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Abstract

The topic of this thesis is the investigation of shot noise as a transport phenomenon in
mesoscopic low-dimensional inhomogeneous systems, in particular quantum point con-
tacts. After general considerations about noise in the framework of scattering theory and
the system at hand, the Keldysh formalism is introduced as a way to calculate correla-
tion functions in many-body systems. This formalism is used for the calculation of the
necessary propagators as well as the derivation of the relevant physical observables. Inter-
acting results are obtained numerically through the use of the functional Renormalization
Group. Finally, these results are presented and compared to previous results from scat-
tering theory along with experimental measurements, as a way of presenting the benefits
of the new approach in the understanding of noise terms.
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1 Introduction

1.1 Motivation

The last decades have seen the rise and refinement of new methods of describing quantum
many-body systems. The Keldysh formalism has been established as a powerful alternative
to the Matsubara formalism that comes with many benefits [Kam11]. Firstly, it avoids com-
plications that arise from a transformation to imaginary time resulting in the necessity of an
analytical continuation of the imaginary to the real axis, which is often quite bothersome.
Furthermore, it is able to treat non-equilibrium systems. Of course, this comes at some cost:
the introduction of a tensor structure to the propagators.

The extension of the functional Renormalization Group to Keldysh formalism is a rela-
tively new emerging field, which allows for the handling of infrared divergences, non-linear
dispersion models and out-of-equilibrium states, along with the ability to perform calculations
at real frequencies and describe large systems [GPM07] [JPS10a] [JPS10b] [Sch18] [Jak10].
In a nutshell, it achieves its goal of calculating vertex functions up to a certain order by solving
an infinite hierarchy of coupled differential equations and neglecting higher order terms.

The arrival and study of these methods presents us with the opportunity to apply them to
known quantum systems with a double purpose: firstly, one wishes to study the application
of these methods in a somewhat familiar environment with the goal of ’testing’ them in the
field, understanding their benefits and drawbacks, as well as refining and adapting them to
ever-new situations. Secondly, we have the goal of gaining a deeper theoretical knowledge
of the systems under investigation and using the new methods to their fullest extent, so as
to be able to investigate completely new realms that were not accessible to us with previous
methods.

In this case, we investigate specific transport properties of the so-called quantum point
contact. It only became possible to construct such a system in the last few decades, following
improvements in high-quality materials and micro-fabrication techniques [vKv+88]. In recent
years there has been peaked interest in the study of this system, which boils down to a low-
dimensional electrons gas imprinted with an external potential. Being on a mesoscopic scale,
it combines a high particle number with the necessity of quantum treatment. While many
effects, such as the quantization of the conductance [Lan57], were predicted decades ago,
it took a long time to fully understand many of the transport properties of the system, such
as the 0.7 anomaly, which is induced by interactions in the quantum point contact [Mic11]
[BHS+13].

Noise is a useful fundamental feature since it is connected to properties of the system gen-
erating the noise and, thus, provides deeper knowledge about both its equilibrium and trans-
port state. While there have been experimental measurements concerning noise [DZM+06]
[BGG+05], up to now there has not yet been a theoretical treatment and understanding of
the phenomenon in this specific context that goes beyond basic scattering theory and zero-
frequency predictions and accounts for the effects of interactions. Thus, the goal of this thesis
is the study of the noise properties of this system in the framework of the aforementioned
formalism.
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1.2 Outline of this thesis
Following the aim of analyzing noise within the Keldysh formalism, the necessary con-

cepts and considerations are introduced step by step:
Firstly, there is an introduction into the system under consideration. The basic setup of the

quantum point contact is described and an overview over some important experimental results
is given, while the main assumptions about a theoretical model that is capable of describing
such a system are analyzed. This is done in section 2.

Then we turn our attention to noise in general, its definition and an analysis of the different
kinds of noise. The Schottky formula for shot noise is motivated at this point through various
calculations. What follows is an overview over scattering theory and its predictions for our
case. This is all realized in section 3.

