Prof. Dr. E. Frey

Dr. T. Franosch
Lehrstuhl für Statistische Physik
Biologische Physik \& Weiche Materie
Arnold-Sommerfeld-Zentrum für Theoretische Physik
Department für Physik

## T II: Elektrodynamik

(Prof. E. Frey)

## Problem set 2

## Tutorial 2.1 Sheet, cylinder, and sphere

Consider scalar fields $\rho(\vec{x})$ specified in cartesian coordinates $\vec{x}=(x, y, z)$ by $\rho(\vec{x})=\rho_{0}$ for
a) a sheet: $|z| \leq d$,
b) a cylinder: $\sqrt{x^{2}+y^{2}} \leq d$,
c) a sphere: $\sqrt{x^{2}+y^{2}+z^{2}} \leq d$,
and $\rho(x)=0$ elsewhere. Construct vector fields $\vec{E}(\vec{x})$ such that $\operatorname{div} \vec{E}(\vec{x})=4 \pi \rho(\vec{x})$ and $\operatorname{curl} \vec{E}(\vec{x})=0$ and that reflect the symmetries of the problem. Determine appropriate scalar potentials $\varphi(\vec{x})$ with $\vec{E}(\vec{x})=-\vec{\nabla} \varphi(\vec{x})$ and sketch their functional forms.

Note: The gradient and divergence operator in cylindrical coordinates $(r, \phi, z)$ and in spherical coordinates $(r, \vartheta, \phi)$ read

$$
\begin{array}{ll}
\vec{\nabla} \psi=\frac{\partial \psi}{\partial r} \vec{e}_{r}+\frac{1}{r} \frac{\partial \psi}{\partial \phi} \vec{e}_{\phi}+\frac{\partial \psi}{\partial z} \vec{e}_{z}, & \vec{\nabla} \cdot \vec{V}=\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{1}{r} \frac{\partial V_{\phi}}{\partial \phi}+\frac{\partial V_{z}}{\partial z}, \\
\vec{\nabla} \psi=\frac{\partial \psi}{\partial r} \vec{e}_{r}+\frac{1}{r} \frac{\partial \psi}{\partial \vartheta} \vec{e}_{\vartheta}+\frac{1}{r \sin \vartheta} \frac{\partial \psi}{\partial \phi} \vec{e}_{\phi}, & \vec{\nabla} \cdot \vec{V}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} V_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta V_{\vartheta}\right)+\frac{1}{r \sin \vartheta} \frac{\partial V_{\phi}}{\partial \phi} .
\end{array}
$$

Tutorial 2.2 Momentum conservation law
Defining the symmetric tensor field (Maxwell stress tensor)

$$
T_{i k}(\vec{x}, t)=\frac{1}{4 \pi}\left[\frac{1}{2} \delta_{i k}\left(\vec{E}^{2}+\vec{B}^{2}\right)-E_{i} E_{k}-B_{i} B_{k}\right] \quad(i, k=1,2,3),
$$

show that Maxwell's equations imply a local balance law for the momentum density,

$$
\frac{1}{c^{2}} \partial_{t} S_{i}+\nabla_{k} T_{i k}=-F_{i}
$$

where $\vec{S}=(c / 4 \pi) \vec{E} \times \vec{B}$ denotes the Poynting vector. Determine the mechanical force density $\vec{F}$.
Hint: The following vector identity may prove useful,

$$
[\vec{V} \times(\vec{\nabla} \times \vec{V})]_{i}=-\nabla_{k}\left(V_{i} V_{k}-\frac{1}{2} \delta_{i k} \vec{V}^{2}\right)+V_{i} \text { div } \vec{V} .
$$

## Problem 2.3 Dipole field

Consider the (static) electric field $\vec{E}(\vec{x})$ of an electric dipole $\vec{p}$

$$
\vec{E}(\vec{x})=\frac{3 \vec{x}(\vec{x} \cdot \vec{p})-r^{2} \vec{p}}{r^{5}}, \quad r=|\vec{x}|
$$

a) Demonstrate explicitly that the field may be represented by a scalar potential, $\vec{E}(\vec{x})=-\vec{\nabla} \varphi(\vec{x})$.
b) Show that $\vec{E}(\vec{x})$ allows for a representation in terms of a vector potential, i.e. $\vec{E}(\vec{x})=\vec{\nabla} \times \vec{A}(\vec{x})$.
c) Argue that the dipole field is a homogenous function of the coordinates, i.e. $\vec{E}(\lambda \vec{x})=\lambda^{\zeta} \vec{E}(\vec{x})$ where $\zeta$ denotes the degree of the homogeneous function. Conclude that the field is scale-free, i.e., zooming in (change of length scale) may be compensated by a simultaneous change of units for the field. What does this imply for the field lines?
d) Find a suitable scalar potential $\varphi(\vec{x})$ and vector potential $\vec{A}(\vec{x})$ corresponding to $\vec{E}(\vec{x})$. Choose $\varphi, \vec{A}$ such that they are again scale-free of appropriate degree. Verify your results explicitely.

