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Problem set 8

Problem 8.1 Wick’s theorem
The joint probability distribution for N gaussian variables {ϕi}i=1,...,N reads

P [ϕ] =
1√

(2π)N det A
exp

(
−1

2
ϕT ·A−1 · ϕ

)
,

with some real positive definite symmetric matrix A and the shorthand notation ϕT ·A−1 ·ϕ =
∑N
i=1

∑N
j=1 ϕi(A

−1)ijϕj
has been introduced.

1. Convince yourself that P is properly normalized.

2. Prove the following relation for the generating functional

Z[j] = 〈exp
(
jT · ϕ

)
〉 = exp

(
1
2
jT ·A · j

)
.

3. Correlation functions are then readily obtain by taking appropriate derivatives

〈ϕi1 . . . ϕi2n
〉 =

∂2n

∂ji1 . . . ∂ji2n

∣∣∣∣
j=0

Z[j] .

Evaluate explicitly the two- and four-point correlation functions 〈ϕi1ϕi2〉, 〈ϕi1ϕi2ϕi3ϕi4〉.

4. Prove that all only non-vanishing correlation functions contain an even number of random variables. Furthermore
show that higher order correlation function can be related to two-point function via

〈ϕi1 . . . ϕi2n
〉 = 〈ϕi1ϕi2〉〈ϕi3ϕi4〉 . . . 〈ϕi2n−1ϕi2n

〉+ permutations .

Problem 8.2 cubic anisotropy
Consider the modified Landau-Ginzburg Hamiltonian

βH = H̄ =
∫

ddx

{
M∑
i=1

[
c

2

(
~∇ϕi

)2

+
r

2
ϕ2
i

]
+ u(

M∑
i=1

ϕ2
i )

2 + v
M∑
i=1

ϕ4
i

}

for an M -component vector ϕi(~x), i = 1, . . .M . The term v
∑M
i=1 ϕ

4
i generates a cubic anisotropy.

1. Mean-field theory:



(a) The anisotropy breaks rotiational symmetry. Find the optimal direction for a fixed magnitude
∑M
i=1 ϕ

2
i

for v > 0 and for v < 0 ? What is the degeneracy of the easy magnetization axes in each direction?

(b) Provide conditions for the stability of the mean-field solution in the u–v plane.

(c) In general higher order terms, e.g. w
(∑M

i=1 ϕ
2
i

)3

with w > 0, ensure stability in the regions not allowed
from part b). Sketch a phase diagram in the r–v plane for fixed u > 0 and indicate the ordered phases and
nature of the phase transitions.

(d) Are there any Goldstone modes in the ordered phases?

2. ε-expansion: Perform a perturbation expansion up to second order, and inspect the resulting diagrams.

(a) Show that the first order correction yields recursion relations

dr
d`

= (d+ 2ζ)r + 4A[u(M + 2) + 3v] +O(u2, uvv2, . . .) ,

dc
d`

= (d− 2 + 2ζ)c+O(u2, uv, v2, . . .) ,

where

A =
∫ >

p

1
r + cp2

=
1
c
KdΛd−2d`+O(r)

Assume that the non-trivial fixed point are O(ε) where ε = 4− d to conclude that

ζ =
2− d

2
+O(ε2) .

The parameter c may then kept fixed at unity, c = 1.

(b) The second order perturbation yields the recursion relation for the couplings. Using the results derived so
far show that

du
d`

= εu− 4u2(M + 8)K4 − 24uvK4 +O(ε3) ,

dv
d`

= εv − 36v2K4 − 48uvK4 +O(ε3) .

(c) Find all fixed points in the u–v plane, and draw the flow patterns for M < 4 and M > 4. Discuss the
relevance of the cubic anisotropy term near the stable fixed point in each case. Calculate the exponent ν
at the stable fixed point for the cases M < 4 and M > 4.

(d) Is the region of stability in the u–v plane calculated within mean-field approximation enhance or diminished
by inclusion of fluctuations? Since in reality higher order terms will be present, what does this imply about
say the nature of the phase transition for a small negative v and M > 4.

(e) Sketch schematic phase diagrams in the r–v plane for M > 4,M < 4 and u > 0, identifying the ordered
phases. Are there Goldstone modes in any of these phases close to the phase transition?