The Keldysh formalism is a central concept to this thesis as a tool to calculate correla-
tion functions in quantum many-body systems. The closed time contour, which is the basic
concept of this framework, is introduced along with Greens functions, with no prior knowl-
edge besides quantum mechanics required. Furthermore, Wick’s theorem is motivated as the
basic building block, which is the basis for most calculations within quantum field theory.
A reference to the exact form of the fluctuation dissipation theorem in the Keldysh formal-
ism is made. Afterwards, we turn our attention to the calculation of the Greens functions
that have just been introduced. We find a closed expression for the free propagators in the
Keldysh formalism through the infinitesimal limit of a discrete approach, while we describe
the methodology of calculating exact propagators through Wick’s theorem. This is done in
section 4.

At this point, all the necessary tools have been introduced to perform specific calculations
in our system. We motivate the exact choice of the Hamiltonian of the QPC and then proceed
to express the current and the noise of the system in terms of Keldysh Greens functions in
section 5.

Finally, we proceed with the presentation of our results. The calculations were imple-
mented at the chair of Prof. von Delft at the LMU Munich with the use of the Leibniz Rechen-
zentrum. After an overview over the functional Renormalization Group, which is the corner-
stone of the numeric simulation and which has been implemented by Lukas Weidinger, we
delve into some intricacies of our implementation. Then, we proceed with the illustration of
the results through various plots of the noise terms and we compare them to both experimental
measurements and theoretical predictions of scattering theory. This is performed in section 6.

The results of this thesis are summarized in the Conclusion. Here the results of the thesis
as well as the challenges that have been overcome are listed. At the end, an outlook on future
challenges and goals is given, both on a theoretical and an implementation-wise level.



2 Quantum point contact

2.1 The setup
The system under consideration in this thesis is a quantum point contact (QPC). It can be

realized experimentally by generating a two dimensional electron gas embedded in a plane
between two semi-conductors (eg. GaAs - AlGaAs) and imprinting this gas with a potential
generated by external gates. We assume that these gates are constructed in such a way that
their field lines penetrate the semiconductors and split the electron gas into two baths which
are connected by a narrow path. Depending on the form of the potential in this bath, the
system is called either a quantum wire (if the potential is long and flat), a quantum dot (if
localized states are possible, i.e. if the potential has a minimum) or a quantum point contact
(if the potential has the form of a saddle).

Figure 1: (a) Schematic cross-sectional view of a quantum point contact, defined in a high-
mobility 2D electron gas at the interface of a GaAs–AlGaAs heterojunction [vHB05]. The
point contact is formed when a negative voltage is applied to the gate electrodes on top of the
AlGaAs layer. Transport measurements are made by employing contacts to the 2D electron
gas at either side of the constriction. (b) Micrograph of a typical QPC [CLGG+02].

Within this plane, the electrons may scatter off impurities, phonons or other electrons. In
our case, we restrict ourselves to low temperatures and are thus able to neglect interactions
with phonons. By assuming that the structure which we observe is smaller than the mean
distance between impurities, we can also neglect the effects of impurities. As a result, we are
only left with electron-electron interactions which are mediated through the Coulomb force.
Since the region under consideration is small (mesoscopic scale), transport is phase coherent
and a quantum mechanical description is required.

We call the two baths, which are connected through the QPC, reservoirs or leads. We
assume that they are large enough to be characterized by temperatures TL (left), TR (right) and
chemical potentials µL, µR. We assume the reservoirs to be large compared to the QPC, which
only represents a small perturbation of the equilibrium systems.

