium distribution.

Remark 3.13. This condition is restrictive as even in the vertex transitive case
of Lemma 3.6 Equation (3.6) reads

α =
1

d
3α
1−α
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λ2 λ3 λ2 λ3 λ2

λ2 λ3 λ2 λ3 λ2

e2 e2 e2 e2

e2 e2 e2 e2

e3 e3

. . .

. . .

. . .

. . .

Figure 2: Ladder graph with every second rung missing and the notation used
in Lemma 3.14.

which for the Z case with d = 2 numerically gives αmax ≈ 0.34. Thus, even
in the case where Theorem 1.3 proves convergence for all α ∈ (0, 1) to the
unique equilibrium distribution, Lemma 3.10 does not give the uniqueness of
the distribution on the same space for α.

In general, Theorem 1.2 implies uniqueness of the equilibrium distribution
for all α ∈ (0, 1/2) if Condition 3.5 holds for graphs of bounded degree. This
shows that identifying this specific fixed point problem with weakly reinforcing
dynamics on a graph gives results that are stronger than those given by
Banach’s fixed point theorem. While this is not immediately generalizable
as it relies on the fixed point problem being a description for equilibrium, it
is interesting as a case where probability theory helps solving a fixed point
theory problem as opposed to the other way around.

3.3 Examples

This section will first discuss the quasi vertex transitive ladder graph missing
every second rung to showcase an example allowing for the explicit calculation
of an equilibrium distribution on non-vertex transitive graphs. After this, this
section discusses limit values for Z with auxiliary vertices attached.

The ladder graph with missing rungs given in Figure 2 is a simple example
for a quasi vertex transitive graph as it has two edge classes and two vertex
classes. The existence of an equilibrium distribution as in Condition 3.5 can
be explicitly calculated.

Lemma 3.14. Let G be the ladder graph given in Figure 2 with the correspond-
ing firing rates {λ2, λ3}. Then there exists a unique equilibrium distribution
taking up to two different values for α ∈ (0, 1).

Proof. Let α ∈ (0, 1) first. The graph G is quasi vertex transitive with vertex
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classes

Vi := {v ∈ V |λv = λi}

for i ∈ {2, 3} as periodic translations connect those vertices. Then G also has
two edge classes e2 and e3. Let µ be an equilibrium distribution such that it
assumes two values c2, c3 on the edge classes e2, e3 respectively. The claim
follows by showing that the choice is unique. These values fulfill the relation

c2 =
λ2

2
+ λ3

cα2
2cα2 + cα3

(3.7)

c3 = 2λ3
cα3

2cα2 + cα3
. (3.8)

This implies, by an analogous calculation as in the proof of Lemma 3.7,

c3 ∈

(
2λ3

(
21−2α

(
1 +

λ2

λ3

)α
+ 1

)− 1
1−α

, 2λ3

)
.

Rearrange Equation (3.8) to get

λ3
cα2

2cα2 + cα3
=

2λ3 − c3

4
.

Inserting this into Equation (3.7) gives

c2 =
λ2 + λ3

2
− c3

4

which is a closed form expression for c2 as a function of c3 which, inserted into
Equation (3.8), implies

c3 =
2λ3c

α
3

2
(
λ2+λ3

2 − c3
4

)α
+ cα3

which rearranges to

0 = c1−α
3

(
2

(
λ2 + λ3

2
− c3

4

)α
+ cα3

)
− 2λ3 (3.9)

giving

0 =
2

4α

(
2λ2 + 2λ3

c3
− 1

)α
−
(

2λ3

c3
− 1

)
.

Substitute

x :=

(
2λ3

c3
− 1

) 1
α
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then

x ∈

0,

((
21−2α

(
1 +

λ2

λ3

)α
+ 1

) 1
1−α
− 1

) 1
α


and

4

2
1
α

x =

(
λ2

λ3
+ 1

)
xα +

λ2

λ3
. (3.10)

The right hand side of Equation (3.10) has constant slope while the left hand
side has a slope that is inversely proportional to x. Furthermore, at x = 0, the
right hand side is larger than the left hand side. Thus, there is at most one
value for x such that Equation (3.10) holds and thus at most one equilibrium
distribution and, as Lemma 3.10 implies the existence of at least one equilibrium
distribution, there is a unique equilibrium distribution for each α ∈ (0, 1).

The previous proof even implies a closed form solution.

Corollary 3.15. Let G be the ladder graph given in Figure 2 with the corre-
sponding firing rates {λ2, λ3}. Then

µ(e3) =
1

2

(
λ2 + 3λ3 −

√
λ2

2 + 6λ2λ3 + λ2
3

)
µ(e2) =

1

8

(
3λ2 + λ3 −

√
λ2

2 + 6λ2λ3 + λ2
3

)
is an equilibrium distribution for α = 1/2.

Proof. Let α = 1/2. Then there is a closed form solution for c3 as Equation (3.9)
reads

0 =
√
c3

(
2

√
λ2 + λ3

2
− c3

4
+
√
c3

)
− 2λ3

0 =
√

2c3(λ2 + λ3)− c2
3 + c3 − 2λ3

(2λ3 − c3)2 = 2c3(λ2 + λ3)− c2
3

0 = c2
3 + c3(3λ3 + λ2) + 2λ2

3 ,

which gives two solutions for c3

c3,1/2 =
λ2 + 3λ3

2
±

√
(λ2 + 3λ3)2

4
− 2λ2

3

=
1

2

(
λ2 + 3λ3 ±

√
λ2

2 + 6λ2λ3 + λ2
3

)
from which the claim follows.
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λ

λ λ λ λ λ
e2 e1 e1 e2

e0

. . .. . .

