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im Bose-Hubbard Modell

Petar Čubela
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Abstract

In this thesis, it will be considered an interacting gas of bosons on a d-dimensional cubic lattice at
the temperature T = 0. One sees that this model exhibit a quantum phase of matter, the so-called
Mott-insulating phase, which corresponds to an average integer occupation of the lattice sites and
which is accompiened with a vanishing compressibility. In addition it contains a superfluid phase
which indicates a phase transition between these phases. By using a mean-field approach and the
non-degenerate pertubation theory, the phase diagram of the model will be determined by assuming
a small transition amplitude. The analysis of the phase boundary shows, that there are points from
which one can conclude a different physical mechanism leading to the transition then anywhere else
on the boundary. These points are not related to a change in the average occupation number.
These results will be recapped using field-theoretical methods and afterwards effective field theories
characterizing the model in the vicinity of the phase boundary will be derived. It arises two field
theories which bear the two mechanisms. These are organized in different universality classes. On
one hand the universality class of the so-called XY-model and on the other hand the one of the dilute
bose gas. These are analysed and intepreted physically.

Zusammenfassung

In dieser Arbeit wird ein wechselwirkendes Gas von Bosonen auf einem d-dimensionalen kubischen
Gitter bei der Temperatur T = 0 betrachtet. Man sieht, dass dieses Modell eine Quantenpahse
besitzt, die sogenante Mott-Isolator Phase, welche einer mittleren, ganzzahligen Besetzung der Git-
terplätze entspricht und mit einer verschwindenden Kompressibilität einhergeht. Zudem enthält es
eine Suprafluide Phase, was auf einen Phasenübergang zwischen diesen Phasen schließen lässt. Durch
Annahme einer kleinen Übergangsamplitude zwischen verschieden Gitterplätzen wird mit Hilfe der
nicht entarteten Störungstheorie und der Molekularfeldtheorie das Phasendiagramm des Modells
bestimmt. Die Analyse der Phasenübergangslinie zeigt, dass es Punkte darin gibt, die auf einen
anderen physikalischen Mechanismus, der zum Phasenübegang führt, folgern lassen als im Rest der
Übergangslinie. Diese Punkte sind nicht mit einem Wechsel der mittleren Besetzungszahl verbunden,
wie der Rest der Übergangslinie.
Durch feldtheoretische Methoden werden diese Ergebnisse rekapituliert und die effektiven Feldttheo-
rien hergeleitet, welche das Modell in der Nähe der Übergangslinie beschreibt. Es ergeben sich zwei
Feldtheorien, die diese beiden Mechanismen in sich tragen und in verschiedene Universalitätsklassen
eingeteilt werden. Einmal die Universalitätsklasse des sogenannten XY-Modells und anderseits die
des verdünnten Bose Gases. Diese werden analysiert und physikalisch inerpretiert.
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1 Introduction

The reductionist hypothesis does not by any means imply a “constructionist” one: The ability to
reduce everything to simple fundamental laws does not imply the ability to start from those laws
and reconstruct the universe.
- P. W. Anderson
As Anderson elucidated, it is not possible to describe a many-body-system sytem on the basis of
the fundamental laws for the individual constituents. Therefore, a shift to the methods of statistical
physics allows to shed light on the physics of many-body problems.

Nowadays, ultracold atomic and molecular systems are the frontiers of modern quantum
physics, and are considered to provide the most controllable systems for the study of many-body
physics. It is believed that these systems will also find highly non-trivial applications in quantum
information and quantum metrology and will serve as powerfull quantum simulators.

In this thesis we focus on the Bose-Hubbard model, which applies to a Bose gas in an optical
lattice. It will be shown that this model contains a quantum phase of matter called the Mott-
insulator phase, as first discussed by Fisher et al. [1]. Moreover, the Bose gas is predicted to undergo
a quantum phase transition from the superfluid state to the Mott-insulator state as a function of
the interaction potential. This quantum phase transition has recently been observed in a seminal
experiment by Greiner et al. [2], and has attracted much attention. It showed that ultracold atoms
in an optical lattice can be used to stimulate various lattice models of fundamental importance to
condensed-matter-physics.

The phase diagramm of the model is derived using a mean-field approach combined with the
non-degenerate pertubation theory. It will be looked closely at the effects that lead to the transition
and at the peculiarities of the phase boundary itself.

By starting from the microscopic theory for this model and using the functional integral rep-
resentation of the partition function, it will be discovered two distinced effective field theories which
describe the quantum phase transition in the vicinity of the phase boundaries. Which differ only in
their dynamical behaviour, one has an emergend lorentz invariance caused due to particle and hole
symmetry and the other one describes the theory of a dilute Bose gas. Those will be intepreted as
different physical mechanisms that lead to the transition from the Mott-insulator to the superfluid.

A Renormalization Group analysis of the field theories is only briefly discussed and stated some
results. One can find a comprehensive discussion of these results for instance in Sachdev book about
Quantum phase transitions [3] and in the book of Stoof et al. “Ultracold Quantum Fields” [4].
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2 Theory

2.1 Functional integral representation of the partition function

From statistical physics it is known that the properties of an interacting many-body system
follows from the grand-canonical partition function

Z = Tr
(
e−β(H−µN)

)
=
∑
n

〈
n
∣∣∣ e−β(H−µN)

∣∣∣n〉 (2.1)

where β = 1/kBT , µ is the chemical potential and
{
|n〉
}

is a set of orthonormal and complete

states. The goal is to evaluate this quantity by rewriting it as a functional integral which will
allow us to go beyond the mean-field approach of the model and to use the general framework of the
renormalization group. First, one has to describe the formalism of 2nd quantization

2.1.1 2nd quantization

The formalism of 2nd quantization is done in many textbooks, e.g [5],[6]. This is just a short
introduction of the most important aspects without prove of many relations.
Also, we will focus only on the bosonic case because it is the one used in the model of this thesis.
Working in the formalism of 2nd quantization is an efficient method to characterize and manipulate
many-body wavefunctions because we want to describe systems with a large number of particles
which do not have to be constant. This is why use the grand-canonical partition function is used.
Considering the properly symmetrized wave function for N indistinguishable bosonic particles

ψ(~x1, ~x2, ..., ~xi, ..., ~xj , ..., ~xN ) = +ψ(~x1, ~x2, ..., ~xj , ..., ~xi, ..., ~xN )

one can expand this wavefunction into single-particle eigenstates φα(~x).

ψ(x1, ..., xN ) =
∑

α1,...,αN

cα1,...,αN

1√
N !

∑
permP

φα1(~xP (1)) · · ·φαN (~xP (N)) (2.2)

Respectively, written equivalently in a abstract form using φα(~x) = 〈~x |α〉

|α1, ..., αN 〉 =
1√
N !

∑
permP

∣∣αP (1)

〉
· · ·
∣∣αP (N)

〉
(2.3)

where
√
N !
∏∞
α=0(nα!) normalizes the many-body wavefunction and the summation runs over all N !

permutations P of the set of quantum numbers {α1, ..., αN}. The underlying Hilbertspace of the
N-body quantum system is

HN = H⊗ ...⊗H︸ ︷︷ ︸
N times

where H is a single-particle Hilbertspace which is spanned by the states
{
|α〉
}

. However, there

are some problems arsing in this representation. As said above, it is convenient to work in the
grand-canonical ensemble. Therefore, with a fluctuating number of particles, the representation of
the many-body state (2.3) is a good choice to describe states with a fixed number of particles. Also,
the practical computation in this language will be cumbersome. For example, in order to compute
the overlap of two wavefunctions one needs no less than (N !)2 different products. To overcome such
problems it is possible to describe the many-body system uniquely in another representation which
includes the possibility to work with a changing particle number. This leads to the occupation
number representation, which will be briefly introduced.
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Before depicting this representation, one defines operators which make it possible to create
and destroy particles in the physical system.

The linear operator a†β creates a particle in state β:

a†β |α1, ..., αN 〉 = |β, α1, ..., αN 〉 (2.4)

and its adjoint aβ destroys a particle in state β:

aβ |α1, ..., αN 〉 =
N∑
k=1

〈β |αk〉 |α1, ...., (no αk), .., αN 〉 (2.5)

where this relation follows from the defining equation 2.4.

Also following from 2.4 and 2.5, are the commutators:

[
aα, aβ

]
= aαaβ − aβaα = 0[

aα, a
†
β

]
= δα,β (2.6)

So far, the one particle states α and β are not specified. We could ask how the creation and

annihilation operators a†α and aα change by a transformation of the basis vector
{
|α〉
}

to some

other basis
{
|λ〉
}

.

It is known that this transformation can be written as

|α〉 =
∑
λ

〈λ |α〉 |λ〉

by inserting a resolution of the identity 1 =
∑

λ |λ〉〈λ|. Now, letting a†α act on an arbitrary state
|γ1, ..., γN 〉 one can write

a†α = |γ1, ..., γN 〉 = |α, γ1, ..., γN 〉

=
∑
λ

〈λ |α〉 |λ, γ1, ..., γN 〉

=
∑
λ

〈λ |α〉 a†λ |γ1, ..., γN 〉

where in the second equality sign, a resolution of the identity 1 =
∑

λ |λ〉 〈λ| was inserted. Because
of the fact that this holds for arbitrary |γ1, ..., γN 〉 one can deduce

⇒ a†α =
∑
λ

〈λ |α〉 a†λ (2.7)

and by hermitian conjugation follows

⇒ aα =
∑
λ

〈α |λ〉 aλ (2.8)
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For instance, choosing |α〉 = |~x〉 and |λ〉 = |~k〉, where ~x and ~k are continuous and discrete variables,
respectively:

a†(~x) =
∑
~k

〈~k|~x〉 a†~k a†~k
=

∫
Rd

ddx 〈~x|~k〉 a†(~x) (2.9)

and using the identity 〈~x|~k〉 =
1√
V

exp
(
~k · ~x

)
this becomes

a†(~x) =
1√
V

∑
~k

exp
(
~k · ~x

)
a†~k

a†~k
=

1√
V

∫
Rd

ddx exp
(
~k · ~x

)
a†(~x) (2.10)

Concluding that this is just the usual Fourier transformation from position space to the momentum
space.

Specifying the number of particles nαi ≡ ni in each state αi completely determines the many-
body state |α1, ..., αN 〉. Hence, it is possible to define

|n1, n2, ...〉 :=
1√

n1!n2! · · ·
|α1, ..., α1︸ ︷︷ ︸
n1times

, α2, ..., α2︸ ︷︷ ︸
n2times

, ...〉 (2.11)

These states are the so-called Fock states. They span the many-body Hilbert space

F =
N⊕
n=0

Hn with Hn = H⊗ ...⊗H︸ ︷︷ ︸
n times

(2.12)

Hn is an n-particle Hilbert space. The state Hn=0 is defined as the Hilbert space without particles.
It is spanned by only one state, the vacuum state |0〉 which is defined by aαi |0〉 := 0 for an arbitrary
state αi. The algebra in 2.6 completely determines the structure of the Fock space. From the
definition of the Fock space one can deduce how the creation and annihilation operators a†i and ai
act on a Fock state

a†i |n1, ..., ni, ...〉 =
√
ni + 1 |n1, ..., ni + 1, ...〉 (2.13)

ai |n1, ..., ni, ...〉 =
√
ni |n1, ..., ni − 1, ...〉 (2.14)

The prefactors are normalization factors for the resulting Fock states. Using these relations one can
write the Fock states in general as

|n1, n2, ...〉 =
∏
i

1√
ni!

(a†i )
ni |0〉 (2.15)

It is necessary to mention that in the case of bosonic particles the number of particles in a many-body
state can take an arbitrary non-negative integer value, ni ∈ {0, 1, ...,∞}.
A very important operator in the occupation number representation is the occupation number oper-
ator, which is defined as

n̂i = a†iai (2.16)

with the property

n̂i |n1, .., nN 〉 = ni |n1, ..., nN 〉 (2.17)

resulting straightforwardly from the relations 2.13,2.14. Hence, the operator n̂αi ≡ n̂i counts the
number of particles in the state αi.
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The advantage of working with the formalism of 2nd quantization is that every N-body operator
can be written in terms of the creation and annihilation operators. Since only one- and two-body
operators will be used for the model of this thesis, only these will be presented.