Hint: Since the electric field is linear in $\vec{p}$, one may choose $\varphi$ and $\vec{A}$ that have the same property. Rotational symmetry dictates there is a unique scalar/pseudo vector that can be built from $\vec{x}$ and $\vec{p}$ up to a prefactor.
e) Discuss the field lines of the electric field as well as the vector potential. Discuss the surfaces of constant scalar potential.

## Problem 2.4 Vector potential

The vector potential $\vec{A}$ corresponding to a solenoidal field $\vec{B}$, $\operatorname{div} \vec{B}=0, \vec{B}=\vec{\nabla} \times \vec{A}$, may be obtained by evaluating the line integral (Poincaré's lemma)

$$
\begin{equation*}
\vec{A}(\vec{x})=-\int_{0}^{1} u\left(\vec{x}-\vec{x}_{0}\right) \times \vec{B}(\vec{x}(u)) \mathrm{d} u \tag{*}
\end{equation*}
$$

for straight lines $\vec{x}(u)=x_{0}+u\left(\vec{x}-\vec{x}_{0}\right)$.
a) Recall Ampère's law of magnetostatics, $\vec{\nabla} \times \vec{B}=4 \pi \vec{j} / c$. Thus in the case of a current-free region, $\vec{j}=0$, a scalar magnetostatic potential $\varphi_{M}$ may by introduced, $\vec{B}=-\vec{\nabla} \varphi_{M}$, where $\nabla^{2} \varphi_{M}=0$. Empoly Poincaré's lemma to determine a vector potential $\vec{A}$ of a magnetic octupole field corresponding to the potential

$$
\varphi_{M}(\vec{x})=z^{3}-\frac{3}{2}\left(x^{2}+y^{2}\right) z
$$

b) Evaluate the curl of the integral representation $(*)$ for $\vec{A}$ to prove that indeed $\vec{B}=\vec{\nabla} \times \vec{A}$ provided div $\vec{B}=0$.

## Problem 2.5 Minimal coupling

Consider the non-relativistic motion of a particle characterized by the Lagrangian

$$
L(\vec{x}, \dot{\vec{x}}, t)=\frac{m}{2} \dot{\vec{x}}^{2}+\frac{q}{c} \dot{\vec{x}} \cdot \vec{A}(\vec{x}, t)-q \varphi(\vec{x}, t)
$$

where $\varphi(\vec{x}, t)$ and $\vec{A}(\vec{x}, t)$ are a time-dependent scalar and vector field, respectively.
a) Derive the corresponding Euler-Lagrange equations and interpret the force terms in terms of electric and magnetic fields, $\vec{E}(\vec{x}, t)$ and $\vec{B}(\vec{x}, t)$.
b) Recall that a change

$$
L(\vec{x}, \dot{\vec{x}}, t) \mapsto L(\vec{x}, \dot{\vec{x}}, t)+\frac{\mathrm{d}}{\mathrm{~d} t} \frac{q}{c} \chi(\vec{x}, t)=L(\vec{x}, \dot{\vec{x}})+\frac{q}{c} \dot{\vec{x}} \cdot \vec{\nabla} \chi(\vec{x}, t)+\frac{q}{c} \partial_{t} \chi(\vec{x}, t),
$$

does not affect the principle of least action. Show that the additional terms can be absorbed by defining new fields $\varphi^{\prime}, \vec{A}^{\prime}$. What does this imply for the electric and magnetic fields?
c) Perform a Legendre transform, $\vec{p}=\partial \mathcal{L} / \partial \dot{\vec{x}}$, to derive the corresponding Hamilton function, $\mathcal{H}=\vec{p} \cdot \dot{\vec{x}}-\mathcal{L}$. Distinguish carefully between the canonical momentum $\vec{p}$ and the kinetic momentum $m \dot{\vec{x}}$. Derive the canonical equations of motion.