Figure 3: Graph of the integers with an auxiliary edge e′ attached to Z and
the notation used in Lemma 3.17.

Remark 3.16. By Lemma 3.14 Condition 3.5 holds for the ladder graph with
every second rung missing and α ∈ (0, 1) if Equation (3.9) has a solution for
that α as implied by Lemma 3.7.

The easiest example of an almost quasi vertex transitive graph results from
attaching a new vertex to a vertex-transitive graph, e.g. V = Z + {w} with a
new edge e0 = {v, w} attached to a new vertex w and v ∈ Z which is displayed
in Figure 3. The next few Lemmas deal with Z based almost vertex transitive
graphs and show that the equilibrium distributions as in Condition 3.5, if they
converge, converge to the distribution of Z the more the neighbourhood of
an edge ‘looks like’ Z. This gives insights into the behaviour of equilibrium
distributions for non-quasi vertex transitive graphs.

Lemma 3.17. Let G = (Z + {w}, E + e0) and {λv}v∈Z+{w} constant with
λv ≡ λ. Then G is almost vertex transitive and if the limit

lim
d(e,f)→∞

µ(e)

exists for one pair e, f ∈ E and µ as in Condition 3.5 then it exists for any
pair and

lim
d(e′,f ′)→∞

µ(e) = λ

holds for any e′, f ′ ∈ E.

Remark 3.18. Note that the limit is the edge weight for the vertex transitive
Z graph given in Lemma 3.6.

Proof. Removing the auxiliary vertex w and its corresponding edge e0 from the
graph, which is a finite subgraph of G, gives back Z which is vertex transitive
and thus G is almost vertex transitive. In particular, G is not quasi vertex
transitive. This follows since any graph automorphism f has to map f(w) = w
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and since {f(v), f(v′)} ∈ E if and only if {v, v′} ∈ E this means that f has to
be the identity meaning that the identity map is the only automorphism of G
which precludes quasi vertex transitivity.

Furthermore, the setup has a discrete spherical symmetry, i.e. the distance
of an edge to e0 determines its weight as the neighbourhoods of vertices of same
distance to e0 are identical. Let cn be the weight of the edge with distance n
from e0 and let c0 = µ(e0) > 0. Then

cαn = cαn−1

 1

1
λ

(∑n−1
i=1 ci + 1

2c0

)
− (n− 1)

− 1

 n ≥ 2 (3.11)

describes an equilibrium distribution. This follows by requiring that every
edge fulfills the equilibrium equation leading to a recursion for n ≥ 1

0 = −cn + λ

(
cαn

cαn + cαn−1

+
cαn

cαn + cαn+1

)
= −cn + λ− λ

cαn−1

cαn + cαn−1

+ λ
cαn

cαn + cαn+1

= −cn + λ−
n−1∑
i=1

ci −
c0

2
+ λ(n− 1) + λ

cαn
cαn + cαn+1

cαn+1 = cαn

(
1

1
λ

(∑n
i=1 ci + 1

2c0

)
− n
− 1

)
.

The weight c1 is special, due to the concerned edges being incident to e0. The
equilibrium distribution equation for e0 reads

0 = −c0 + λ+ λ
cα0

cα0 + 2cα1

which implies

cα1 =
cα0
2

(
1

c0
λ − 1

− 1

)
. (3.12)

Thus, c0 determines every edge weight in the equilibrium distribution and is
the only free parameter left.

By Lemma 3.7 there exists a weight distribution µ ∈ RE+ such that Equa-
tion (3.11) and Equation (3.12) hold. Assume that there is a pair e, f ∈ E as
in the claim, then

lim
d(e,f)→∞

µ(e) = lim
n→∞

cn

= lim
d(e′,f ′)→∞

µ(e′)
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for any other pair of edges e′, f ′ ∈ E. So the claim follows by showing that

lim
n→∞

cn = λ .

By Corollary 3.8 the sequence {cn}n∈N is a sequence of bounded, strictly
positive real numbers so that the existence of the limit implies that

lim
n→∞

(
cn+1

cn

)α
= L

for L ∈ (0, 1]. If L < 1, then

lim
n→∞

cn = 0

which is a contradiction to the strict positiveness and hence L = 1. Inserting
this into Equation (3.11) gives

1 = lim
n→∞

(
cn+1

cn

)α
=

1
1
λ

(∑∞
i=1(ci − λ) + 1

2c0

) − 1

which rearranges to

1

2
(λ− c0) =

∞∑
i=1

(ci − λ) . (3.13)

For the right hand side of Equation (3.13) to be finite, the summands have to
converge to zero and thus

lim
n→∞

cn = λ .

The previous proof gives a set of equations that uniquely characterize
Condition 3.5 by eliminating all the free parameters if the equilibrium dis-
tribution converges. These expressions emphasize the non-linear nature of
the equilibrium distribution. Even for this easy case of almost quasi vertex
transitive graphs there is no clear way to say that cn has more influence on
the value of c0 than cm for m > n.

Corollary 3.19. Consider G and µ as in Lemma 3.17. If the equilibrium
distribution µ converges then

c0

2
=
λ

2
−
∞∑
i=1

(ci − λ)
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cα1 = −
(λ−

∑∞
i=1 (2ci − λ))α

2

(
1

2
λ

∑∞
i=1 (ci − λ)

+ 1

)

cαn = cαn−1

(
1
2 + 1

λ

∑∞
i=n (ci − λ)

1
2 −

1
λ

∑∞
i=n (ci − λ)

)

holds for n > 1.

Proof. Rearrange Equation (3.13) to

c0

2
=
λ

2
−
∞∑
i=1

(ci − λ) .