Consder a sum over one-particle operators Ô1 =
∑N

i=1 ôi, which is diagonal in some single particle
basis |α〉, with ô =

∑
i oαi |αi〉〈αi| where oαi = 〈αi|ô|αi〉. One can then write〈

n′α1
, n′α2

, ...
∣∣∣Ô1

∣∣∣nα1 , nα2 , ...
〉

=
∑
i

oαinαi
〈
n′α1

, n′α2
, ...
∣∣nα1 , nα2 , ...

〉
=
〈
n′α1

, n′α2
, ...
∣∣∑
i

oαi n̂αi
∣∣nα1 , nα2 , ...

〉
Since the chosen occupation number states are arbitrary, one can infer the second quantized repre-
sentation of the operator Ô1,

Ô1 =
∑
α

oαn̂α =
∑
α

oαa
†
αaα

This representation is given in the diagonal basis of the operator, changing to a general basis, on
obtains,

Ô1 =
∑
µν

〈µ|ô|ν〉 a†µaν (2.18)

For instance, the Hamiltonian for a free particle in an external potential in position space can be
written as [5]

H =

∫
dd~x a†(~x)

[
~̂p2

2m
+ V (~x)

]
a(~x) (2.19)

where ~̂p =
1

i
∇.

Eventually, a two-body operator can also be written in a second quantized form. Here, without
derivation (see, [5],[6])

Ô2 =
∑
λλ′µµ′

Oλ,λ′,µ,µ′a†µa
†
µ′aλaλ′ (2.20)

with Oλ,λ′,µ,µ′ =≡ 〈µ, µ′|O2|λ, λ′〉. Then a general pairwise interaction operator Û =
1

2

∑
i 6=j U(xi−

xj) can be written in the second quantized representation as

Û =
1

2

∫
dd~x

∫
dd~yU(~x− ~y)a†(~x)a†(~y)a(~y)a(~x) (2.21)

Hence, we can write a general Hamiltonian H =
∑N

i=1

(
−∇2

2m
+ V (xi)

)
+

1

2

∑
i 6=j U(xi − xj) as

H =

∫
dd~x a†(~x)

[
~̂p2

2m
+ V (~x)

]
a(~x) +

1

2

∫
dd~x

∫
dd~yU(~x− ~y)a†(~x)a†(~y)a(~y)a(~x) (2.22)
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2.1.2 Coherent states

In order to be able to rewrite the partition function, one has to define the so-called coherent
states. In this thesis one will only need bosonic coherent states because the model consists only
of bosons. Their defining property is to be the eigenstate of the annihilation operator aαi , where
αi ∈ {α1, ..., αN} are sets of one-particle quantum numbers αi.

|ψ〉 := exp

(
N∑
i=1

ψia
†
i

)
|0〉 (2.23)

Letting an annihilation operator aαk ≡ ak act on the coherent state 2.23 and using the commutation

relation of the creation and annihilation operators
[
ai, a

†
j

]
= δi,j yield

ak |ψ〉 = ak exp

(
N∑
i=1

ψia
†
i

)
|0〉 = ak

N∏
i=1

exp
(
ψia
†
i

)
= ak

N∏
i=1

∑
ni

ψnii
ni!

(a†i )
ni |0〉 = ak

∑
n1,...,nN

(ψ1a
†
1)n1

n1!

(ψ2a
†
1)n2

n2!
· · ·

(ψNa
†
N )nN

nN !
|0〉

=

N∏
i=1,i 6=k

∑
ni

(
ψnii
ni!

(a†i )
ni

) ∞∑
nk=0

ψnkk
nk!

ak(a
†
k)
nk |0〉

=
N∏

i=1,i 6=k

∑
ni

(
ψnii
ni!

(a†i )
ni

) ∞∑
nk=1

ψnkk
nk!

nk(a
†)nk−1 |0〉

=
N∏

i=1,i 6=k

∑
ni

(
ψnii
ni!

(a†i )
ni

) ∞∑
nk=0

ψnk+1
k

nk!
(a†)nk |0〉

⇒ ak |ψ〉 = ψk

N∏
i=1

∑
ni

ψnii
ni!

(a†i )
ni |0〉 = ψk |ψ〉 (2.24)

where it has been used in the second line that
[
ai, (a

†
j)
nj
]

= δi,jnj(a
†
j)
nj−1. Hence, the state 2.23 is

indeed an eigenstate of the annihilation operator ak with eigenvalue ψk. Without further discussion,
we list some of the most important properties of the coherent states [7][6]

(i) eigenstates of the creation operator a†k do not exist, but 〈ψ| a†k = 〈ψ|ψk
(ii) the coherent states defined above are not orthonormal 〈λ |µ〉 = exp

(∑
i λ̄iµi

)
This is a crucial property of the coherent states. They are overcomplete in the Fock space, meaning,
any vector in the Fock space can be expanded in terms of coherent states. This is expressed by the
closure relation following in (iii).

(iii) the resolution of identity can be written as

1 =

∫ N∏
i=1

dψ̄idψi
2πi

exp

(
−
∑
i

ψ̄iψi

)
|ψ〉〈ψ| (2.25)

Define for shortness the abbreviate
∏N
i=1

dψ̄idψi
2πi := d(ψ̄, ψ)

Then, this relation is written as

1 =

∫
d(ψ̄, ψ) exp

(
−
∑
i

ψ̄iψi

)
|ψ〉〈ψ| (2.26)
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The correctness that 2.26 is indeed the resolution of 1 can be proved by showing that 2.26 commutes
with the creation and annihilation operators for every state and 〈ψ|1|ψ〉 = 1 holds. This is done in
[6].

(iv) The creation operator a†k acts on the coherent state |ψ〉 as

a†k |ψ〉 =
∂

∂ψk
|ψ〉 (2.27)

These properties will be needed to express the partition function Z = Tr(exp(−β(H − µN))) as
functional integral in the following.

2.1.3 Functinal integral representation

The aim is to rewrite the grand canonical partition function [7]

Z = Tr
(
e−β(H−µN)

)
=
∑
n

〈
n
∣∣∣ e−β(H−µN)

∣∣∣n〉 (2.28)

as a path integral in imaginary time τ = it with τ ∈ [0, β] in analogy to the Feynman path integral
in QM. The eigenstates in which the trace operator is evaluated is chosen to be a Fock state |n〉 =

a†1 · · · a
†
n |0〉. One is able to get rid of the sum over the eigenstates

∑
n 〈n|· · ·|n〉 by inserting the

closure relation for the coherent states 2.26.

⇒ Z =

∫
d(ψ̄, ψ) exp

(
−
∑
i

ψ̄iψi

)∑
n

〈n|ψ〉
〈
ψ
∣∣∣ e−β(H−µN)

∣∣∣n〉 (2.29)

Next, one can pull the factor 〈n|ψ〉 to the right, so that it is possible to use 1 =
∑

n |n〉〈n| and remove
the n sum from the partition function. For bosons this is easily done, since 〈n|ψ〉 = 〈ψ|n〉1.The
partition function then becomes

Z =

∫
d(ψ̄, ψ) exp

(
−
∑
i

ψ̄iψi

)
〈ψ| e−β(H−µN)

(∑
n

|n〉〈n|

)
︸ ︷︷ ︸

=1

|ψ〉

=

∫
d(ψ̄, ψ) exp

(
−
∑
i

ψ̄iψi

)〈
ψ
∣∣∣ e−β(H−µN)

∣∣∣ψ〉 (2.30)

In the next step, decompse the imaginary time intervall [0, β] into M steps δτ = β/M so that δτ
is small a quantity and insert 2.26 after each step. In order to be able to factorise the exponential
function and to compute the matrix elements appearing in 2.30, the exponential function in 〈...〉 has to
be normal ordered. This means that every creation operator is placed to the left from all annihilation
operators. The Hamiltonian can always be chosen to be normal ordered. Otherwise it would not be
possible to compute the eigenvalues of the creation operators. The exponential factor e−β(H−µN) can

not be evaluated directly because by rewriting it as e−β(H−µN) = 1− β
2

(H−µN)+β2(H−µN)2 + ...,

it is obvious that it is not normal ordered because of the terms of second and higher orders. By

1For fermions, one has to be careful because this would not hold,[7] [6]. Then it would be 〈n|ψ〉 = 〈−ψ|n〉.
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splitting the imaginary time interval, one can bypass this problem

e−β(H−µN) = exp

−δτ(H − µN)− ...− δτ(H − µN)︸ ︷︷ ︸
M times


= 1− δτ(H − µN)− ...− δτ(H − µN) +O(δτ2)

' (1− β(H − µN))M = exp(−δτ(H − µN))M +O(δτ2)

' e(−δτ(H−µN)) · · · e(−δτ(H−µN))︸ ︷︷ ︸
M times

⇒ e−β(H−µN) ' e(−δτ(H−µN)) · · · e(−δτ(H−µN)) (2.31)

In between every exponential, which are normal ordered up to leading order in the infinitesimal
time intervall δτ , insert a resolution of the identity 2.26 and compute the matrix elements. The
Hamiltonian is of the form H =

∑
ij tija

†
iaj +

∑
ijkl Uijkla

†
ia
†
jakal (normal ordered) such that a

general matrix element 〈φ|H[a†, a]|ψ〉 with coherent states |ψ〉 , |φ〉 can be evaluated as

〈φ|H[a†, a]|ψ〉 =
∑
ij

tij 〈φ|a†iaj |ψ〉+
∑
ijkl

Uijkl 〈φ|a†ia
†
jakal|ψ〉

=

∑
ij

tijφ̄iψj +
∑
ijkl

Uijklφ̄iφ̄jψkψl

 〈φ|ψ〉
⇒ 〈φ|H[a†, a]|ψ〉 = H[φ̄, ψ] 〈φ|ψ〉 (2.32)

One defines the abbreviateK = H−µN and now insert 1 =
∫
d(ψ̄(n), ψ(n)) exp

(
−
∑

i ψ̄
(n)
i ψ

(n)
i

) ∣∣ψ(n)
〉〈
ψ(n)

∣∣
between every exponential in 2.31 where the subscript (n) counts at which time step we are n ∈ [0,M ].