On a mesoscopic scale, we can assume that the motions of the electrons longitudinal
(along the narrow path) and transverse (across the path) are separable. Longitudinal eigen-
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states are morally characterized by the continuous wave vector kl with corresponding energy
El =

~2k2
l

2m , where ~ is the reduced Planck constant and m is the electron mass. The trans-
verse motion is quantized and described by the discrete index n with corresponding energy
En. Thus, for a given total energy E = En + El only a finite amount of channels exists. By
reducing the width of the quantum point contact through the external gates, it is even possible
to eliminate all transverse states except one. Thus, such a system can be treated as one-
dimensional, since there are no degrees of freedom in any direction except the longitudinal.

The form of the potential of a QPC along the longitudinal direction is simply an inverted
parabola with a maximum at the center. The height of the potential barrier determines the
magnitude of the current that flows between the two baths when applying a relative voltage
between them; such a voltage is called source-drain bias voltage. If the source-drain bias
voltage is zero and there is no temperature gradient, then no current will flow. The differen-
tial conductance G is a useful quantity to describe this phenomenon: it measures how much
current can flow by increasing the source-drain bias voltage and is defined as the derivative of
the current with the respect to the source-drain bias voltage:1

G =
∂I
∂Vsd

Figure 2: Potential along the longitudinal axis of the path. The blue parabola is a QPC,
the red curve that flattens in the center is a quantum wire and the green curve is a quantum
dot. [Sch18]

2.2 Experimental data
The quantization of the momentum in the transversal direction leads to a quantization of

the conductance. Practically, the conductance counts the number of transmitting modes in
units of e2/h. In the case of no magnetic field, this number is increased by 2 each time a
new transverse mode is added due to the spin degeneracy of electrons. In the presence of a

1Note that there is also the linear conductance, which is defined as the derivative of the current with respect

to the source-drain bias voltage at zero voltage, i.e. Glin = ∂I
∂Vsd

∣∣∣∣∣
Vsd=0

. However, in this thesis we are often

interested in the transport state of the system at Vsd , 0.
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magnetic field, the up- and down-electrons can be regarded separately - each adding their own
stepwise contributions to the conductance.

In this thesis, we focus mainly on a QPC with a single transverse mode, i.e. we are going
to focus on the first conductance step from G = 0 to G = 2e2/h.

We are interested in the changes in the conductance G under variation of our external
parameters temperature T , external magnetic field B, gate voltage Vg and source-drain bias
voltage Vsd.

Figure 3 shows the conductance as a function of the gate voltage while the magnetic
field is varied. Note that the conductance step becomes increasingly asymmetrical as the
magnetic field is increased. This irregularity can be attributed to the strong suppression of the
conductance in the subopen regime (G at around 0.7 × 2e2/h), hence the name 0.7 anomaly.
This effect is caused by interactions between electrons. Practically, this shows that it does not
suffice to model the electrons as free particles.

Figure 3: Experimental measurements of the conductance as a function of the gate voltage
under variation of the magnetic field. (a) [TNS+96] (b) [CLGG+02].

Figure 4 shows the conductance as a function of the gate voltage with the temperature
being varied this time. By increasing the temperature, the conductance step is flattened out.
However, once again this flattening is highly asymmetric, as the conductance is strongly sup-
pressed in the subopen regime; in fact, this suppression is much stronger than the thermal
broadening. Once again, this can be attributed to interactions between electrons.
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Figure 4: Experimental measurements of the conductance as a function of the gate voltage
under variation of the temperature with no magnetic field. (a) [CLGG+02] (b) [KBH+00].

Figure 5 shows how the conductance changes when the source-drain bias voltage is varied
at fixed temperature and magnetic field. Once again, this illustrates the step-like nature of the
conductance in a QPC.