Inserting this into Equation (3.12) gives

cα1 = −
(λ−

∑∞
i=1 (2ci − λ))α

2

(
1

2
λ

(
λ
2 −

∑∞
i=1 (ci − λ)

)
− 1
− 1

)

= −
(λ−

∑∞
i=1 (2ci − λ))α

2

(
1

2
λ

∑∞
i=1 (ci − λ)

+ 1

)
.

And, finally, inserting it into Equation (3.11) gives

cαn = cαn−1

 1

1
λ

(∑n−1
i=1 ci + λ

2 −
∑∞

i=1 (ci − λ)
)
− (n− 1)

− 1


= cαn−1

(
1
2 + 1

λ

∑∞
i=n (ci − λ)

1
2 −

1
λ

∑∞
i=n (ci − λ)

)
.

The proof of Lemma 3.17 generalizes to more general graphs.

Corollary 3.20. Let G be a connected, almost vertex transitive with corre-
sponding vertex transitive graph Z and let µ be an equilibrium distribution as
in Condition 3.5. If the limit

lim
d(e,f)→∞

µ(e)

exists for one pair e, f ∈ E then it exists for any pair and

lim
d(e′,f ′)→∞

µ(e) = λ

holds for any e′, f ′ ∈ E.
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Proof. Assume that µ is an equilibrium distribution on G with µ(e) > 0 for
all e ∈ E. Using that G is connected, choose a partition (Z, Gs) such that the
edge set Es does not intersect Z and that Gs is as in Definition 2.16.

Denote by {ci}i∈Z the edge weights given by µ for the edges {vi, vi+1} on
Z. Then, there exists N ∈ N such that

Evn ∩Gs = ∅

for all n ≥ N . Then

cαn = cαn−1

(
1

1
λ

∑n−1
i=N ci − (n− 1)

− 1

)
n ≥ N .

and consequently

lim
n→∞

cn = λ

by analogous arguments to the ones in the proof of Lemma 3.17. A similar
calculation gives

lim
n→−∞

cn = λ

and the claim follows.

Thus, if the equilibrium distributions converge at infinity, it has to converge
to the vertex transitive limit. These results fail to show that any equilibrium
distribution has to converge.

These results further motivate the guess that equilibrium distributions on
almost quasi vertex transitive graphs converge against the distribution on the
corresponding quasi vertex transitive graph which would show that equilibrium
distributions exhibit a sort of locality behaviour. This might be exploitable to
extend the theorems beyond α ∈ (0, 1/2) as, for example, the dynamics G = Z
converge to the equilibrium distribution for all α ∈ (0, 1).



Chapter 4

Proof of homogenization

This chapter contains the proofs and preparatory Lemmas for the theorems.
Section 4.1 contains the proof for Theorem 1.2 and Section 4.2 contains the
proofs for Theorem 1.3 and Theorem 1.4.

4.1 Proof of Theorem 1.2

Consider G connected and such that it admits no infinite descending chains
and the setup of Nt as in Section 1.1. Especially, let the firing rates {λv}v∈V
be an arbitrary set of positive real values. This preliminary section seeks to
first bound Ce away from zero and then allow for a tightening of the bounds
to approach the equilibrium distribution successively.

As each edge is incident to two vertices firing at a rate bounded above by
Λ, the following lemma suggests itself intuitively.

Lemma 4.1. Let α ∈ (0, 1). Then, Ce ⊂ [0, 2Λ] for all e ∈ E almost surely.

Proof. Recall the probability

P(Pv([0, t]× [0, 1]) = n) = Poi(λvt;n) =
(λvt)

n

n!
e−λvt,

of having had n ∈ N events fire on a vertex (independent of the incremented
edge) for any time t ∈ R+. One extremal case is that each event that fires for
Pv increments the value for an edge e = {v, w} ∈ E and that the rate of firing
is Λ, denote this process of maximal firing rate as PΛ

v . The process

Yt =
PΛ
w ([0, t]× [0, 1]) + PΛ

v ([0, t]× [0, 1])

t

counts the normalised occurrences for this upper bound and has an expected
value of

E(Yt) =
E(PΛ

w ([0, t]× [0, 1])) + E(PΛ
v ([0, t]× [0, 1]))

t
=

2Λt

t
= 2Λ .

35
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Then, the strong law of large numbers, Lemma 2.21, gives

lim
t→∞

Yt = 2Λ P-almost surely.

Now,

Xe
t ≤ Yt +

N e
0

t

for all t ∈ [0,∞), implies that

lim sup
t→∞

Xe
t ≤ lim

t→∞
Yt = 2Λ P-almost surely .

The next goal is to bound Ce away from 0. This requires some preparatory
lemmas. The following gives an idea about the growth speed of the edge
weights under sufficiently big time steps.

Lemma 4.2. Let α ∈ (0, 1), k ≥ 1 a natural number, v ∈ V and consider a
sequence {a`,k,v}`∈N,k≥1,v∈V of positive real numbers given by

a`,k,v = ΛA
0
`Λ
−A1

`

(
N0 ∧ (deg(v)− 1)

1
α−1

)
2k`−kA

1
`α ,

where

An` =
∑̀
j=n

αj .

Then, there exists a constant c > 0 such that for any {v, w} = e ∈ E

P e`,k :=P(N e
2k(`+1) ≥ a`+1,k,v ∧ a`+1,k,w | N e

2k` ≥ a`,k,v ∧ a`,k,w)

≥1− exp (−c(a`+1,k,v ∧ a`+1,k,w)) .

holds for k large enough and all ` ≥ 0∗ .