Transission matrix elements of the form
〈
ψ(n+1)

∣∣e−δτK[a†,a]
∣∣ψ(n)

〉
between two time steps n and n+1

are evaluated as〈
ψ(n+1)

∣∣∣e−δτK[a†,a]
∣∣∣ψ(n)

〉
=
〈
ψ(n+1)

∣∣∣1− δτK[a†, a] +O(δτ2)
∣∣∣ψ(n)

〉
=
〈
ψ(n+1)

∣∣∣1− δτK[ψ̄(n+1), ψ(n)] +O(δτ2)
∣∣∣ψ(n)

〉
=
〈
ψ(n+1)

∣∣∣ψ(n)
〉(

1− δτK[ψ̄(n+1), ψ(n)] +O(δτ2)
)

' exp

(∑
i

ψ̄
(n+1)
i ψ

(n)
i

)
(1− δτK[ψ̄(n+1), ψ(n)])

' exp

(∑
i

ψ̄
(n+1)
i ψ

(n)
i

)
exp
(
−δτK[ψ̄(n+1), ψ(n)]

)
⇒
〈
ψ(n+1)

∣∣∣e−δτK[a†,a]
∣∣∣ψ(n)

〉
' exp

(
N∑
i=1

ψ̄
(n+1)
i ψ

(n)
i − δτK[ψ̄(n+1), ψ(n)]

)
(2.33)

Finally, putting everything together the partition function becomes

Z =

∫ M∏
n=0

d(ψ̄(n), ψ(n)) exp

(
−
M−1∑
n=0

(
N∑
i=1

ψ̄
(n)
i ψ

(n)
i −

N∑
i=1

ψ̄
(n+1)
i ψ

(n)
i + δτK[ψ̄(n+1), ψ(n)]

))
(2.34)

with the boundary conditions ψ(0) = ψ(M) and ψ̄(0) = ψ̄(M). These arise because of the fact that
it was started with Z =

∫
d(ψ̄, ψ) 〈ψ|...|ψ〉 where the ket is evluated at the (imaginary) time τ = 0

and the bra at τ = β in analogy to the transition matrix element of the time translation operator in
QM.[7][6]
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By taking the continuum limit δτ → 0 and using
∑M

n=0 τ →
∫ β

0 , ψ
(n)
i → ψi(τ) and lim

δτ→0

ψ̄
(n)
i ψ

(n)
i −ψ̄

(n+1)
i ψ

(n)
i

δτ =

∂ψ̄i(τ)
∂τ ψi(τ) with τ = nδτ we arrive at

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ] (2.35)

S[ψ̄, ψ] =

∫ β

0
dτ

(
N∑
i=1

ψi(τ)∂τψi(τ) +H[ψ̄, ψ]− µN [ψ̄, ψ]

)
(2.36)

and the boundary condition ψ(τ = 0) = ψ(τ = β) and equally for the complex conjugated. It has
been defined D(ψ̄, ψ) = lim

M→∞

∏M
n=0 d(ψ̄(n), ψ(n)) Hence, the partition function is now written as a

functional integral over all possible field configurations ψ̄i and ψi with weight exp(−S) where S is
the so-called action of the system.
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2.2 Hubbard Model

2.2.1 Bloch waves and Wannier functions

In this subsection it will be derived the main model of the thesis which is the Bose-Hubbard
model. It is a bosonic analogue of the well known Hubbard model for electrons.
The Bose-Hubbard model is a ”simple” QM lattice model for strongly interacting bosons. The
derivation is from the book [4].

However, before deriving the model we say some words about band structures which state how
particles act in a lattice periodic potential. The theory of band structure is developed in, e.g.[8]

The wavefunction of a free atom is a plane wave exp
(
i~k · ~x

)
/
√
V and has an energy dispersion

relation ε~k = ~k2/2m. Interestingly, this result does not change too much for noninteracting atoms
in a periodic potential. The relevant wavefunctions are now called Bloch waves and the dispersion
develops a band structure. Indeed, the wavefunction can be written as a product of a plane wave
and lattice periodic function u

n,~k
(~x) ,i.e.

ψ
n,~k

(~x) = exp
(
i~k · ~x

)
u
n,~k

(~x)

where n is the band index and ~~k is the quasi-momentum which takes on values within the first
Brillouin zone. This is the well-known result from Bloch’s theorem,[8]. Accordingly, the dispersion
relation is no longer quadratic with the momentum, but develops gaps at specific locations determined
by the lattice structure.

Considering now an atom in a lattice with minima located at the lattice sites ~xi. It can be shown that
for each band a set of Wannier functions wn(~x− ~xi) exists, such that the exact Bloch wavefunctions
can be written [8] as

ψ
n,~k

(~x) =
∑
i

exp
(
i~k · ~x

)
wn(~x− ~xi)

The Wannier functions are orthogonal for different bands n as well as for different i. They are
localized at positions ~xi and decay exponentially away from ~xi but also oscillate such that their
average vanishes.

2.2.2 Derivation of the Hubbard model

The action that describes a gas of atoms in a periodic potential is given by

S[ψ̄, ψ] =

∫ β

0
dτ

∫
ddx ψ̄(~x, τ)

(
∂

∂τ
− ∇

2

2m
+ Vex(~x)− µ

)
ψ(~x, τ)

+
1

2

∫ β

0
dτ

∫
dd~x

∫
dd~x′ ψ̄(~x, τ)ψ̄(~x′, τ)V (~x− ~x′)ψ(~x′, τ)ψ(~x, τ)

(2.37)

where Vex(~x) is a lattice periodic function, V (~x − ~x′) is a two-body interaction term and µ is the
chemical potential which is inserted to be able to fix the particle number. Assume that the gas is
dilute enough, i.e. the spatial spacing is larger than the interaction range, and that the temperature
is sufficiently small so that it is possible to neglect more than two-body interactions. Using the
Wannier functions introduced before, we can axpand the field operators ψ, ψ̄ as

ψ(~x, τ) =
∑
n,i

an,i(τ)wn(~x− ~xi) (2.38)
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where the expansion coefficients ān,i(τ) and an,i(τ) correspond to the creation and annihilation
operator respectively of a particle in the Wannier state wn(~x− ~xi) at site i. It is worth to mention
that in the action these are not operators but rather the eigenvalues of the annihilation operator in
the coherent states.
In the tight-binding limit the Wannier functions of the lattice are replaced by harmonic oscillator
states on each site, which depend on the band index n. At sufficiently low temperatures and for
sufficiently small interaction energies, the particles only occupy the lowest n = 0 state of the lattice.
As a result, the expansion leads the lattice action

S[ā, a] =

∫ β

0
dτ

{∑
ij

āi(τ)
∂

∂τ
aj(τ)

∫
ddx w̄0(~x− ~xi)w0(~x− ~xj)

+
∑
ij

āi(τ)aj(τ)

∫
ddx w̄0(~x− ~xi)

(
−∇

2

2m
+ Vex(~x)− µ

)
w0(~x− ~xj)

+
1

2

∑
ii′jj′

āi(τ)āi′(τ)aj(τ)aj′(τ)

×
∫

dd~x dd~x′ w̄0(~x− ~xi)w̄0(~x′ − ~xi′)V (~x− ~x′)w0(~x′ − ~xj)w0(~x− ~xj′)
}

(2.39)

where for notational convenience the now redundant band index of the particle fields is omitted.
Rewriting the above action more compactly as

S[ā, a] = S0[ā, a] + Sint[ā, a] (2.40)

with the non-interacting part given by

S0[ā, a] =

∫ β

0
dτ

{∑
i

āi(τ)

(
∂

∂τ
+ εi − µ

)
ai(τ)−

∑
i 6=j

āi(τ)ti,jaj(τ)

}
(2.41)

where the orthonormality of the Wannier functions in the same band has been used, i.e.
∫

ddx w̄0(~x−
~xi)w0(~x− ~xj) = δi,j . We have also introduced the on-site energy

εi =

∫
ddx w̄0(~x− ~xi)

{
− ∇

2

2m
+ Vex(~x)

}
w0(~x− ~xi) (2.42)

and the tunneling or hopping amplitude between sites i abd j

ti,j = −
∫

ddx w̄0(~x− ~xi)
{
− ∇

2

2m
+ Vex(~x)

}
w0(~x− ~xj) (2.43)

The double summation in the tunneling term in 2.41 is over all combinations i,j for which i 6= j. For a
deep lattice, the hopping energy ti,j will be exponentially suppressed for all sites that are not nearest
neighbors. Therefore, restrict the summation to nearest neighbors only, where the corresponding
summation is denoted by

∑
〈i,j〉, while the nearest-neighbor hopping amplitude is denoted by t.

The interactions between the particles are determined by the matrix elements∫
dd~x dd~x′ w̄0(~x− ~xi)w̄0(~x′ − ~xi′)V (~x− ~x′)w0(~x′ − ~xj)w0(~x− ~xj′)

which not only include on-site interactions but also interactions between atoms that are on remote
sites. However, the latter interactions are typically exponentially suppressed. For practical purposes
it usually suffices to take only the on-site interactions into account. One then gets

Sint[ā, a] =

∫ β

0
dτ
U

2

∑
i

āi(τ)āi(τ)ai(τ)ai(τ) (2.44)
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where we have defined the on-site interaction strength U as

U =

∫
dd~x dd~x′ w̄0(~x− ~xi)w̄0(~x′ − ~xi)V (~x− ~x′)w0(~x′ − ~xi)w0(~x− ~xi). (2.45)

For bosons, the corresponding Hamiltonian to the action in 2.40 is known as the Bose-Hubbard
model and is given by

H = −t
∑
〈i,j〉

a†iaj +
∑
i

(εi − µ)a†iai +
U

2

∑
i

a†ia
†
iaiai (2.46)

or using the commutation relation for bosons
[
ai, a

†
j

]
= δi,j this can be written equivalently as

H = −t
∑
〈i,j〉

a†iaj +
∑
i

(εi − µ)n̂i +
U

2

∑
i

n̂i(n̂i − 1) (2.47)

where n̂i = a†iai is the occupation number on site i. This is the model that will be analyzed in this
thesis. In the following discussion the on-site energy εi will be assumed to be the same on all sites
and therefore set to zero for simplicity. This may be done because it simply gives an energy offset
on every site.
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3 Phase diagram of the Bose-Hubbard model

The Bose-Hubbard model describes a Mott-insulator-Superfluid transition. This model can be
described by the following Hamiltonian

H = −t
∑
〈i,j〉

a†iaj − µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1) (3.1)

with U > 0 for a repulsive on-site interaction and µ the chemical potential, included to be able to
fix the particle number. The creation and annihilation operators a†i and ai fulfill the commutator

relation
[
ai, a

†
j

]
= δi,j and hence describe spinless bosonic particles. n̂i = a†iai is the occupation

number operator for lattice site i. It will be considered a hypercubic lattice in d ≥ 2 and the lattice
spacing taken to be of unit length. The first term of the Hamiltonian describes the dynamics of the
system, aj destroys one particle on site j and a†i creates one on another site i, where the sites i, j have
to be next nearest neighbors (〈i, j〉 represents nearest neighbor pairs). t is the hopping amplitude
by which this process happens. The third term (interaction term) describes the on-site repulsion of
two or more particles at the same lattice site. For none or one particle at the same site there is no
interaction.
The phase diagramm of the model for T = 0 will be studied.
By considering the cases where t/U → 0 and U/t → 0 we will see that the system is in completely
different phases of matter for the two possibilities. Assuming that there is one boson on average
(n̄ = 1), in the limit t/U → 0 there must be one boson on each lattice site. Moving a particle would
create an empty and a doubly-occupied lattice site which requires a very large energy (U) with
respect to the gain in kinetic energy (t). Hence, it is very unlikely for this to happen. Therefore,
for an integer density of particles, the bosons will be suppressed to move from one site to another
and the system is in an insulating state. In the opposite limit where U/t → 0, the system becomes
superfluid. In this state the particles can move without resistance through the system. Thus, as
the ratio t/U increases we expect a phase transition between an insulating ground state (known as
a Mott-insulating phase) and a superfluid ground state. As it appears only at T = 0, it is called
a quantum phase transition2,[3].
Now, suppose that some particles are added to the system so that the average density of bosons per
lattice site 〈n〉 is slightly larger than unity. Then the excess bosons could move through the system
without changing the average density so that one could expect that the system is in the superfluid
state even for t/U → 0. More general, for any incommensurate density 〈n〉 = n0 + δn in the small
t/U limit where n0 is a commensurate (integer) density one can view the excess particles as a dilute
gas of delocalized particles responsible for the superfluidity of the system.

Additionally, it is important to mention that this Hamiltonian has a global U(1)-symmetry. H is

invariant under the transformation a†i → a†ie
−iθ and similar for the hermitian conjugate, where θ ∈ R.

The transformation is independent of the lattice site.

2In the usual case the phase transition is driven by thermal fluctuations. That is not possible for T = 0, the
fluctuations are of quantum nature. They appear because of the Heisenberg uncertainty principle and become so
strong that phase transitions can happen. Therefore, they are called quantum phase transitions.