Figure 5: Experimental measurements of the conductance as a function of the source-drain
bias voltage, at various temperatures, magnetic fields and gate voltages. [CLGG+02]
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2.3 Our model
We model the QPC as a discrete one-dimensional tight-binding chain. The first and the

last site in this chain are coupled to the respective leads. Since the leads are in equilibrium
and we are interested in the QPC, we assume that the electrons in the leads are non-interacting
and that the coupling between the leads and the QPC is also non-interacting. Basically, we
are able to treat the two-dimensional electron gas in the leads as a Fermi liquid. However, this
breaks down in the QPC and the resulting interaction in the narrow region has to be treated
explicitly. Thus, only the Hamiltonian of the chain itself may contain terms that are not
quadratic in creation/annihilation operators. Physically, the leads act as non-interacting baths
for our system. With regard to practical calculations, this simply corresponds to additional
terms in the Wick expansion of our interaction Hamiltonian. (see section (4.6))

We assume that the Coulomb-force is short ranged, since the assumption is often well-
justified that the surrounding materials can rearrange so that the Coulomb interaction is suf-
ficiently screened. Basically, we are interested in physics at timescales much larger than

length of QPC
speed of light in material and assume that the density of the materials is high enough to provide such
a screening. With the simplifications above, there can only be the following kinds of terms in
our QPC-Hamiltonian: those which describe the static potential at each site of the chain, those
which describe the hopping of the electrons between adjacent sites and those that describe the
interaction / coupling between two electrons.

After this brief overview about the basic concepts of a QPC, it is time to introduce some
other basic concepts regarding noise and the Keldysh formalism.



3 Noise

When one applies a constant magnetic field and a constant voltage to a QPC, typically
a stationary current arises, whose measurement gives us information about the system under
consideration. However, one may notice the existence of time-dependent fluctuations of the
current around its mean value. One would measure such fluctuations even with access to
infinite precision measurements; thus, they are an intrinsic property of our system.

Generally, such fluctuations are called noise. Noise is an interesting feature because it
is fundamentally connected to properties of the system that generate the noise. Formally
speaking, noise is defined as the Fourier transform of the current-current correlation function.
We distinguish two main types of noise: thermal noise and shot noise.

3.1 Thermal noise

At non-zero temperatures, there are thermal fluctuations. The occupation number n of
electron states is fluctuating around its thermodynamic average 〈n〉, which is determined by
the Fermi distribution. The mean-squared fluctuations 〈(n − 〈n〉)2〉 increase with higher tem-
peratures and are determined by the Maxwell-Boltzmann distribution. This type of noise
causes equilibrium current fluctuations, which can be shown2 to be related to the conductance
of the system, i.e. the conductance can be determined by equilibrium current fluctuation mea-
surements.

3.2 Shot noise

Unlike thermal noise, shot noise cannot be measured at equilibrium; it arises in the trans-
port state of the system. The origin of shot noise lies in the discrete nature of electronic
charge. When measuring a low current with great accuracy, one can no longer neglect the
fact that electrons are quantized; a detector, which registers each passing electron separately,
will measure a fluctuating current that depends on how many electrons are detected at each
individual moment in time.3

Shot noise can be understood and quantified by examining the underlying physics that
is governing the emission and transport of electrons. The first prediction of this nature was
made by Walter Schottky who coined the term in 1918. Shot noise is also often called Poisson
noise; let us look at the following simple yet powerful example to understand why:

Let us assume that the particles we are interested in are emitted independently from one
another and are non-interacting, i.e. each arrives independently in our detector. Let τ be
the characteristic time scale of our measurement, in this case the mean time between the
measurement of two such particles. We are looking for the probability PN(t) for detecting N
particles during a time interval of length t.4

2 [BB00]
3Historic remark: The term ’shot noise’ originates from the sputtering sound that can be heard in an audio

amplifier, which translates the random fluctuations of electrons emitted from a hot cathode into sound.
4We observe that τ = t/〈N〉.
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The probability P0(t) to detect zero particles in time t satisfies

P0(t + dt) =

(
1 −

dt
τ

)
P0(t)

since
(
1 − dt

τ

)
is the probability of not detecting any particle in the infinitesimal time interval

dt. This can be solved as

dP0

dt

∣∣∣∣∣
t
≡

P0(t + dt) − P0(t)
dt

= −
1
τ

P0(t) =⇒ P0(t) = e−t/τ

We now attempt to find PN for N > 0. We can express PN recursively through PN−1, as
follows:

PN(t + dt) =

(
1 −

dt
τ

)
PN(t) +

dt
τ

PN−1(t) +

(
dt
τ

)2

PN−2(t) + . . .