Proof. Consider an edge e = {v, w} where deg(v) ≥ deg(w) without loss of
generality and note that then deg(v) > 1 since otherwise v, w would form
an isolated part in the graph in contradiction to the assumption that G is

∗Note the notation often used in probability theory:

max(a, b) = a ∨ b

min(a, b) = a ∧ b
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infinite and connected. Let a`,k := a`,k,v ∧ a`,k,w = a`,k,v. Then, for any k ∈ N,
Lemma 4.1 gives an ε > 0 such that

N e′
t ≤ 2Λ(1 + ε)t, for all t ≥ 2k ,

for any e′ ∈ Ev ∪ Ew. Hence, under the event N e
2k`
≥ a`,k, Eq. (1.1) has a

lower bound for times t ∈ [2k`, 2k(`+1)] =: T` given by

1

polv,e(Nt)
=

∑
e′∈Ev

(
N e′
t

)α
(N e

t )α

≤
a`,k

α + (deg(v)− 1)(1 + ε)α
(
2Λ
)α

2k(`+1)α

a`,kα

= 1+
(

(deg(v)− 1)(1 + ε)αΛ−A
1
`+1 ·

·
(
N0 ∧ (deg(v)− 1)

1
α−1

)−α
Λ
A1
`+12α+kA1

`+1

)
≤ (1 + 2−kα)(deg(v)− 1)(1 + ε)α2αΛ

A1
`+12kA

1
`+1

ΛA
1
`+1

(
N0 ∧ (deg(v)− 1)

1
α−1

)α
=:

1

G(k, `, ε)
.

By the assumption deg(v) ≥ deg(w) this implies

polv,e(Nt) ∧ polw,e(Nt) ≥ G(k, `, ε) . (4.1)

Now, calculate a lower bound for P e`,k. Let t ∈ T`, the Poisson processes Pv

and Pw having points in [2k`, t]× Ue where Ue ⊂ [0, 1] and L(Ue) ≥ G(k, `, ε)
implies weight increases of the edge e (by one or more) in the time frame
[2k`, t]. This follows since the bound in Eq. 4.1 gives a lowest value for polv,e,
which is equivalent to the probability of incrementation. Limit the considered
increments to the ones in the time frame T` and use that the homogeneous
Poisson Point Processes {Pe}e∈E are pairwise independent and thus their sums
again homogeneous Poisson Point processes to get a lower bound for P e`,k.
Explicitly

P e`,k = P
(
N e

2k(`+1) ≥ a`+1,k | N e
2k` ≥ a`,k

)
≥ P

(
N e

2k(`+1) −N e
2k` ≥ a`+1,k | N e

2k` ≥ a`,k
)

≥ P
(
Pv(T` × Ue) + Pw(T` × Ue) ≥ a`+1,k | N e

2k` ≥ a`,k
)

= P
(
Poi ((λv + λw)L(T`)G(k, `, ε)) ≥ a`+1,k | N e

2k` ≥ a`,k
)

≥ P
(
Poi(2ΛL(T`)G(k, `, ε)) ≥ a`+1,k | N e

2k` ≥ a`,k
)
.

Note that this is the probability for a Poisson-distributed random variable and
is independent of the weights on the graph, and thus independent from its
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condition so that

P e`,k ≥ P (Poi(2ΛL(T`)G(k, `, ε)) ≥ a`+1,k) . (4.2)

Use Lemma 2.22 to handle this term. For the application, the order between
the Poisson parameter in Eq. (4.2) and a`+1,k is required. Recall that

2ΛL(T`)G(k, `, ε) = a`+1,k

(
N0 ∧ (deg(v)− 1)

1
α−1

)α−1

deg(v)− 1

21−α (1− 2−k
)

(1 + 2−kα)(1 + ε)α
,

and that by Lemma 4.1, ε is arbitrarily small for large enough k ∈ N. Thus,
let k →∞ and choose ε such that the second fraction is arbitrarily close to 1.
Furthermore, α ∈ (0, 1) implies that 21−α > 1 and(

N0 ∧ (deg(v)− 1)
1

α−1

)α−1

deg(v)− 1
≥ 1 ,

which can be easily seen by noting that if N0 > (deg(v)− 1)1/(α−1) then the
fraction evaluates to 1 and that the fraction is inversely proportional to N0 as
α− 1 < 0. Hence, K ∈ N can be chosen such that the coefficient of a`+1,k is
larger than or equal to 1 for all k > K. The resulting inequality

2ΛL(T`)G(k, `, ε) ≥ a`+1,k

implies that, for fixed k and ε, there exists c̃ > 1 such that

2ΛL(T`)G(k, `, ε) = c̃ · a`+1,k .

Note that c is not dependent on `. Thus, Lemma 2.22 gives

P e`,k ≥ 1− exp

(
a`+1,k − 2ΛL(T`)G(k, `, ε) + a`+1,k log

(
2ΛL(T`)G(k, `, ε)

a`+1,k

))
= 1− exp ((1− c̃+ log(c̃))a`+1,k) .

The function 1 − x + log(x) has the maximum 0 at x = 1 and decreases
monotonically for x > 1. Hence, the above coefficient of a`+1,k is negative and
choosing

c = |1− c̃+ log(c̃)|

yields the claim for all `.

Remark 4.3. For α ∈ (0, 1/2) and ` ≥ 1

`−A1
`α > 0

and thus

lim
k→∞

a`,k,v =∞

because the exponent of 2 is strictly positive.
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Lemma 4.2 gives a propagation law for lower bounds on the edge weights
through time. Taking the limit of t→∞ these lower bounds allow the exclusion
of trivial edge weights in X∞ at the cost of already limiting α to (0, 1/2).

Lemma 4.4. Let α ∈ (0, 1/2). Then, there exists a K ∈ N such that

Ce ⊂

[(
Λ

Λ
α

) 1
1−α N0 ∧ ((deg(v) ∨ deg(w))− 1)

1
α−1

2Kα/(1−α)
, 2Λ

]

almost surely for all {v, w} = e ∈ E.