3.1 Superfluid phase 16

3.1 Superfluid phase

For the limit U/t << 1 one can set U = 0 for simplicity. The Hamiltonian then becomes

HU=0 = −t
∑
〈i,j〉

a†iaj − µ
∑
i

a†iai (3.2)

This Hamiltonian can be diagonalized by Fourier transforming the apperaring creation and annihi-

lation operators. Inserting aj =
1√
N

∑
~k
ei
~k·~Rja~k and a†j =

1√
N

∑
~k
e−i

~k·~Rja†~k
into HU=0 yield

HU=0 =
∑
~k

(ε~k − µ)a†~k
a~k (3.3)

with ε~k = −2t
∑

α=1,...,d cos(kα) and where the lattice spacing a between neighboring lattice sites was
set to one. The resulting Hamiltonian in this limit describes a free Bose gas. The quantum statistical
description of the non-interactig Bose gas is a popular subject described in many text books, see
for instance [5] [4], [9]. The free Bose gas provides the simplest realization of a free Bose-Einstein
condensation. The Bose-Einstein condensate is a state of matter that bosonic systems can reach
under a critical tempereture. The statistic of bosons allows an arbitrary number of particles to be
in a quantum state. For small temperatures the particles tend to be in the state with the lowest
energy. Hence, due to the statistic the majority of the bosons will be in the state of lowest energy
for a sufficiently small temperature.

In the present case where T = 0 all the bosons will occupy the state where ~k = 0 which is obviously
the one with the lowest energy. The ground-state ket of the system for a fixed particle number N is,
however

|Ω〉 =
(
a†~k=0

)N
|0〉 =

(
1√
N

M∑
i=1

a†i

)N
|0〉 . (3.4)

This means that all bosons are maximally delocalized with probability ∼ 1/N to be found on an
arbitrary lattice site. So the wavefunction of every boson is spread over the whole lattice which
indicates the superfluid state where all bosons can move freely over the whole lattice. This gound
state holds in canonical ensemble where the number of particles is fixed at N . If one fixes the

average densiy of particles on the lattice at
〈
a†iai

〉
=
N

M
= n and compute the ground-state ket in

grand-canonical ensemble, [7]

|Ω〉 = e
√
Na†

~k=0 |0〉 =
M∏
i=1

(
e
√
N/Ma†i

)
|0〉 (3.5)

This is a product of coherent states at each lattice site, which has the same intepretation as the
ground-state in the canonical state. The expectation value 〈ai〉 is the order parameter of the su-
perfluid state. The non-vanishing of this order parameter indicates that the sytem is in a suerfluid

state,[9]. In the grand-canonical ensemble, the expectation value 〈ai〉 =
〈Ω|ai|Ω〉
〈Ω|Ω〉

ca be computed

to be, [7]

〈ai〉 =
〈Ω|ai|Ω〉
〈Ω|Ω〉

=
√
N/M (3.6)

which is indeed non-vanishing. Therefore the system is in the superfluid state for the case of a free
Bose gas.
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3.2 Mott-insulating phase

First, it will be considered the strong coupling limit without hopping t = 0 and U � 1. The
Hamiltonian becomes

Ht=0 =

M∑
i=1

(
U

2
n̂i(n̂i − 1)− µn̂i

)
(3.7)

where M is the number of lattice sites. This Hamiltonian is local and therefore the same on all
lattice sites. Hence, on can focus on the local Hamiltonian

Hloc =
U

2
n̂(n̂− 1)− µn̂ (3.8)

which is diagonal in the occupation number state |n〉. This follows from the fact that Hloc commutes
with n̂. According to the chapter about 2nd quantization, the state |n〉 has the following properties

n̂ |n〉 = n |n〉 a† |n〉 =
√
n+ 1 |n+ 1〉 a |n〉 =

√
n |n− 1〉 (3.9)

where n is the number of particles on a site.
Computing the eigenvalues of Hloc in its eigenbase, one obtains

εn := 〈n|Hloc|n〉 =
U

2
n(n− 1)− µn (3.10)

One wants to find the local occupation n0(µ,U) of the insulating ground state which minimizes the
energy.
The ground state |n0〉 is defined as the eigenstate of εn0 = minn εn, where the number n can only be
an integer or zero. In order to get the occupation n0(µ,U), it is possible to proceed in the following
way. It is known that the ground state is a Mott-insulator. The most stable state is when there
is the same number of particles on all sites. By calculating the energy cost to add or remove one
particle to the system, one can conclude the integer values of n0(µ,U). Assuming that εn0 is the
ground state energy. Then the energy cost to add one particle to the stystem is

εn0 < εn0+1 =
U

2
(n0 + 1)n0 − µ(n0 + 1) = εn0 + Un0 − µ (3.11)

from this one can deduce the condition n0 >
µ

U
. For the cost to remove a particle

εn0 < εn0−1 =
U

2
(n0 − 1)(n0 − 2)− µn0 = µ = εn0 + U(1− n0) + µ (3.12)

and from this relation follows µ
U > n0 − 1. Summarizing both conditions, one can conclude the

dependence of n0 on µ/U .

⇒ n0 > µ/U > n0 − 1 (3.13)

If initially there was no particle in the state (n0 = 0), one only has the condition µ/U < n0 = 0.
Hence, the occupation number in the ground state depending on µ/U is

n0 =



0, for µ/U < 0

1, for 0 < µ/U < 1

2, for 1 < µ/U < 2
...

n, for n− 1 < µ/U < n

(3.14)
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Further, asking what energy is needed to excite one boson from one site to another, which
leaves a site with occupancy n− 1 and creates one with n+ 1, leads to the so-called excitation gap
of the Mott insulator. A non-vanishing excitation gap is a characteristic property of the insulating
phase.The excitation gap for t = 0 is the sum of the energy cost needed to add and to remove one
particle from the system and will be denoted as ∆0.

∆0 = (εn0+1 − εn0) = (εn0−1 − εn0) = U (3.15)

The excitation spectrum of the superfluid phase is gapless.3

The states where µ/U takes an integer value are doubly degenerate on every site. Hence, one has a
2M fold degeneracy on the whole lattice in these cases. This degeneracy will be lifted by a non-zero
t. One can derive the ground state of the insulating phase by a variational ansatz for this state which
minimizes the expectation value of the Hamiltonian Ht=0 and which is normalized, [10]. The ground
state is

|Ω〉 =

M∏
i=1

1
√
n0

(b†i )
n0 |0〉 (3.16)

However, the ground state is just a Fock state with the same number of particles n0 (occupancy for
minimal energy) on each site of the lattice.

3These are gapless phonon modes according to the Goldstone theorem
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3.3 Mean-field theory

It is not possible to find a transition from the superfluid to the Mott-insulating state, known
from the Bogoljubov theory for a weakly interacting bosonic gas. This theory would describe the
transition between a normal gas and the superfluid state,[4]. One has to start from the other limit.
One supposes that the model is initially in the Mott-insulating state. One can take the hopping
amplitude t > 0 and perform a mean field decoupling in the hopping term of the Hamiltonian 3.1.
This leads to the quantitatively right description of the phase transition. In this proceeding, it is
necessary to compute corrections to the ground state energy in the usual non-degenerate Schrödinger-
perturbation theory up to fourth order.
One has to start again with the Hamiltonian of the Bose Hubbard model

H = −t
∑
〈i,j〉

a†iaj − µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1) (3.17)

and decouple the hopping term by assuming that the expectation value 〈ai〉 ≡ φ ∈ C is non-zero but
small and the same on all sites. φ is in analogy the Bogoljubov theory the order parameter of the
superfluid state. Expand the creation and annihilation operator in the hopping term around their
expectation values plus small fluctuations ai = φ+ δai, so that the product a†iaj can be written as

a†iaj = φa†i + φ̄aj − |φ|2

In this approximation the Hamiltonian becomes

Heff =
∑
i

(
U

2
n̂i(n̂i)− µn̂i

)
− t
∑
〈i,j〉

(
φa†i + φ̄aj − |φ|2

)
(3.18)

The sum in the second term can be carried out in one index

Heff =
∑
i

(
U

2
n̂i(n̂i)− µn̂i + tz|φ|2

)
− tz

∑
i

(
φa†i + φ̄ai

)
(3.19)

≡
∑
i

(
h

(0)
i + V t

i

)
(3.20)

where z is the coordination number, counting the number of next nearest neighbors. V t = −tz
(
φa†i + φ̄ai

)
will be treated as a weak perturbation to the unperturbed Hamiltonian h

(0)
i where we consider that

φ, φ̄ are small expansion parameters. The approximated effective Hamiltonian is now local, so one
can focus again on one lattice site. Therefore, the lattice index will be suppressed.

Hloc = h(0) + V t (3.21)

The eigenstates of the unperturbed Hamiltonian
∑

i h
(0) are the same as previous

|Ω〉 =

M∏
i=1

1
√
n0

(b†i )
n0 |0〉 (3.22)

but now with the eigenergies

E(0)
n0

=
U

2
n0(n0 − 1)− µn0 + tz|φ|2 (3.23)
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The occupation number n0 is also as before

n0 =



0, for µ/U < 0

1, for 0 < µ/U < 1

2, for 1 < µ/U < 2
...

n, for n− 1 < µ/U < n

(3.24)

The next step is to compute the energy- and state corrections. The state correction to p-th order
can be computed using the well known formula

∣∣∣n(p)
0

〉
=
∑
m 6=n

∣∣∣m(0)
0

〉 〈m(0)
0

∣∣∣V t
∣∣∣n(p−1)

0

〉
E

(0)
n0 − E(m0)

−
p∑
i=1

E(j)
n0

∑
m 6=n

∣∣∣m(0)
0

〉 〈m(0)
0

∣∣∣n(p−j)
〉

E
(0)
n0 − E

(0)
m0

(3.25)

The energy correction to p-th order takes a simpler form

E(p)
n0

=
〈
n

(0)
0

∣∣∣V t
∣∣∣n(p−1)

0

〉
(3.26)

The unperturbed state is the occupation number basis
∣∣∣n(0)

0

〉
=

1
√
n0

(
a†
)n0 |0〉 which is the eigenbasis

of the gound state.4 Due to the fact that the pertubation V t is linear in the creation and annihilation
operator, all corrections of an odd order to the the energy will vanish in the occupation number basis.

We will from now denote the unperturbed state
∣∣∣n(0)

0

〉
≡ |n0〉 to simplify the notation.

For instance, the first order correction to the energy is

E(1)
n0

= 〈n0|V t|n0〉 = −tz 〈n0|
(
φa† + φ̄a

)
|n0〉

= −tz

φ√n0 + 1 〈n0|n0 + 1〉︸ ︷︷ ︸
δn0,n0+1=0

+φ̄
√
n0 〈n0|n− 1〉︸ ︷︷ ︸

δn0,n0−1=0


⇒ E(1)

n0
= 0 (3.27)

This follows from the orthonormality of the occupation number basis. Using 3.25, we can calculate
the first order correction to the state∣∣∣n(1)

0

〉
=
∑
m 6=n
|m0〉

〈m0|−tz
(
φa† + φ̄a

)
|n0〉

E
(0)
n0 − E(m0)

− E(1)
n0

∑
m6=n
|m0〉

δn0,m0

E
(0)
n0 − E

(0)
m0

(3.27)
=

∑
m 6=n
|m0〉

−tz
(
φ
√
n0 + 1δm0,n0+1 + φ̄

√
n0δm0,n0−1

)
E

(0)
n0 − E

(0)
m0

= −tz

(
φ
√
n0 + 1 |n0 + 1〉
E

(0)
n0 − E

(0)
n0+1

+
φ̄
√
n0 |n0 − 1〉

E
(0)
n0 − E

(0)
n0−1

)

where E
(0)
n0 − E

(0)
n0+1 = µ− Un0 and E

(0)
n0 − E

(0)
n0−1 = U(n0 − 1)− µ as previously calculated. Hence,

one gets ∣∣∣n(1)
0

〉
= −tz

(
φ
√
n0 + 1 |n0 + 1〉
µ− Un0

+
φ̄
√
n0 |n0 − 1〉

U(n0 − 1)− µ

)
(3.28)

4Focussing on the ground state per site, because the Hamiltonian is local.
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With this result, the second order correction to the energy can be computed

E(2)
n0

=
〈
n0

∣∣∣V t
∣∣∣n(1)

