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Problem set 2

Tutorial 2.1 Sheet, cylinder, and sphere

Consider scalar �elds ρ(~x) speci�ed in cartesian coordinates ~x = (x, y, z) by ρ(~x) = ρ0 for

a) a sheet: |z| ≤ d, b) a cylinder:
√
x2 + y2 ≤ d, c) a sphere:

√
x2 + y2 + z2 ≤ d,

and ρ(x) = 0 elsewhere. Construct vector �elds ~E(~x) such that div ~E(~x) = 4πρ(~x) and curl ~E(~x) = 0
and that re�ect the symmetries of the problem. Determine appropriate scalar potentials ϕ(~x) with
~E(~x) = −~∇ϕ(~x) and sketch their functional forms.

Note: The gradient and divergence operator in cylindrical coordinates (r, φ, z) and in spherical coordinates
(r, ϑ, φ) read
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Tutorial 2.2 Momentum conservation law

De�ning the symmetric tensor �eld (Maxwell stress tensor)

Tik(~x, t) =
1
4π

[
1
2
δik( ~E2 + ~B2)− EiEk −BiBk

]
(i, k = 1, 2, 3),

show that Maxwell's equations imply a local balance law for the momentum density,

1
c2
∂tSi +∇kTik = −Fi ,

where ~S = (c/4π) ~E × ~B denotes the Poynting vector. Determine the mechanical force density ~F .

Hint: The following vector identity may prove useful,[
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Problem 2.3 Dipole �eld

Consider the (static) electric �eld ~E(~x) of an electric dipole ~p

~E(~x) =
3~x(~x · ~p)− r2~p

r5
, r = |~x| .

a) Demonstrate explicitly that the �eld may be represented by a scalar potential, ~E(~x) = −~∇ϕ(~x).
b) Show that ~E(~x) allows for a representation in terms of a vector potential, i.e. ~E(~x) = ~∇× ~A(~x).
c) Argue that the dipole �eld is a homogenous function of the coordinates, i.e. ~E(λ~x) = λζ ~E(~x)

where ζ denotes the degree of the homogeneous function. Conclude that the �eld is scale-free,
i.e., zooming in (change of length scale) may be compensated by a simultaneous change of units
for the �eld. What does this imply for the �eld lines?

d) Find a suitable scalar potential ϕ(~x) and vector potential ~A(~x) corresponding to ~E(~x). Choose
ϕ, ~A such that they are again scale-free of appropriate degree. Verify your results explicitely.

Hint: Since the electric �eld is linear in ~p, one may choose ϕ and ~A that have the same property.
Rotational symmetry dictates there is a unique scalar/pseudo vector that can be built from ~x and ~p up
to a prefactor.

e) Discuss the �eld lines of the electric �eld as well as the vector potential. Discuss the surfaces of
constant scalar potential.

Problem 2.4 Vector potential

The vector potential ~A corresponding to a solenoidal �eld ~B, div ~B = 0, ~B = ~∇× ~A, may be obtained
by evaluating the line integral (Poincaré's lemma)

~A(~x) = −
∫ 1

0
u(~x− ~x0)× ~B(~x(u)) du (∗)

for straight lines ~x(u) = x0 + u(~x− ~x0).
a) Recall Ampère's law of magnetostatics, ~∇ × ~B = 4π~j/c. Thus in the case of a current-free

region, ~j = 0, a scalar magnetostatic potential ϕM may by introduced, ~B = −~∇ϕM , where
∇2ϕM = 0. Empoly Poincaré's lemma to determine a vector potential ~A of a magnetic octupole
�eld corresponding to the potential

ϕM (~x) = z3 − 3
2
(x2 + y2)z.

b) Evaluate the curl of the integral representation (∗) for ~A to prove that indeed ~B = ~∇ × ~A
provided div ~B = 0.

Problem 2.5 Minimal coupling

Consider the non-relativistic motion of a particle characterized by the Lagrangian

L(~x, ~̇x, t) =
m

2
~̇x 2 +

q

c
~̇x · ~A(~x, t)− qϕ(~x, t) ,

where ϕ(~x, t) and ~A(~x, t) are a time-dependent scalar and vector �eld, respectively.
a) Derive the corresponding Euler-Lagrange equations and interpret the force terms in terms of

electric and magnetic �elds, ~E(~x, t) and ~B(~x, t).



b) Recall that a change

L(~x, ~̇x, t) 7→ L(~x, ~̇x, t) +
d
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does not a�ect the principle of least action. Show that the additional terms can be absorbed by
de�ning new �elds ϕ′, ~A′. What does this imply for the electric and magnetic �elds?

c) Perform a Legendre transform, ~p = ∂L/∂~̇x, to derive the corresponding Hamilton function,
H = ~p · ~̇x − L. Distinguish carefully between the canonical momentum ~p and the kinetic

momentum m~̇x. Derive the canonical equations of motion.
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