Proof. The upper bound follows from Lemma 4.1. Let E 3 e = {v, w} where,
without loss of generality, deg(v) ≥ deg(w) and set a`,k := a`,k,v∧a`,k,w = a`,k,v.
The claim follows if there exists K ∈ N such that

P

(
lim inf
t→∞

Xe
t <

(
Λ

Λ
α

) 1
1−α N0 ∧ (deg(v)− 1)

1
α−1

2Kα/(1−α)

)
= 0 . (4.3)

This follows by showing that there exists a K ∈ N such that

∞∑
`=1

P
(
N e

2K` < a`,k
)
<∞ (4.4)

since then Borel-Cantelli implies that {N e
2K`

< a`,k} is true for at most finitely
many ` ∈ N almost surely, implying that

1 ≤ lim inf
`→∞

N e
2K`

a`,k
= lim inf

`→∞

Xe
2K`

(
2KΛ

)∑`
j=1 α

j

Λ
∑`
j=0 α

j
(
N0 ∧ (deg(v)− 1)

1
α−1

)
=

lim inf`→∞X
e
2K`

(
2KΛ

)α/(1−α)

Λ
1

1−α
(
N0 ∧ (deg(v)− 1)

1
α−1

)
almost surely, which is the statement from Eq. (4.3).

It remains to show that Eq. (4.4) holds. To this end, use that for two
events A1 and A2 in an arbitrary probability space (Ω,P)

1− P(A1 ∩A2) = P(Ac1 ∪Ac2) = P (Ac1 ∪ (Ac2 ∩A1))

≤ P(Ac1) + P(Ac2)P(A1 | Ac2)

≤ P(Ac1) + P(A1 | Ac2) .

Reordering this gives that

P(A1) ≤ P(A1 ∩A2) + P(A1 | Ac2) (4.5)

holds, whereby Aci indicates the complement of Ai in Ω.
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Using Lemma 4.2 with Equation (4.5) gives

P
(
N e

2k` < a`,k
) (4.5)

≤

(
P
({
N e

2k` < a`,k
}
∩
{
N e

2k(`−1) < a`−1,k

})
+ P

(
N e

2k` < a`,k | N e
2k(`−1) ≥ a`−1,k

) )

≤

(
P
({
N e

2k` < a`,k
}
∩
{
N e

2k(`−1) < a`−1,k

})
+ exp(−ca`,k)

)
≤P

(
N e

2k(`−1) < a`−1,k

)
+ exp(−ca`,k) .

A recursive evaluation gives

P
(
N e

2k` < a`,k
)
≤
∑̀
j=1

exp(−ca`,k) + P
(
N e

1 < Λ
(
N0 ∧ (deg(v)− 1)

1
α−1

))
.

Since Λ ∈ (0, 1) and N e
1 > N0

P
(
N e

1 < Λ
(
N0 ∧ (deg(v)− 1)

1
α−1

))
≤ P(N e

1 < N0) = 0 .

This is an increasing sequence of non-negative real numbers in `. Apply the
monotone convergence theorem to get

lim
k→∞

∞∑
`=1

P
(
N e

2k` < a`,k
)
≤ lim

k→∞

∞∑
`=1

∑̀
j=1

exp(−ca`,k)

≤
∞∑
`=1

∑̀
j=1

lim
k→∞

exp(−ca`,k)︸ ︷︷ ︸
=0

= 0

whereby the last equation follows by Remark 4.3. As the summands, and thus
the sum, are continuous in k, there exists a K such that the sum is finite giving
the claim by Eq. (4.3).

In preparation for the theorem proofs develop lemmas allowing the iterative
approach to equilibrium if there exists a non-trivial lower bound on Ce. For
the equilibrium to exist assume G with bounded degree from here on out.

Lemma 4.5. Let v, w ∈ V, v ∼ w, µ an equilibrium distribution on G and α ∈
(0, 1). Suppose that there is % ∈ R+ such that % > 1 and Ce ⊂

[
1
%µ(e), %µ(e)

]
almost surely holds for all e ∈ Ev ∪ Ew. Then,

C{v,w} ⊂
[

1

%2α
µ({v, w}), %2αµ({v, w})

]
.

Proof. Without loss of generality, let deg(v) ≥ deg(w). For % > 1 define

G% =
⋂

e∈Ev∪Ew

{
Ce ⊂

[
1

%
µ(e), %µ(e)

]}
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as the event that Ce ⊂
[

1
%µ(e), %µ(e)

]
holds for all e ∈ Ev ∪ Ew. Under this

event, X
{v,w}
t gains mass at a rate of at least

av =

(
1
%µ(e)t

)α(
1
%µ(e)t

)α
+
∑

e′∈Ev
e′ 6=e

(%µ(e′)t)α

=

(
1
%µ(e)

)α(
1
%µ(e)

)α
+
∑

e′∈Ev
e′ 6=e

(%µ(e′))α

=
1

1 +
∑

e′∈Ev
e′ 6=e

%2α
(
µ(e′)
µ(e)

)α
≥ 1

%2α +
∑

e′∈Ev
e′ 6=e

%2α
(
µ(e′)
µ(e)

)α
per vertex for t large enough and e = {v, w}. More precisely, under G% find a

function {εt}t≥0 with εt ↘ 0 which bounds the mass N
{v,w}
t by below by

N
{v,w}
t ≥ Pv([0, t]× Uv,t) + Pw([0, t]× Uw,t) +N

{v,w}
0

for all t > 0 where L(Uv,t) = av − εt and L(Uw,t) = aw − εt. Analogous
arguments to the one in the proof of Lemma 4.1 give

lim inf
t→∞

X
{v,w}
t ≥ λv

1

%2α +
∑

e′∈Ev
e′ 6=e

%2α
(
µ(e′)
µ(e)

)α + λw
1

%2α +
∑

e′∈Ew
e′ 6=e

%2α
(
µ(e′)
µ(e)

)α
=
µ(e)

%2α
.

where the last equality follows by µ being an equilibrium distribution. A
similar argument leads to

lim sup
t→∞

X
{v,w}
t ≤ %2αµ(e)

and the claim follows.