Solution 8.1
Gaussian variables

P [ϕ] =
1√

(2π)N det A
exp

(
−1

2
ϕT ·A−1 · ϕ

)
,

1. Normalization. Since A is real symmetric positive definite, there is a rotation matrix R, i.e. R ·RT = RT ·R = I,
such that

R ·A ·RT = D = diag [λ1, . . . , λN ]

where all eigenvalues are real and positive λi > 0. In particular, det A = det D =
∏N
i=1 λi. Consequently

D−1 = (RT ·A ·R)−1 = R−1 ·A−1 · (RT )−1 = RT ·A−1 ·R

Then substitution ϕ = R · ψ leaves the measure invariant, since |det R| = 1,∫
[dϕ]P [ϕ] =

1√
(2π)N det A

∫
[dϕ] exp

(
−1

2
ϕT ·A−1 · ϕ

)
=

1√
(2π)N det A

∫
[dR · ψ] exp

(
−1

2
(R · ψ)T ·A−1 ·R · ψ

)
=

1√
(2π)N det D

∫
[dψ] exp

(
−1

2
ψT ·D−1 · ψ

)

=
N∏
i=1

∫
dψi√
2πλi

e−ψ
2
i /2λi = 1

2. The generating functional

Z[j] = 〈exp
(
jT · ϕ

)
〉

=
∫

[dϕ] P [ϕ] exp
(
jT · ϕ

)
=

1√
(2π)N det A

∫
[dϕ] exp

(
−1

2
ϕT ·A−1 · ϕ+

1
2
jT · ϕ+

1
2
ϕT · j

)
=

1√
(2π)N det A

∫
[dϕ] exp

(
−1

2
(ϕT − jT ·A) ·A−1 · (ϕ−A · j) +

1
2
jT ·A · j

)
note: A = AT

=
1√

(2π)N det A

∫
[dϕ̃] exp

(
−1

2
(ϕ̃T ·A−1 · ϕ̃+

1
2
jT ·A · j

)
substitute ϕ̃ = ϕ−A · j

= Z[0] exp
(

1
2
jT ·A · j

)
Since by normalization Z[0] = 1,

Z[j] = exp
(

1
2
jT ·A · j

)
3. Correlation functions are then readily obtain by taking appropriate derivatives

〈ϕi1 . . . ϕi2n
〉 =

∂2n

∂ji1 . . . ∂ji2n

∣∣∣∣
j=0

Z[j]

Obvious by construction.
The two-point correlation function

〈ϕi1ϕi2〉 =
∂2

∂ji1∂ji2

∣∣∣∣
j=0

Z[j]



=
∂2

∂ji1∂ji2

∣∣∣∣
j=0

exp

1
2

∑
k,l

jkAkljl


=

∂

∂ji2

∣∣∣∣
j=0

Ai1ljl exp

1
2

∑
k,l

jkAkljl


〈ϕi1ϕi2〉 = Ai1i2

Similarly

〈ϕi1ϕi2ϕi3ϕi4〉 =
∂4

∂ji1∂ji2∂ji3∂ji4

∣∣∣∣
j=0

exp

1
2

∑
k,l

jkAkljl

 expand exponential

=
∂4

∂ji1∂ji2∂ji3∂ji4

1
2!

1
2

∑
k,l

jkAkljl

2

=
∂3

∂ji2∂ji3∂ji4

(∑
l

Ai1ljl

)(
1
2

∑
m,n

jmAmnjn

)

=
∂2

∂ji3∂ji4

[
Ai1i2

(
1
2

∑
m,n

jmAmnjn

)
+

(∑
l

Ai1ljl

)(∑
n

Ai2njn

)]

=
∂

∂ji4

[
Ai1i2

∑
n

Ai3njn +Ai1i3
∑
n

Ai2njn +

(∑
l

Ai1ljl

)
Ai2i3

]
= Ai1i2Ai3i4 +Ai1i3Ai2i4 +Ai1i4Ai2i3

〈ϕi1ϕi2ϕi3ϕi4〉 = 〈ϕi1ϕi2〉〈ϕi3ϕi4〉+ 〈ϕi1ϕi3〉〈ϕi2ϕi4〉+ 〈ϕi1ϕi4〉〈ϕi2ϕi3〉

4. The general case is known as Wick’s theorem in quantum field theory or gaussian moment theorem in probability
theory.

a) Since the Taylor expansion of Z[j] = exp( 1
2 j

T · A · j) is even in j only even-number correlation function are
non-vanishing.

b) For the 2n-point correlation function, only a single term of the Taylor expanded exponential survives

〈ϕi1ϕi2 . . . ϕi2n−1ϕi2n
〉 =

∂2n

∂ji1 . . . ∂ji2n

1
n!