0

〉
= (tz)2

[
〈n0| (φa† + φ̄a)

(
φ
√
n0 + 1 |n0 + 1〉
µ− Un0

+
φ̄
√
n0 |n0 − 1〉

U(n0 − 1)− µ

)]
= (tz)2

[
|φ|2 n0 + 1

µ− Un0
+ |φ|2 n0

U(n0 − 1)− µ

]

⇒ E(2)
n0

=

[
(tz)2

(
n0 + 1

µ− Un0
+

n0

U(n0 − 1)− µ

)]
|φ|2 (3.29)

The calculation of the correction to the energy up to fourth order is very tedious.
It will come out to the fact that the Landau theory of phase transitions can be used to argue where
the phase transition appear. Hence, one ignores the state corrections and state only the energy
correction of fourth order

E(4)
n0

= (tz)4|φ|4
[

(n0 + 1)(n0 + 2)

(µ− Un0)2(2µ− U(2n0 + 1))
+

n0(n0 − 1)

(U(n0 − 1)µ)2(U(2n0 − 3)− 2µ)
(3.30)

−
(

n0

U(n0 − 1)− µ
+

n0 + 1

µ− Un0

)(
n0

(U(n0 − 1)− µ)2
+

n0 + 1

(µ− Un0)2

)]
(3.31)

Now, summarizing all terms of the calculation the energy of the perturbed system is

E(φ, φ̄) = a0 + a2|φ|2 + a4|φ|4 +O(|φ|6) (3.32)

with

a0 =
U

2
n0(n0 − 1)− µn0 (unpertubated ground state energy) (3.33)

a2 = tz + (tz)2

(
n0 + 1

µ− Un0
+

n0

U(n0 − 1)− µ

)
(3.34)

a4 = (tz)4

[
(n0 + 1)(n0 + 2)

(µ− Un0)2(2µ− U(2n0 + 1))
+

n0(n0 − 1)

(U(n0 − 1)µ)2(U(2n0 − 3)− 2µ)
(3.35)

−
(

n0

U(n0 − 1)− µ
+

n0 + 1

µ− Un0

)(
n0

(U(n0 − 1)− µ)2
+

n0 + 1

(µ− Un0)2

)]
(3.36)

It is obvious that the global U(1)-symmetry of the initial Hamiltonian is preserved. The energy 3.32
can be identified as the expansion of a thermodynamic potential in powers of a order parameter.
According to the phenomenological Landau theory of phase transitions the phase transition will
happen when the expansion coefficient a2 vanishes if the coefficient a4 is positive, otherwise E(φ, φ̄)
would be unbound from below. Indeed, a4 is positive, which can be shown,[4].
Following Landau’s theory minimizing the energy functional with respect to φ̄ leads to

∂E(φ, φ̄)

∂φ̄
= a2φ+ 2a4|φ|2φ

!
= 0 (3.37)

⇒ φ0 = 0 or |φ±|2 =
−a2

2a4
(3.38)

The solution that minimizes the energy is the one for which the second derivative is positive. This
will depend on the sign of a2.

∂2E

∂φ∂φ̄
= a2 + 4a4|φ|2

!
> 0 (3.39)
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Figure 1: Mean-field phase diagram of the Bose-Hubbard model showing the first three Mott-lobes
and the superfluid phase. The transition line µ̃(w) is given by 3.44 for a given Mott-lobe with n0

per lattice site. The straight dotted line describes states with an integer-average boson density 〈n〉
per lattice site

From this condition follows

|φ| =

 0 for a2 > 0√
−a2

2a4
for a2 < 0

(3.40)

The solution for a2 < 0 corresponds to a continuum of points, namely the boundary of a circle with

radius of

√
−a2

2a4
. The ground state will choose one of the points spontaneously. This leads to a

gapless Goldstone mode which corresponds to phonon excitations in the superfluid state.
Due to the fact that the order parameter φ is non-zero for a2 < 0 and zero for a2 > 0, there has to
be a phase transition of second order for a2 = 0. The order parameter φ characterizes the superfluid
phase. Hence, one expects that the Mott-insulating phase is stable for a2 > 0 where for a2 < 0 the
superfluid occurs. Now, the condition a2 = 0 yields

a2 = tz + (tz)2

(
n0 + 1

µ− Un0
+

n0

U(n0 − 1)− µ

)
!

= 0 (3.41)

Define new variables µ̃ ≡ µ/U and w ≡ tz/U . Solving for w leads to the expression

w =
(n0 − µ̃)(µ̃− (n0 − 1))

µ̃+ 1
(3.42)

3.42 states when the Superfluid-Mott-insulator transition appears. Going back to the cases where
the ground state energy of the system is degenerate, µ = Un0 or µ = U(n0−1). At this special points
is w = 0, which can be seen from 3.42 by inserting µ = Un0 or µ = U(n0 − 1). These correspond to
the intersection points with the µ̃-axis between two so-called ”Mott-lobes”, see figure 1 above. This
means that the phase boundary extends down to t = 0. However, the system will be for all t > 0 in

superfluid state even for U →∞
(
w =

tz

U
→

U→∞
0+

)
.

Solving 3.42 for µ̃ leads to the quadratic equation

µ̃2 − µ̃(2n0 − 1− w) + w + n0(n0 − 1) = 0 (3.43)

which admits two solutions

µ̃± = n0 − 1/2− w/2±
√
w2 − 4w(n0 + 1/2) + 1 (3.44)
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for given values of n0 provided that w2−4w(n0 + 1/2) + 1 > 0. The relation µ̃± = µ̃±(w) defines the
transition line for the Mott-lobes with a given integer value n0. µ̃+ corresponds to the upper branch
of a lobe and µ̃− to the lower one.
The solutions merge for w2 − 4w(n0 + 1/2) + 1 = 0. Tese points correspond to the tips of the
Mott-lobes and are indicated by dots at the tips in figure 1. Solving this condition for w gives the
critical values for w and µ where the phase transition happens at the tips of the Mott-lobes5

wc = 2n0 + 1− 2
√
n2

0 + n0 (3.45)

and inserted in 3.44 to

µ̃c = n0 − 1/2− wc/2 = −1 +
√
n2

0 + n0 (3.46)

For instance, the critical value for n0 = 1 is

wc =

(
tz

U

)
c

' 0.172

The initial Hamiltonian analyzed in the decoupling procedure is written in a ”gran-canonical”
form. The −µn̂ is included because one wants to work with a varying particle number and therefore
operate in the gran-canonical ensemble. Tthe ground-state energy 3.32 is recognized as the gran-
canonical potential. Thus it is possible to calculate the average particle number per lattice site6 by
the well-known thermodynamic relation

〈n〉 = −∂E(φ, φ̄)

∂µ
(3.47)

Insertion of 3.32 yields

〈n〉 = − ∂

∂µ
a0 −

∂

∂µ

(
a2|φ|2

)
− ∂

∂µ

(
a4|φ|4

)
3.33
= n0 −

∂

∂µ

(
a2|φ|2 + a4|φ|4

)
(3.48)

In the Mott-insulating state where φ = 0, this becomes

〈n〉 = n0 (3.49)

which indeed shows that the average particle number per site in the insulating state is equal to the
number of particles per site minimizing the the energy. This holds within a Mott-lobe for a given n0.

For the superfluid phase φ is non-zero and takes the value |φ|2 =
−a2

2a4
, consequently the average

density becomes

〈n〉 = n0 +
∂

∂µ

(
a2

2

4a4

)
(3.50)

= n0 +
a2

2a4

∂a2

∂µ
− a2

2

4a2
4

∂a4

∂µ
, (3.51)

and the superfluid has a density 〈n〉 = n0 if

a2

2a4

∂a2

∂µ
− a2

2

4a2
4

∂a4

∂µ
= 0. (3.52)

5The other solution of the quadratic equation would lead to µ̃c < 0 and therefore to a vanishing occupation
number.3.24

63.32 is the ground state energy per site because the underlying Hamiltonian 3.21 is local
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Right at the tips of the Mott-lobes, the relation ∂a2
∂µ = 0 is satisfied. Thus, the phase transition at the

tips happens at fixed constant integer density 〈n〉 = n0
7 while anywhere else on the transition line,

the transition is accompanied by a density change. The areas of constant average integer density in
the (µ̃, w)-plane are depicted by the straight dotted lines in figure 1.

Additionally, it is interesting to look at the compressibility of the two phases. Again, from thermo-
dynamics it is known that the compressibility κ can be computed using the relation

κ = 〈n〉−2 ∂ 〈n〉
∂µ

(3.53)

Because of the fact that the average density of the Mott-insulating phase is constant, however, the
compressibility vanishes in this state. The system is incompressible within a Mott-lobe with fixed
average integer density. This is a defining property of the Mott-insulator.

For the superfluid state the compressibility is non-vanishing

κ = 〈n〉−2 ∂2
µ

(
a2

2

4a4

)
. (3.54)

7It is possible to ignore the second term in 3.52 because it is less singular as a2 approaches zero.
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4 Field theoretical insight into the Bose-Hubbard model

In this section the functional integral representation of the partition function will be used to
re-derive the mean-field results from the previous and to go beyond them. Then the effecive field
theory that describes the phase transition in the vicinity of the phase boundary will be derived. This
section is leaned on the chapter about optical lattices in [4], on the chapter about the Bose-Hubbard
model in [3] and on the paper [11].

4.1 Hubbard-Stratonovich transformation

According to the section 2.1.3, the grand canonical partition function of the Bose-Hubbard
model can be written as

Z =

∫
D(ψ̄, ψ)e−S[ψ̄,ψ] (4.1)

with

S[ψ̄, ψ] =

∫ β

0
dτ

(
N∑
i=1

ψ̄i(τ)∂τψi(τ) +HBH [ψ̄, ψ]

)
(4.2)

HHB = −t
∑
〈i,j〉

a†iaj − µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1) (4.3)

HHB has to be normal ordered in order to be able to exchange the operators ai and a†i with their
eigenvalues ψi and ψ̄i, respectively, in the coherent states. This can be accomplished by rewriting
the interaction term which is the only term not normal ordered, using n̂i = a†iai

n̂i(n̂i − 1) = a†iai(a
†
iai − 1) (4.4)

= a†i (1 + a†iai)ai − a
†
iai (4.5)

= a†ia
†
iaiai. (4.6)

Then, the action becomes

S[ψ̄, ψ] =

∫ β

0
dτ

 N∑
i=1

(
ψ̄i(τ)(∂τ − µ)ψi(τ) +

U

2
ψ̄iψ̄iψiψi

)
− t
∑
〈i,j〉

ψ̄iψj

 (4.7)

Next, define ti,j :=
∑

α,k tδi,j+α~ak where α = ±1 and ~ak are basis lattice vectors with k = {1, .., d}.
Therefore, the kinetic term of the action can be written as Skin[ψ̄, ψ] =

∫ β
0 dτ

(
−
∑

i,j ψ̄iti,jψj

)
.

Hence, the action is

S[ψ̄, ψ] =

∫ β

0
dτ

 N∑
i=1

(
ψ̄i(τ)(∂τ − µ)ψi(τ) +

U

2
ψ̄iψ̄iψiψi

)
−
∑
i,j

ψ̄iti,jψj

 (4.8)

From field theroretical framework, as in the mean-field case, one has to start from the strong-coupling
limit, U/t >> 1. In the weak coupling limit one would describe the usual superfluid to normal fluid
transition, which we are not interested in.
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To continue, it will be performed a so-called Hubbard-Stratonovich transformation by inserting a 1

in the form8

1 =

∫
D[φ̄, φ] exp

−∫ β

0
dτ
∑
i,j

φ̄it
−1
ij φj

 (4.9)

and shift the variable φ and φ̄ in order to decouple the hopping term. 9

φj → φj +
∑
k

tj,kψ (4.10)

⇒
∑
i,j

(φ̄i +
∑
k

ti,kψ̄k)t
−1
i,j (φj +

∑
l

tj,lψ) = (4.11)

∑
i,j

φ̄it
−1
i,j φj +

∑
i

(ψ̄iφi + φ̄iψi) +
∑
i,j

ψ̄iti,jψj (4.12)

In the calculation it has been used that
∑

i ti,kt
−1
i,j = δk,j .