The first part of this section binds C away from zero and the second part
shows that if C is bound away from zero, its bounds can be iteratively tightened.
Combine these results to get the proof of Theorem 1.2.
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Proof of Theorem 1.2. Lemma 3.7 implies that there exists an equilibrium
distribution µ such that µ(e) > 0 for all e ∈ E. Lemma 4.4 and 4.5 imply that

there exists a % > 1 such that Ce ⊂
[

1
%µ(e), %µ(e)

]
almost surely for all e ∈ E

which can be iteratively tightened, with the n-th tightening step given by the
P-almost sure event

An =

{
Ce ⊂

[
1

%(2α)n
µ(e), %(2α)nµ(e)

]
for all e ∈ E

}
.

For α < 1/2 this yields the claim by taking the limit as

1 = lim
n→∞

P (An) = P

(⋂
n∈N

An

)
= P(Ce = µ(e) for all e ∈ E) .

Thus, for an equilibrium distribution µ, Xt converges P-almost surely against
it. By the uniqueness of almost sure limits this implies that if there exists an
equilibrium distribution it must be unique.

4.2 Proof of Theorem 1.3 and Theorem 1.4

Let G be vertex-transitive with degree d and let the firing rates {λv}v∈V be
constant

λv ≡ λ

for some λ > 0. Improve the previous results by proving a version of Lemma 4.5,
explicitly using the fact that the vertices are indistinguishable, which allows
for an iterated approach to the equilibrium which includes a broader range for
α than (0, 1/2).

Lemma 4.6. Let v, w ∈ V with v ∼ w and α ∈ (0, 1). Suppose that there
are 0 < a < 2λ/d < b < 2Λ such that Ce ⊂ [a, b] almost surely holds for all
e ∈ Ev ∪ Ew. Then, there exist a′ ∈ [a, 2λ/d) and b′ ∈ (2λ/d, b] such that
b′/a′ ≤ (b/a)2α and C{v,w} ⊂ [a′, b′] almost surely.

Proof. Let

Ga,b =
⋂

e∈Ev∪Ew

{Ce ⊂ [a, b]}

denote the event that Ce ⊂ [a, b] holds for all e ∈ Ev ∪ Ew. Under this event,

X
{v,w}
t gains mass at a rate of at least

a′′ = 2λ
(at)α

(at)α + (d− 1)(bt)α
= 2λ

aα

aα + (d− 1)bα
,
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for t large enough. One can find the desired a′ by setting a′ = a ∨ a′′. More
precisely, under Ga,b one can find a sequence {εt}t≥0 with εt ↘ 0 such that

N
{v,w}
t ≥ Pv([0, t]× Uv,t) + Pw([0, t]× Uw,t) +N

{v,w}
0

bounds the mass N
{v,w}
t by below for all t > 0 where L(Uv,t) = L(Uw,t) =

a′/2λ− εt. Analogous arguments to the one in the proof of Lemma 4.1 give

lim inf
t→∞

X
{v,w}
t ≥ a′ P-a.s. .

Similar arguments give the upper bound

b′ = b ∧ b′′ where b′′ = 2λ
bα

(d− 1)aα + bα
.

Combining both expressions gives

b′

a′
≤ bα

aα
· (d− 1)bα + aα

bα + (d− 1)aα
(4.6)

≤ bα

aα
· d · b

α

d · aα

≤
(
b

a

)2α

almost surely.

Remark 4.7. Note that in the special case d = 2 Eq. (4.6) reduces to

b′

a′
≤
(
b

a

)α
.

Remark 4.8. Using that

a′′ = 2λ
aα

aα + (d− 1)bα
>

2λaα

(d− 1)
(
2Λ
)α

+ (2λ/d)α

yields that

2λaα

(d− 1)
(
2Λ
)α

+ (2λ/d)α
> a ⇐⇒ a < ϕ

(
2Λ
)
,

where

ϕ(x) :=

(
2λ

(d− 1)xα + (2λ/d)α

)1/1−α
,

then a′ = a ∨ a′′ = a′′ and thus a′ ∈ (a, 2λ/d] since a′′ > a.
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Define the concept of a discrete sphere to expand the tightening of the
bounds for one edge to tightening of the bounds for edges inside a sphere.

Definition 4.9. Define the sphere ∂DN (v) ⊂ E of radius N centered around
v ∈ V on G as the maximal set of edges, such that for any {w,w′} ∈ ∂DN (v):
d(v, w) ∧ d(v, w′) = N .

Furthermore, define it’s interior DN (v) as the set of all edges surrounded
by ∂DN (v), i.e.

DN (v) =
N−1⋃
n=0

∂Dn(v) .

and note that ∂DN (v) ∩DN (v) = ∅.

Discrete spheres have similar properties to their continuous analogues. The
following statement shows that a sphere surrounds its interior.

Lemma 4.10. Let v, w,w′ ∈ V with w ∼ w′ and n ∈ N such that {w,w′} ∈
DN (v). Then Ew ∪ Ew′ ⊂ ∂DN (v) ∪DN (v).