(
1
2
jT ·A · j

)n
Differentiating the polynomial yields (2n)! terms, each being of the desired form but with a prefactor of 1/2nn!. How-
ever this factor is canceled since this is precisely the combinatorial factor of how many times a particular contraction
occurs.

For example, take the term Ai1i2Ai3i4 . . . Ai2n−1i2n
. For the first derivative ∂/∂ji1 , I can pick any of the n factors,

additionally I have the freedom to pick first or the second j. To obtain the desired contraction, there is no choice for
∂/∂ji2 . For the derivative ∂/∂ji3 there is the remaining choice of (n − 1) factors, with residual freedom of factor 2,
etc. Thus each particular contraction is produced exactly 2nn! times cancelling the prefactor.

It is important to realize that the total number of terms does not change even if some of the indices are the same

〈ϕ1ϕ2ϕ2ϕ4〉 = 〈ϕ1ϕ2〉〈ϕ2ϕ4〉+ 〈ϕ1ϕ2〉〈ϕ2ϕ4〉+ 〈ϕ1ϕ4〉〈ϕ2ϕ2〉
= 2〈ϕ1ϕ2〉〈ϕ2ϕ4〉+ 〈ϕ1ϕ4〉〈ϕ2

2〉

Solution 8.2
The cubic anisotropy is breaks the rotational symmetry

H̄ =
∫

ddx

{
M∑
i=1

[
c

2

(
~∇ϕi

)2

+
r

2
ϕ2
i

]
+ u(

M∑
i=1

ϕ2
i )

2 + v
M∑
i=1

ϕ4
i

]



A question one would like to answer with this model is whether the fluctuations can restore the full symmetry. We
shall see that this may actually be the case

1. Mean-field theory: First we assume that ϕi(~x) = const. is spatially homogeneous.
a) For fixed magnitude

∑M
i=1 ϕ

2
i = m2, the first two terms are independent of the direction of ϕi in the M -

dimensional order parameter-space. Hence we have to minimize the anistropy term only. With a Lagrange parameter

∂

∂ϕk

[
v
M∑
i=1

ϕ̄4
i − λ

(
M∑
i=1

ϕ̄2
i −m2

)]
= 4vϕ̄3

k − 2λϕ̄k = 0

Thus ϕi = ±λ/2v or zero for each component. For v > 0 the minimum correspond to aligning the magnetization
diagonally along the cubic axis

ϕ̄ =
m√
M

(±1,±1, . . . ,±1)

Obviously, there are 2M equivalent minima.
For v < 0 it is favorable to maximize the alignment.

ϕ̄ = m(±1, 0, . . . , 0)

with a 2M equivalent minima.
b) The mean-field function for v > 0 then yields

HMF = V
[r
2
m2 + (u+ v/M)m4

]
stable for u+ v/M > 0

For v < 0

HMF = V
[r
2
m2 + (u+ v)m4

]
stable for u+ v > 0

Phase diagram in the r–v plane.

c) First, v < 0. Take the 1-direction as the ordered one with

m2 = −r/2(u+ v),

To quadratic order in the transverse fields

H̄ =
∫

ddx

{
M∑
i=2

[
c

2

(
~∇ϕi

)2

+
r

2
ϕ2
i

]
+ um2

M∑
i=2

ϕ2
i

]

Hence

〈ϕ2(~q1)ϕ2(~q2)〉 = (2π)dδ(~q1 + ~q2)
1

r + cq2 + 2um2
=

1
r + cq2 − ur/(u+ v)

=
1

cq2 + v|r|/(u+ v)

which implies massive modes. A similar consideration holds for v > 0.