After this transformation, the initial partition function and action becomes

Z =

∫
D[ψ̄, ψ, φ̄, φ]e−S[ψ̄,ψ,φ̄,φ] (4.13)

S[ψ̄, ψ, φ̄, φ] =

∫ β

0

 N∑
i=1

(
ψ̄i(∂τ − µ)ψi +

U

2
ψ̄iψ̄iψiψi

)
+

N∑
i=1

(ψ̄iφi + h.c.) +
∑
i,j

φ̄it
−1
i,j φj

 (4.14)

with a new auxilliary field φ. The next step would be to integrate out the bosonis fields ψ, ψ̄, to get
a effective theory for the auxilliary fields φ, φ̄. This is not directly possible because the argument
of the exponential function in the integrand is quartic in the fields ψ. But it is possible to get the
effective theory perturbatively.

Define Sloc[ψ̄, ψ] =
∫ β

0 dτ
∑N

i=1

(
ψ̄i(∂τ − µ)ψi +

U

2
ψ̄iψ̄iψiψi

)
for the local action that was

solved exactly in section 3.2.

Assume that by integrating out the fields ψ, ψ̄ the result is of the form

⇒ e−Seff[φ̄,φ] =

∫
D[ψ̄, ψ]e−S[ψ̄,ψ,φ̄,φ]. (4.15)

Seff[φ̄, φ] is the effective action for the auxilliary field φ which is of interest. 4.15 can be further
rewritten with

S[ψ̄, ψ, φ̄, φ] = Sloc[ψ̄, ψ] +

∫ β

0
dτ

∑
i,j

φ̄it
−1
i,j φj +

∑
i

(ψ̄iφi + φ̄iψi)

 (4.16)

as

⇒ e−Seff[φ̄,φ] = e−
∫ β
0 dτ

∑
i,j φ̄it

−1
i,j φj

∫
D[ψ̄, ψ]e−

∫ β
0 dτ

∑
i(ψ̄iφi+φ̄iψi)e−Sloc[ψ̄,ψ] (4.17)

= Zloce
−
∫ β
0 dτ

∑
i,j φ̄it

−1
i,j φj

〈
e−
∫ β
0 dτ

∑
i(ψ̄iφi+φ̄iψi)

〉
loc
. (4.18)

It has been defined that

〈(...)〉loc =
1

Zloc

∫
D[ψ̄, ψ](...)e−Sloc[ψ̄,ψ] (4.19)

8The normalization constant is absorbed into the definition of the integration measure D[φ̄, φ]
9This is possible because the functional integral in 4.9 is translationally invariant.
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So, the average
〈
e−
∫ β
0 dτ

∑
i(ψ̄iφi+φ̄iψi)

〉
loc

has to be calculated in the limit T → 0.10 This will be done

pertubativaley by assuming that φ is small which is justified in the vicinity of the phase boundary.

The average can be approximated by a cummulant expansion 〈e−x〉 ' e−〈x〉−(〈x2〉−〈x〉2)/2 for small x.

The averages will not be calculated in the fuctional integral representation 4.19 because the action
Sloc is quartic in the fileds and therefore not calcuable. It will instead be evaluated in the classical
thermodynamic average weighted with the grand-canonical density operator.

〈(...)〉loc =
1

Zloc
Tr
(

(...)e−βHloc

)
with Zloc = Tr

(
e−βHloc

)
(4.20)

and Hloc =

N∑
i=1

(
ψ̄i(∂τ − µ)ψi +

U

2
ψ̄iψ̄iψiψi

)
(4.21)

In this representation the averages can be calculated by evaluating the trace in the eigenbase of Hloc.
This Hamiltonian was solved exactly in section 3.2.

The first order cummulant
〈
−
∫ β

0

∑
i(φ̄iψi + ψ̄iφi)

〉
loc

= −
∫ β

0

∑
i

(
φ̄i 〈ψi〉loc + φi

〈
ψ†i

〉
loc

)
is linear

in the creation and annihilation operators ψ† and ψ. It will therefore vanish when the trace is
evaluated in the particle number basis 3.9. For instance11

〈ψi(τ)〉loc = Tr
(
ψi(τ)e−βHloc

)
=
∑
n

〈n|ψi(τ)e−βεn |n〉

=
∑
n

〈n|eτεnψie−βεne−τεn |n〉

=
∑
n

e−βεn 〈n|ψi|n〉︸ ︷︷ ︸
=
√
nδn,n−1

= 0, (4.22)

and analogously for
〈
ψ†i

〉
loc

.

Hence, only the second cummulant is left to calculate in

〈
e−
∫ β
0 dτ

∑
i(ψ̄iφi+φ̄iψi)

〉
loc

= e
−
〈(∫ β

0 dτ
∑
i(φ̄iψi+ψ̄iφi)

)2
〉

loc

/2
. (4.23)

⇒1

2

〈(∫ β

0
dτ
∑
i

(φ̄iψi + ψ̄iφi)

)2〉
loc

=

1

2

∫ β

0
dτ

∫ β

0
dτ ′
∑
i,j

〈
φ̄i(τ)φj(τ

′)ψi(τ)ψ̄j(τ
′) + φ̄j(τ

′)φi(τ)ψ̄i(τ)ψj(τ
′)
〉

loc
(4.24)

To translate the expectation value of the fields into the expectation value of operators, one has to
introduce the imaginary time ordering operator T .〈

ψi(τ)ψ̄j(τ
′)
〉

loc
=
〈
Tτ

[
ψi(τ)ψ†j(τ

′)
]〉

loc
(4.25)

10The quantum phase transition happens at T = 0.
11The Hamiltonian is local for which reason the on-site average is taken
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In addition, the averages are taken on a single site, which means they are only non-zero on the same
site. 〈

Tτ

[
ψi(τ)ψ†j(τ

′)
]〉

loc
= δi,j

〈
Tτ

[
ψi(τ)ψ†i (τ

′)
]〉

loc
(4.26)

4.24 becomes then

4.24 =
1

2

∫ β

0
dτdτ ′

∑
i,j

φ̄i(τ)2δi,j

〈
Tτ

[
ψi(τ)ψ†j(τ

′)
]〉

loc
φj

=

∫
dτdτ ′

∑
i

φ̄i(τ)
〈
Tτ

[
ψi(τ)ψ†j(τ

′)
]〉

loc
φi(τ

′)

= −
∫
dτdτ ′

∑
i

φ̄i(τ)G(τ − τ ′)φi(τ ′) (4.27)

The on-site propagator G(τ − τ ′) has previously been defined as

G(τ − τ ′) = −
〈
Tτ (ψi(τ)ψ†i (τ

′))
〉
.

It characterizes the propagation of bosonic field form a site i at time τ ′ to the same site i at another
time τ . As the system is time translationally invariant, it is sufficient to calculate G(τ)

G(τ) = −
〈
Tτ (ψi(τ)ψ†i (0))

〉
= −

〈
ψi(τ)ψ†i (0)

〉
(4.28)

= − 1

Zloc

∑
n

(n+ 1)e−(β−τ)εn−τεn+1 (4.29)

Also, it will be useful to determine the propagator in Fourier space

G(iω) =

∫ β

0
G(τ)eiωτ (4.30)

= − 1

Zloc

∞∑
n=0

(n+ 1)
e−βεn+1 − e−βεn
iω + εn − εn+1

(4.31)

Finally, taking the limit T → 0(β →∞) leads to

G(iω) =
n0 + 1

iω + εn0 − εn0+1
− n0

iω + εn0−1 − εn0

(4.32)

where εn0 is the grond state energy 3.10. It has been used that Zloc → e−βεn0 for T → 0. From
section 3.2 it is known that

εn+1 − εn = Un− µ
εn−1 − εn = µ− U(n− 1).

G(iω) =
n+ 1

iω + µ− Un
− n

iω + µ− U(n− 1)
(4.33)

Going back to 4.23, it becomes〈
e−
∫ β
0 dτ

∑
i(ψ̄iφi+φ̄iψi)

〉
loc
' e−

∫ beta
0 dτdτ ′

∑
i φ̄i(τ)G(τ−τ ′)φi(τ ′) (4.34)
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and the integrand of the initial functional integral 4.15 is

e−Seff[φ̄,φ] = Zloce
−
∫ β
0 dτdτ ′

∑
i,j φ̄i(τ)(t−1

i,j δ(τ−τ
′)+G(τ−τ ′)δi,j)φj(τ ′) (4.35)

and the partition function can be written as

Z = Zloc

∫
D[φ̄, φ]e−Seff[φ̄,φ]. (4.36)

From 4.36 one can recognize Seff to be

Seff[φ̄, φ] =

∫ β

0
dτdτ ′

∑
i,j

φ̄i(τ)
(
t−1
i,j δ(τ − τ

′) +G(τ − τ ′)δi,j
)
φj(τ

′)

:=

∫ β

0
dτdτ ′

∑
i,j

φ̄i(τ)G−1
i,j (τ − τ ′)φj(τ ′) (4.37)

where the propagator Gi,j(τ − τ ′) = t−1
i,j δ(τ − τ ′) + G(τ − τ ′)δi,j for the auxiliary field was deduced

for practical reasons.
It will be very useful to Fourier transform the effective action by transforming the fields φ and

φ̄

φj(τ) =
1√
Mβ

∑
~q,ω

φqe
−iωτ−i~q·~Rj with q = (iω, ~q).

4.37 becomes then

Seff =
∑
q

φ̄q

(
−t−1

~q +G(iω)
)
φq

= −
∑
q

φ̄q
(
G−1(~q, iω)

)
φq (4.38)

with t~q = −2t
∑d

l=1 cos(ql) and G(iω) = 4.33 from before. The inverse propagator G−1(~q, iω) for the
auxiallary field φ in momentum and frequency space is given by

G−1(q) = t−1
~q −

n+ 1

iω + µ− Un
− n

iω + µ− U(n− 1)
(4.39)

Analyzing the static limit q = 0 q = (~q, iω)

G−1(0) = t−1
~q=0 −

n+ 1

µ− Un
− n

µ− U(n− 1)
with t~q=0 = −2td (4.40)

and comparing with 4.36 one can see that the path integral is unstable for G−1(~q = 0) and stable
otherwise12. Therefore one expects that the transition line is obtained from the criterion

G−1(~q = 0) = 0 = t−1
~q=0 −G(ıω = 0) (4.41)

= − 1

2td
− n+ 1

µ− Un
− n

µ− U(n− 1)
(4.42)

Hence, this yields the equation

U

2td
= − n+ 1

µ− Un
+

n

µ− U(n− 1)
(4.43)

which is the same result as in the mean-field case 3.41 for z = 2d, with z as the coordination number.

As an outlook, one could analayze the poles of the frequency and momentum dependent propagator,
which yields the excitation spectrum of quasiparticles and quasiholes in the Mott-unsulating state.