Proof. Since d(w, v) ∨ d(w′, v) ≤ N − 1, any edge {u, u′} ∈ Ew ∪ Ew′ has
d(u, v) ∨ d(u′, v) ≤ N which implies the claim per definition of the sphere.

Spheres around v of radius N also exhaust the set of edges less or equal
that distance to v.

Lemma 4.11. Let v, w,w′ ∈ V with w ∼ w′ and N ∈ N such that d(v, w) ∨
d(v, w′) ≤ N , then {w,w′} ⊂ ∂DN (v) ∪DN (v).

Proof. Follows by the fact that the spheres are the maximal sets.

Finally, spheres encircle a set of edges and paths to the outside need to
intersect them.

Lemma 4.12. For any v, w ∈ V and N ∈ N such that d(v, w) > N there is
no path P ⊂ E from v to w such that P ∩ ∂DN (v) = ∅.

Proof. Assume a path P with P ∩ ∂DN (v) = ∅ exists. Since d(v, w) > N , P
contains an edge {u, u′} such that d(u, v) ∧ d(u′, v) = N but this contradicts
∂DN (v) being, per definition, the maximal set with such edges.

With this find a tightening of Ce for edges in the interior of a sphere
depending on the edges in the sphere having non-trivial weights.

Lemma 4.13. Let α ∈ (0, 1). Let N ∈ N, v ∈ V and a0 > 0 such that
Ce ⊂ [a0, 2] almost surely for e ∈ ∂DN (v) then Ce ⊂ [a′0, 2] almost surely for
e ∈ DN (v) where

a′0 =

{
2 a0α

a0α+(d−1)(2Λ)
α if a0 < ϕ

(
2Λ
)
,

ϕ
(
2Λ
)

else.
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Remark 4.14. Note that in the a0 < ϕ
(
2Λ
)

case a′0 > a0 (per definition of
ϕ
(
2Λ
)
).

Proof. Lemma 4.4 gives almost sure lower bounds ae > 0 for Ce with e ∈ DN (v).
If

min
(
{ae}e∈DN (v)

)
≥ ϕ

(
2Λ
)

(4.7)

choose a′0 such that the claim follows. Assume that Eq. (4.7) does not hold.
Choose {w,w′} ∈ DN (v) such that

a{w,w′} = min({ae}e∈DN (v)) .

Then, Ce ⊂ [a{w,w′}, 2] for all e ∈ Ew ∪ Ew′ by Lemma 4.10. As ae < ϕ
(
2Λ
)
,

Lemma 4.6 is applicable on the {w,w′} edge and by Remark 4.8 there exists
a new lower bound a′e where ae < a′e. The definition of DN (v) ensures that
this procedure to increase the lowest lower bound is repeatable until the
claim follows, whereby the a′0 in the case a0 < ϕ

(
2Λ
)

comes from a′ as in
Lemma 4.6.

Using Lemma 4.6 and 4.13, improve Lemma 4.4 by replacing the lower
bound by a strictly positive value. First, a definition to ease the proof later.

Definition 4.15. Let N ∈ N, v ∈ V and a, b ∈ RE+. Denote by

SvN (a, b) =
⋂
n≥N

⋃
e∈∂Dn(v)

{Ce 6⊂ [a(e), b(e)]}

the event that there exists an edge in every sphere of radius n ≥ N around
v such that Ce is not in [a, b]. Say that the vertex v has a opening range of
N . The name comes from the fact that under SvN (a, b) Lemma 4.13 is not
applicable anymore and no statement can be made on the edges contained
within DN (v).

The inverse statement ¬SvN (a, b) states that there exists an n ≥ N such
that Ce is in [a, b] for all edges in ∂Dn(v). Under this event, say that v has a
closing range or infinite opening range as ¬SvN (a, b) implies that Lemma 4.13
can be applied to all edges contained within Dn(v).

Lemma 4.16. Let α ∈ (0, 1). Then Ce ⊂
[
ϕ
(
2Λ
)
, 2
]

almost surely holds for
any e ∈ E.

Proof. Let the opening and closing ranges in this proof refer to the range
[ϕ
(
2Λ
)
, 2]. The claim is equivalent to showing that

P(All vertices have finite opening ranges) = 0 (4.8)
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This follows since Eq. (4.8) rewrites to

P(There exists v ∈ V with closing range 0) = 1 .

From which Lemma 4.13 implies the claim since Lemma 4.11 implies that
for any e ∈ E there exists N ∈ N such that e ∈ Dn(v) for all n > N . Prove
Eq. (4.8) by contradiction, i.e. show that the assumption

P(All vertices have finite opening ranges) > 0 (4.9)

leads to a contradiction. Eq. (4.9) implies

0 <P
(
∀v ∈ V ∃N0 ∈ N : SvN0

(
ϕ
(
2Λ
)
, 2
))

=P

⋂
v∈V

∞⋃
N0=0

SvN0

(
ϕ
(
2Λ
)
, 2
)

≤
∞∑

N0=0

P
(
SvN0

(
ϕ
(
2Λ
)
, 2
))

,

for any v ∈ V . Hence, there exists a summation index N ∈ N and δ ∈ (0, 1)
such that

P
(
SvN
(
ϕ
(
2Λ
)
, 2
))

= P (v has an opening range of N) = δ . (4.10)

By vertex-transitivity each edge connects two indistinguishable vertices and
since the initializations of the edge weights are equal {Ce}e∈E is stationary and
Eq. (4.10) holds for any N ∈ N. Furthermore, the event is decreasing with N
and taking the limit gives

δ = lim
N→∞

P (v has an opening range of N)

= P

( ∞⋂
N=0

SvN
(
ϕ
(
2Λ
)
, 2
))

= P
(
∀n ∈ N∃e ∈ ∂Dn(v) : Ce 6⊂ [ϕ

(
2Λ
)
, 2]
)

= P (v has an opening range of 0) .

