T IV: Thermodynamik und Statistik

(Prof. E. Frey)

Problem set 2

Problem 2.1 Surface of a sphere
Calculate the surface K_{d} of a d-dimensional unit sphere by evaluating

$$
\int d^{d} x \exp \left(-\mathbf{x}^{2}\right), \quad \mathbf{x}^{2}=x_{1}^{2}+. .+x_{d}^{2}
$$

in cartesian and polar coordinates, respectively [Answer: $\left.K_{d}=2 \pi^{d / 2} / \Gamma(d / 2)\right]$.

Problem 2.2 ideal gas

Calculate for a gas of N structureless non-interacting particles the extensive part of the entropy in the microcanonical ensemble

$$
s(e, v)=S(E, V, N) / N, \quad N, E, V \rightarrow \infty
$$

for fixed energy density $e=E / V$ and fixed particle density $n=1 / v=N / V$. Show that your result does not depend on the resolution of the energy shell.

Problem 2.3

The fundamental relation of some system is found to be

$$
s(e, v)=k_{B} \ln \left[e^{3 / 2} v\right]+s_{0}
$$

where s, e, v are the entropy, energy and volume per particle, respectively, and s_{0} some constant independent of e and v. Calculate the temperature T and the pressure p. Find the mechanical equation of state $p=p(v, T)$.

Problem 2.4 Information theory
The probability to find a system of N microstates in state i is $w_{i}, i=1, \ldots, N$. Define the functional

$$
H=H\left(w_{1}, . ., w_{N}\right)=-\sum_{i=1}^{N} w_{i} \ln w_{i}
$$

and find the probability distribution that maximizes H provided that
(a) only the normalization of the probabilities is enforced.
(b) the average of some random function A is known to be $a=\langle A\rangle=\sum_{i=1}^{N} A_{i} w_{i}$.

Hint: Use Lagrange multpliers for the constraints.
Problem 2.5 Poisson's theorem
For small values of p the Poisson distritbution provides a good approximation to the Bernoulli distribution. Let

$$
P_{N}(k)=\binom{N}{k} p^{k}(1-p)^{N-k}, \quad 0 \leq p \leq 1, \quad k=0,1, . ., N
$$

and consider p as a function $p(N)$ of N. Consider the limit $p(N) \rightarrow 0, N \rightarrow \infty$ in such a way that $N p \rightarrow \lambda$, where $\lambda>0$. Show that for $k=0,1,2, .$.

$$
P_{N}(k) \rightarrow \pi_{k}=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad N \rightarrow \infty
$$

Problem 2.6 Macmillan's theorem

Consider a system of N spins where each spin has a probability p and $q=1-p$ of being up or down, respectively. A microstate ω, e.g. $\omega=\left[\uparrow_{1} \downarrow_{2} \downarrow_{3} . . \uparrow_{N}\right]$, is called typical if the number of up spin k fulfills $|k / N-p| \leq \epsilon$ and denote T the set of all typical states. Show that:
(a) the probability of a state to be typical approaches unity, $P(T) \rightarrow 1$ as $N \rightarrow \infty$.
(b) the probability $P(\omega)$ for a single typical microstate ω is bounded by

$$
e^{-N(H+\tilde{\epsilon})} \leq P(\omega) \leq e^{-N(H-\tilde{\epsilon})}
$$

where $H=p \ln (1 / p)+q \ln (1 / q)$ and $\tilde{\epsilon}=\epsilon[\ln (1 / p)+\ln (1 / q)]$.
(c) the number of typical microstates $\# T$ can be estimated for large N as

$$
(1-\epsilon) e^{N(H-\tilde{\epsilon})} \leq \# T \leq e^{N(H+\tilde{\epsilon})}
$$