12A Gaussian integral
∫
dxe−ax

2

is only divergent for a > 0.
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4.2 Effective theory

To derive the effective theory in the vicinity of the phase transition it is possible to expand the
propagator G−1(q) in 4.38 for small momenta and frequencies. This expansion yields

G−1(q) ' G−1(0, 0) +
∂G−1(0, 0)

∂µ
iω +

1

4d2t
~q2 − 1

2

∂2G−1(0, 0)

∂µ2
(4.44)

where ∂G−1(0,0)
∂iω = ∂G−1(0,0)

∂µ has been used. Terms higher than second order has been ignored. Hence,
the effective action is

Seff[φ̄, φ] =
∑
~q,iω

(
r|φ|2 − 1

2
ω2 ∂

2r

∂µ2
|φ| −

~q2

4d2t
|φ|2 +

∂r

∂µ
iω|φ|2

)
. (4.45)

where it has been defined G−1(0, 0) = −a2(zt)2 ≡ −r and a2 corresponds to 3.41. Going back to the
space and time representation this can be written as

Seff[φ̄, φ] =

∫
ddx

∫
dτ

(
r|φ|2 − 1

2

∂2r

∂µ2
|∂τφ| −

1

4d2t
|∇φ|2 − ∂r

∂µ
φ̄∂τφ

)
. (4.46)

Now, in this action there are two different cases to distinguish. The parameter r in the first term
is proportional to a2, the quantitity that describes the phase bouandary in figure 1. Note that the
derivative ∂r

∂µ vanishes when r is µ−independent. However, this is precisely the condition in which
the Mott insulator-superfluid phase boundary in figure 1 has a vertical tangent. This means that
the linear term in the frequency ω vanishes at the tips of the Mott-lobes. Hence, the two cases are
when ∂r

∂µ 6= 0 and ∂r
∂µ = 0.

Lookin first at the case where ∂r
∂µ 6= 0 holds. Oone can set r = −r̃. In this case the quadratic time

derivative term can be neglected because it is dominated by the linear one.

Seff[φ̄, φ] =

(
∂r̃

∂µ
φ̄∂τφ−

1

2m∗
|∇φ|2 − r̃|φ|2

)
(4.47)

In this equation it has been defined that m∗ ≡ 2d2t Now, one can rescale the fields so that the time
derivative term does not have a prefactor.

φ→

√
∂r̃

∂µ
φ (4.48)

⇒ Seff[φ̄, φ] =

∫
ddx

∫
dτ

[
φ̄∂τφ−

1

2m
|∇φ|2 − µ̃|φ|2

]
(4.49)

The new prefactors are defined as

m ≡ −m∗ ∂r̃
∂µ

and µ̃ ≡ −r̃ 1
∂r̃
∂µ

.

This action describes only the free motion of the fields, it is the free non-interacting part of the
action. In order to get an interacting theory, one has to include an interaction term. The initial
Hamiltonian 3.1 has a global U(1)−symmetry, however this symmetry should be kept in the effective
action. The free action, that was derived from a microscopic theory, has this symmetry. The next
lowest order term which preserves this symmetry is of fourth order ∼ |φ|4. Hence, the interacting
effective action is

Seff[φ̄, φ] =

∫
ddx

∫
dτ

[
φ̄∂τφ+

1

2m
|∇φ|2 + µ̃|φ|2 +

u

4!

(
|φ|2

)2
]

(4.50)
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Later it will be argued that the quadratic term can be neglected because the coupling-constant µ̃ is
a so-called irrelevant variable for the quantum phase transition. The final effective action is

Seff[φ̄, φ] =

∫
ddx

∫
dτ

[
φ̄

(
∂τ −

∇2

2m

)
φ+

u

4!

(
|φ|2

)2
]

(4.51)

This is the critical theory of a dilute Bose gas,[3]. This result can be interpreted as follows. In the
end of section 3.3 it has been seen that the phase transition is accompanied with a small density
change away from integer filling anywhere on the phase boundary except at the tips of the Mott-
lobes. The excess particles that arise would not change the average density and could move freely
over the whole lattice, because the chemical potential becomes large or small enough so that particles
that got added or removed can overcome the potential energy by the gain of kinetic energy. This
free moving particles can be viewed as a free Bose gas.

Now, looking at the case where ∂r
∂µ = 0, one can see that the first order time derivative term vanishes

and one gets

Seff[φ̄, φ] =

∫
ddx

∫
dτ

(
r|φ|2 − 1

2

∂2r

∂µ2
|∂τφ|2 −

1

2m∗
|∇φ|2 + u0

(
|φ|2

)2
)

(4.52)

where again m = 2d2t an interaction term with coupling-constant u0 was included. Next, one

redefines r = −r̃ and rescales the fields φ→
√

∂2r̃
∂µ2φ. The effective action becomes

Seff[φ̄, φ] =

∫
ddx

∫
dτ

(
1

2
|∂τφ|2 −

1

2m ∂2r̃/∂µ2
|∇φ|2 − r̃

∂2r̃/∂µ2
|φ|2 +

u0

∂2r̃/∂µ2

(
|φ|2

)2
)

=
r̃=−r

∫
ddx

∫
dτ

(
1

2
|∂τφ|2 +

c2

2
|∇φ|2 − µ̃|φ|2 +

u

2

(
|φ|2

)2
)

(4.53)

with

c2 =
1

m ∂2r/∂µ2
µ̃ =

r̃

∂2r̃/∂µ2
and u = 2u0

1

∂2r̃/∂µ2

⇒ Seff[φ̄, φ] =

∫
ddx

∫
dτ

(
1

2
|∂τφ|2 +

c2

2
|∇φ|2 − µ̃|φ|2 +

u

2

(
|φ|2

)2
)

(4.54)

The critical theory of the Mott insulator-superfluid quantum phase transition at the the tips of
the Mott-lobes is thus a complex φ4−theory in d + 1 dimensions. This action has an emergent
Lorentz-invariance due to particle-hole symmetry at this specific point. For any point into the Mott-
lobes, the gap for particle (hole) excitations is simply the distance in µ−direction, for t fixed, from the
upper(lower) phase boundary. The lowest-lying excitation that conserves the total particle number is
a particle-hole-exciation. The energy of this excitation is the sum of the particle and hole excitations.
This energy is equal to the difference in µ between the top and bottom phase boundary at given t.

Gap: ∆g = U
√
w2 − 4(n+ 1/2)w + 1 with w =

zt

U

The transition at the tip of the Mott-lobes therefore happens without change in the total particle
number. It occurs due to the fact that the particles have enough kinetic energy ∼ t to overcome the
potential energy ∼ U .

This is a different mechanism than in the first case. The effective actions differ from each other by
the order of the time derivative term. One says that they are in different so called universality
classes where different physical systems act similarly in the vicinity of the critical point.

The first action 4.50 is in the universality class of the vacuum-superfluid transition in a dilute Bose
gas and the second one 4.54 is the universality class of the XY− or O(2)−model in d+1 dimensions.
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Additionally, as a conclusion for this section. If one takes the limit where the fields φ̄, φ are time and
spatially independent, one gets in both cases

Seff[φ̄, φ] =

∫
ddx

∫
dτ

(
µ̃|φ|2 + ũ

(
|φ|2

)2
)

= V β

(
µ̃|φ|2 + ũ

(
|φ|2

)2
)

The term under the integral can be intepreted as a form of energy. Therefore, it can be written as

E = µ̃|φ|2 + ũ
(
|φ|2

)2
. (4.55)

This corresponds to the expansion of the free energy in powers of the order parameter φ, as it was
derived in the relation 3.32.
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5 Renormalization Group Analysis

This section follows the discussion of the Renormalization Group in Altland’s and Simons’s ”Con-
densed Matter Field Theory” [5].

5.1 General Theory

In general, a field theory is given in the form

S[φ] ≡
N∑
a=1

gaOa[φ] (5.1)

where φ is some (multi-component) field, ga are coupling constants and Oa[φ] a certain set of opera-
tors. By ”renormalization of the theory” one refers to a scheme to derive a set of Gell-Mann-low-
equations describing the change of the coupling constants {ga}, as fast fluctuations of the theory
are successively integrated out. There are different ways to derive the set of flow equations from
the microscopic theory. All methods share the feature that they proceed in a sequence of three steps.
The scheme which will be used is called the momemntum shell integration.

I. Subdivision of the manifold

One decomposes the integration manifold {φ} into a sector to be integrated out {φ>} and a com-
plementary set {φ<}. In the momentum shell integration scheme, the sector to be integrated out is

defined to be the shell
Λ

b
≤
∣∣∣~k∣∣∣ ≤ Λ with b > 0. The UV-cutoff Λ is an intrinsic generic short

distance cut off, e.g. Λ ∼ 1/a where a is the lattice spacing. The fields {φ>} are in this sector,
the large momentum/small length scales modes and the small momentum/ large length scale modes

{φ<} are in the sector |~p| ≤ Λ

b
. Hence, one can decompose φ in slow and fast modes in k−space as

follows

φ(x) = φ>(x) + φ<(x) (5.2)

=
∑

Λ/b<k<Λ

φ>(k)eikx +
∑
k<Λ/b

φ<(k)eikx (5.3)

II. RG step; Decimation

One integrates out the fast/short distance fluctuations. In general, this step includes approximations
which are done in a so called loop expansion. The expansion parameter is the number of loops.
Here, one has to assume that higher loop numbers become smaller contributions.
The effective action is then of the form

S′[φ<] =
∑
k<Λ/b

∑
n

g′nO′n[φ<] (5.4)

where the prime stands for new couplings and operators after the integration.
The integration step therefore changes the coupling constants and possibly generates new terms in
the action. It has to be checked if the new generated terms are relevant in their scaling behaviour.
If they are, one has to include them into the former action with an a priori undetermined coupling
constant and repeat the steps until no new terms are generated. Again, one ends up with the action

S′[φ<] =
∑
k<Λ/b

∑
n

g′nO′n[φ<] (5.5)
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with a new momentum cut-off
Λ

b
. It will be necessary to get the action in the initial form, the

momenta and frequencies have to be rescaled, which is the third RG step.

III. Rescaling

One has to rescale the frequencies and momenta so that the rescaled field amplitude fluctuates on
same scale as the former field

k → bk and ω → bzω (5.6)

where z is the dynamical exponent. However, φ can be rescaled arbitrarily because it is simply
an variable of integration. The rescaling

φ→ b∆φφ (5.7)

is called field renormalization, ∆φ is the scaling dimension of the field. Usually, one chooses ∆φ

such that the free non-interacting part of the theory is scale invariant, which means it does not
change under the RG steps. For instance

S =

∫
ddx

∫
dτ
(
|∇φ|2 + |∂τφ|2

)
(5.8)

φ′=b
∆φφ→

x′=x/b τ ′=τ/bz

∫
ddx′

∫
dτ ′bd+z

(
b−2−2∆φ

∣∣∇′φ′∣∣2 + b−2(z+∆φ)
∣∣∂τ ′φ′∣∣2) (5.9)

=

∫
ddx′

∫
dτ ′bd+z−2∆φ

(
b−2
∣∣∇′φ′∣∣2 + b−2z

∣∣∂τ ′φ′∣∣2) (5.10)

Here one has to choose z = 1 so that the space and imaginary time scale in the same manner.

S′[φ′] =

∫
ddx′

∫
dτ ′bd+1−2∆φ−2

(∣∣∇′φ′∣∣2 +
∣∣∂τ ′φ′∣∣2) !

= S[φ] (5.11)

From this demand follows

0 = d+ 1− 2∆φ − 2 (5.12)

∆φ =
d+ z − 2

2

z=1
=

d+ 1− 2

2
(5.13)

The factor z can be interpreted as an increasing factor for the dimensionality and one gets a effective
dimension deff = d + z = d + 1,[12]. The factor z arises in quantum phase transitions. As result of
the RG steps the effective action becomes

S[φ] =
∑
k<Λ

∑
n

g′nOn[φ] (5.14)

Therefore, the effect of the RG is a change of all coupling constants. It is a mapping from the set of
old couplings ~g = {g1, ..., gn} to a new set of couplings ~g′ = {g′1, ..., g′n}.