This gives

δ ≤ P
(
Ce 6⊂ [ϕ

(
2Λ
)
, 2] for some e ∈ ∂Dn(v)

)
(4.11)

for any n ∈ N. Now, take a decreasing sequence {bm}m∈N of positive real
numbers smaller than 2λ/d such that bm ↘ 0. Using Lemma 4.4 and the above
n gives

1 = P
(
Ce ⊂ (0, 2Λ] for all e ∈ ∂Dn+M (v)

)
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= P

( ∞⋃
m=0

{Ce ⊂ (bm, 2] for all e ∈ ∂Dn+M (v)}

)
(4.12)

= lim
m→∞

P (Ce ⊂ [bm, 2] for all e ∈ ∂Dn+M (v)) ,

where M ∈ N and stationarity of Ce has been used to get Equation (4.12).
Thus, there exists m̃ ∈ N such that

P (Ce ⊂ [bm̃, 2] for all e ∈ ∂Dn+M ) > 1− δ . (4.13)

Note that by the stationarity of Ce, m̃ is independent of M . If bm̃ > ϕ
(
2Λ
)

the claim follows for M = 0 as Ce ⊂ [bm̃, 2]⇒ Ce ⊂ [ϕ
(
2Λ
)
, 2] which, inserted

into Eq. (4.13), gives the desired contradiction to Eq. (4.11). In the case
bm̃ < ϕ

(
2Λ
)
, Lemma 4.13 gives b1m > bm such that

1− δ < P (Ce ⊂ [bm̃, 2] for all e ∈ Dn+M )

≤ P
(
Ce ⊂ [b1m̃, 2] for all e ∈ ∂Dn+M−1

)
.

Choose M ∈ N and iterate the process to get a sequence
{
bM̃m̃

}
M̃∈[1,M ]

such

that bMm̃ > ϕ
(
2Λ
)

and thus

1− δ < P
(
Ce ⊂ [ϕ

(
2Λ
)
, 2] for all e ∈ ∂Dn

)
which gives the desired contradiction to Eq. (4.11) again and thus the claim.

Finally,

Proof of Theorem 1.3. Note that the case G = Z corresponds to d = 2. Then,
Lemma 4.16, 4.6 and Remark 4.7 imply that there exist sequences {ai}i≥1 and
{bi}i≥1 such that

1. {ai}i≥1 is increasing and bounded above by λ,

2. {bi}i≥1 is decreasing and bounded below by λ,

3. bi+1/ai+1 ≤ (bi/ai)
α < bi/ai, and

4. Ce ⊂ [ai, bi] almost surely holds for all i ≥ 0, e ∈ E.

Complete the proof by observing that the first three items imply that ai and
bi converge to 1. Since {Ce ⊂ [ai, bi]} is a decreasing set the claim follows for
any e ∈ E.

1 = lim
i→∞

P (Ce ⊂ [ai, bi])

= P

⋂
i≥0

{Ce ⊂ [ai, bi]}


= P (Ce = 1) .
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Proof of Theorem 1.4. Intuitively, the ϕ
(
2Λ
)

from Lemma 4.6 is the worst-
case estimate for the lower bound on Ce using the previous bounds Ce ⊂ (0, 2Λ].
With these improved bounds, Ce ⊂ [ϕ

(
2Λ
)
, 2], update the worst-case estimate

on the upper bound by ϕ ◦ ϕ
(
2Λ
)

and repeating analogous proofs to get
Ce ⊂ [ϕ

(
2Λ
)
, ϕ ◦ ϕ

(
2Λ
)
]. Define the sequence of improved lower, resp. upper,

bounds as

xn = ϕ(ϕ(xn−1))

and note that the only fixed point on (0, 2Λ] of that sequence is 2λ/d, whereby
uniqueness follows by monotonicity. Since the map ϕ ◦ ϕ describes one im-
provement step of either the lower or the upper bound on Ce.

Complete the proof by iteratively improving Ce for all α < αd using
Banach’s fixed point theorem until it converges to the unique fixed point,
choosing αd > 1/2 such that ϕ ◦ ϕ is contracting on (0, 2Λ]. The rest of this
proof concerns itself with showing the existence of αd.

ϕ is strictly monotonically decreasing and thus ϕ◦ϕ is strictly monotonically
increasing. Furthermore, for α = 1/2

ϕ ◦ ϕ(x)

x
=

 2λ

2λ(d−1)

d−1+
√

2λ
xd

+
√

2λx
d


2

,

which is again strictly monotonically decreasing. Thus the slope of ϕ ◦ ϕ is
strictly lower than one, i.e.

Φα := max
x∈(0,2Λ]

(ϕ ◦ ϕ)′(x) ∈ (0, 1) .

Using the fundamental theorem of calculus, this implies that ϕ ◦ ϕ(x) is a
contraction on (0, 2Λ] with the standard euclidean metric dR since

dR(ϕ(ϕ(x)), ϕ(ϕ(y))) = |ϕ(ϕ(x))− ϕ(ϕ(y))|

=

∣∣∣∣∫ x

y
(ϕ ◦ ϕ)′(z)dz

∣∣∣∣
≤ Φα

∣∣∣∣∫ x

y
dz

∣∣∣∣
= Φα · dR(x, y) .

As the slope of ϕ ◦ ϕ increases with increasing α and ϕ ◦ ϕ is continuous in α
there exists an αd ∈ (1/2, 1) such that Φαd = 1 and thus ϕ ◦ ϕ is contracting
for all α ∈ (0, αd).
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