~g′ = R(~g) (5.15)

In general, R is a non-linear function of ~g. It is convinient to set b = el and integrate out only a

infinitesimal shell (Λ > k
Λ

el
, l → 0+). In this process the difference between bare and renormalized

coupling is made arbitrarily small and one can be written ~g′ − ~g = R(~g) − ~g in the form of the
Gell-Mann-Low-equations or flow equations.

d~g

dl
= β(~g) where β(~g) = lim

l→0+

R(~g)− ~g
l

(5.16)
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5.2 Tree-Level scaling

The Renormalization Group (RG) steps will be used on the two effective actions that emerged in
the vicinity of the phase boundary,4.54 and 4.50. For the Tree-Level Scaling, it will be assumed
that the integration over the fast modes φ> has no effect on the slow modes in the action. The flow
equations will be derived in this approximation and analysed. It will be started with the action of
the universality class for the dilute Bose gas. Consequently, the flow equations for the action of the
XY-model will be written down in analogy to the previous ones. The stated action is

Seff[φ̄, φ] =

∫
ddx

∫
dτ

[
φ̄∂τφ+

1

2m
|∇φ|2 + µ̃|φ|2 +

u

2

(
|φ|2

)2
]
. (5.17)

The first RG step is to divide the fields into high and low momentum modes where the frequency/time
dependence stays the same. An intrinsic high energy cut-off Λ is inserted

φ(x, t) =
∑
k<Λ/b

φ(k, t)eikx +
∑

Λ/b<k<Λ

φ(k, t)eikx. (5.18)

Afterwards the high energy modes φ> are integrated out and it is assumed that this has no effect on
the action.

Hence, the action becomes

Seff[φ̄, φ] =

∫
ddx

∫ β

0
dτ

[
φ̄<∂τφ

< +
1

2m

∣∣∇φ<∣∣2 + µ̃
∣∣φ<∣∣2 +

u

2

(∣∣φ<∣∣2)2
]

≡
∫

ddx

∫ β

0
dτ

[
φ̄∂τφ+

1

2m
|∇φ|2 + µ̃|φ|2 +

u

2

(
|φ|2

)2
]

(5.19)

As the next step, the momenta, frequencies and fields are rescaled in order to get the former UV-
cut-off Λ.

x′ = x/b , τ ′ = τ/bz and φ′ = b∆φφ (5.20)

Then, one gets

Seff[φ̄, φ] =

∫
ddx′

∫ βb−z

0
dτ ′bd+z

(
b−2∆φ−zφ̄′∂′τφ

′ + b−2−2∆φ
1

2m

∣∣∇φ′∣∣2 + b−2∆φ µ̃
∣∣φ′∣∣2 +

u

2
b−4∆φ

(∣∣φ′∣∣2)2
)

=

∫
ddx′

∫ βb−z

0
dτ ′
(
b−2∆φ+dφ̄′∂′τφ

′ + bd+z−2−2∆φ
1

2m

∣∣∇φ′∣∣2 + bd+z−2∆φ µ̃
∣∣φ′∣∣2 +

u

2
bd+z−4∆φ

(∣∣φ′∣∣2)2
)

and if one inserts ∆φ =
d+ z − 2

2
, in analogy to 5.12, this becomes

Seff[φ̄, φ] =

∫
ddx′

∫ βb−z

0
dτ ′
(
b2−zφ̄′∂′τφ

′ +
1

2m

∣∣∇φ′∣∣2 + b2µ̃
∣∣φ′∣∣2 +

u

2
b4−z−d

(∣∣φ′∣∣2)2
)

(5.21)

It is obvious that the free part of the action is scale invariant for z = 2.

The effect of the RG procedure amounts to a change of the coupling constants µ̃ and u, and also of
the inverse temperature β.

µ̃′ = b2µ̃ (5.22)

u′ = b4−(z+d)u (5.23)

β′ = b−zβ ⇒ T ′ = bzT (5.24)
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From these equation one can writte down the flow equations for the Tree-Level-Scaling where b is
chosen to be b = el

∂µ̃

∂l
= 2µ̃ (5.25)

∂u

∂l
= (4− (z + d))u (5.26)

∂T

∂l
= zT (5.27)

Where the β−functions from 5.16 are recognized to be

βµ = 2µ , βu = [4− (z + d)]u and βT = zT (5.28)

The zeroes of the β−functions define the fixed points of the flow equations. At these points, the
coupling constants do not change and therefore is the action invariant. This defines a new symmetry,
the so-called scale invariance. The solutions of the flow equations are

µ̃(l) = e2lµ̃(0) (5.29)

u(l) = e(4−(z+d))lu(0) (5.30)

T (l) = ezlT (0) (5.31)

The prefactors in the exponents are the scaling dimension of the coupling constants.

∆µ = 2 , ∆u = 4− (z + d) and ∆T = z (5.32)

Their value is significant for the flow of the coupling constants. This result suggest a discrimination
between at least three different types of scaling behaviours.

(i) For ∆i > 0(i = µ, u, T ) the flow is directed away from a fixed point. The associated coupling
constant is said to be relevant.

(ii) In the complementary case, ∆i < 0, the flow is attracted by the fixed point. Coupling
constants with this property are said to be irrelevant.

(iii) Finally, coupling constants which are invariant under the flow ∆i = 0, are termed
marginal.

The distinction of relevant, irrelevant and marginal coupling constants in turn implies different types
of fixed points.

(i) Firstly, there are stable fixed points, i.e. fixed points whose coupling constants are alle
irrelevant. These points corresponds what can be called stable phases of matter. When you release a
system in parameter space surrounding any of these attractors, it will scale towards the fixed point
and eventually sit there.

(ii) Complementary to stable fixed points there are unstable fixed points. Here, all coupling
constants are relevant. These fixed point can not be reached and, even if you approach it closely ,
the system will eventually flow away from it.

(iii) A fixed point which has both relevant and irrelevant coupling constants is associated with
phase transition, see in [5] the chapter about Renormalization Group. The fixed point in the
considered case is at

µ̃∗ = 0 , T ∗ = 0 and u∗ = 0 (5.33)

which is called Gaussian fixed point. The scaling dimension of µ̃ and T are positive, therefore
they are relevant couplings. Whether u is a relevant or irrelevant coupling depends on the number
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of dimensions d.

∆u = 4− (z + d) =
z=2

2− d ≡ ε =


> 0 for d < 2

= 0 for d = 2

< 0 for d > 2

(5.34)

From this one can see that the interaction u becomes irrelevant for d > 2. The dimension dc = 2 is
therefore called upper critical dimension.
Hence, for d > 2 the couplings µ̃ and T are relevant for the fixed point µ̃∗, T ∗ = 0 and u∗ = 0 in
which u is irrelevant. This indicates a phase transition at these values for the couplins or rather a
quantum phase transition because of T = 0.

The action at this fixed point is

SBGeff [φ̄, φ]0

∫
ddx

∫ ∞
0

dτ

(
φ̄∂τφ+

1

2m
|∇φ|2 +

u

2

(
|φ|2

)2
)

(5.35)

as in 4.51.

For the XY-model, the only difference to the theory before is the order of the term with the time
derivative.

SXYeff [φ̄, φ] =

∫
ddx

∫ β

0
dτ

(
1

2
|∂τφ|2 +

c2

2
|∇φ|2 − µ̃|φ|2 +

u

4!

(
|φ|2

)2
)

(5.36)

The RG steps after the rescaling lead to the action

SXYeff [φ̄′, φ′] =

∫
ddx′

∫ βb−z

0
dτ ′
(
b2−2z 1

2

∣∣∂τ ′φ′∣∣2 +
c2

2

∣∣∇′φ′∣∣2 − b2µ̃∣∣φ′∣∣2 + b4−(d+z) u

4!

(∣∣φ′∣∣2)2
)

(5.37)

where it was again inserted that ∆φ =
d+ z − 2

2
. The only difference in the scaling behaviour to

the action for the dilute Bose gas is the value of the dynamical exponent z. Which has to be chosen
properly such that the free part is scale invariant. The dynamical exponent z has to be set one so
that this demand is satisfied. The flow equations are

µ̃′ = b2µ̃ (5.38)

T ′ = bT (5.39)

u′ = b3−du (5.40)

or if one sets b = el and let l seek to 0+

∂µ̃

∂l
= 2µ̃ (5.41)

∂T

∂l
= T (5.42)

∂u

∂l
= (3− d)u ≡ εu (5.43)

The upper critical dimension for this critical theory where the interaction constant u becomes irrel-
evant is dc = 3.

5.3 Wilson-Fisher fixed point

As mentioned in the beginning of the section, analytical RG computations requirea pertubative
treatment of the interaction term. For d < dc these grow under RG transformations, i.e. interactions
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are relevant in the RG sense below dc. For the |∇φ|4-theories 4.54 and 4.51 the critical fixed point
with non-linearity u = 0, the Gaussian fixed point is unstable with respect to finite u. An unstable
fixed point is one where all coupling constants are relevant. Therefore the critical fixed point for
d < dc will be characterized by a finite value of u, the so-called Wilson-Fisher fixed point. The
relevance of the interaction implies that bare pertubation theory is divergent at criticalicity, see [5].
This problem can be overcome using the so-called ε−expansion. A theory of the |φ|4−type can be
analysed in an expansion around the upper critical dimension, i.e. in ε = dc − d. This approach is
based on the observation that the fixed point value of renormalized coupling, u, is small near d = dc,
and a double expansion in u and ε allows for controlled calculations. In the XY-model, the RG
equations, describing the flow of the dimensionless non-linear coupling, u, upon changing b reads

∂u

∂l
= εu− 5

3
u2 (5.44)

with a fixed point at u∗ =
3

5
ε where ε = dc − d.

For the dilute Bose gas one gets with a redefined interaction coupling u → Λ2−d

2mSd
u and where

Sd =
2

Γ(d/2)(4π)d/2
is the usual phase space factor

∂u

∂l
= εu− u2

2
(5.45)

With the stable fixed point at

u∗ = 2ε (5.46)

Physically, the finite value of u at criticality implies strong self-interactions of the order parameter
of the bosons for d < dc.

Observables at and near criticality require different treatments, depending on whether d > dc or
d < dc. Above the upper-critical dimension, bare perturbation is usually sufficient. Below dc,
one can employ a renormalized perturbation expansion, perturbation theory is formulated in terms
of renormalized quantities, and in the final expressions the couplings are replaced by their fixed
point values, and the results are interpreted as arising from an ε expansion of the expected power-
law behaviour, i.e. power laws are obtained by re-exponentiating the perturbation series. The
renormalized perturbation expansion can thus be understood as a certain resummation technique of
bare perturbation theory.
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6 Conclusion and Outlook

It was seen that the quantum phase transition right at the tips of the Mott-lobes which leaves the
average integer filling of the lattice sites unchanged, happens due to the fact that the bosons have
enough energy to overcome the repulsive interaction potential. This bosons can be interpreted as
free particles which immediately condense and generate the superfluid phase. The effective theory
describing this transition has a emergent lorentz invariance in (d + 1)−dimensional space. It is in
the same universality class as the XY-model. This symmetry is due to the equality of the excitation
gaps of quasiparticles and quasiholes out of the Mott-insulating phase.
Anywhere else on the phase boundary the transition is accompined with a change of the average
particle number per lattice site. The excess particles or holes over the average integer filling act like
a free dilute Bose gas. These free constituents then condense and lead to the superfluid phase. The
effective filed theory describing this transition is in the universality class of a dilute Bose gas.
The perspective of the Renormalization Group, let one suggest that the quantum critical point is at
T = 0 and where the mass term in the actions of the theories vanishes. The interaction term scales
differently dependent on the dimension d. There are different fixed points to which the theories scale.
As an outlook, the derived fixed points which describes the quantum phase transition are not unique
universal quantities. They depend on the method used to derive them.
Universal quantities which can be measured in experiment are the so-called critical exponents.
These can be determined from the fixed point values and state how thermodynamic quantities scale
in the vicinity of the phase boundary,[5].
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Petar Čubela München, 14.02.2019


	Introduction
	Theory
	Functional integral representation of the partition function
	2nd quantization
	Coherent states
	Functinal integral representation

	Hubbard Model
	Bloch waves and Wannier functions
	Derivation of the Hubbard model


	Phase diagram of the Bose-Hubbard model
	Superfluid phase
	Mott-insulating phase
	Mean-field theory

	Field theoretical insight into the Bose-Hubbard model
	Hubbard-Stratonovich transformation
	Effective theory

	Renormalization Group Analysis
	General Theory
	Tree-Level scaling
	Wilson-Fisher fixed point

	Conclusion and Outlook
	References