Since dt is infinitesimal, all terms of higher order than linear in dt can be set to zero. We
proceed to get

τ
dPN

dt

∣∣∣∣∣
t
≡ τ

PN(t + dt) − PN(t)
dt

= PN−1(t) − PN(t)

We multiply by et/τ and obtain

d
d(t/τ)

(
PN(t)et/τ

)
= PN−1(t)et/τ

which by induction leads to

dN

d(t/τ)N

(
PN(t)et/τ

)
= P0(t)et/τ = 1

This is solved by

PN(t) =
(t/τ)N

N!
e−t/τ (1)

which is a Poisson distribution in N ∈ N0. We obtained this general result by simply demand-
ing independence of detection events, hence the term Poisson noise.

The mean value and variance of a Poisson distribution with parameter t/τ ∈ R+ are given
by

〈N〉 = t/τ, ...Var(N) ≡ 〈N2〉 − 〈N〉2 = 〈N〉 = t/τ

If we are interested in detecting electrons, then the mean measured current 〈I〉 satisfies
〈I〉 = q〈N〉/t = q/τ. The noise S is proportional to the variance of the number of transmitted
particles. With the correct proportionality factors, one obtains

S =
2q2

t
Var(N) = 2q〈I〉

The equation S = 2q〈I〉 is a central characteristic of shot noise. We are going to examine
it more closely in the following section:
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3.3 Derivation through the Wiener-Khintchine theorem
Given a current I(t), we define its autocorrelation function

RI(τ) B 〈I(t)I(t − τ)〉 = lim
T→∞

1
T

∫ T/2

−T/2
dtI(t)I(t − τ)

which can be considered to be a measure of the current fluctuations. The noise is defined as
its Fourier transform:

S (ω) B
∫ ∞

−∞

dτRI(τ)eiωτ

We can now make some basic integral calculations:

S (ω) = lim
T→∞

1
T

∫ T/2

−T/2
dt

∫ ∞

−∞

dτI(t)I(t − τ)eiωτ

= lim
T→∞

1
T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

∫ ∞

−∞

dτI(t)I(t′)eiωτδ(t − t′ − τ)

= lim
T→∞

1
T

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′

∫ ∞

−∞

dτI(t)I(t′)eiωτ
∫ ∞

−∞

dω′

2π
eiω′(t−t′−τ)

By using
∫ ∞
−∞

dτei(ω−ω′)τ = 2πδ(ω − ω′) we obtain

S (ω) = lim
T→∞

1
T

∫ T/2

−T/2
dtI(t)eiωt

∫ T/2

−T/2
dt′I(t′)e−iωt′

This translates to
S (ω) = 〈Ĩ(ω)Ĩ∗(ω)〉 = 〈|Ĩ(ω)|2〉 (2)

where Ĩ(ω) is the Fourier transform of I(t). Equation (2) is known as the Wiener-Khintchine
theorem and is the basis for many calculations in statistics and signal processing. It states
that the Fourier transform of the autocorrelation gives the power spectrum; knowledge of the
one is equivalent to the other. Because of this relation, S (ω) is called the (two-sided) power
spectral density (PSD).

We observe that S (ω) = S (−ω). Thus, for ω ≥ 0 this gives rise to the definition

S I(ω) B S (ω) + S (−ω) = 2S (ω) = 2
∫ ∞

−∞

dτRI(τ)eiωτ

which is called the one-sided power spectral density or noise.
Now let us consider some simple examples for I(t):

3.3.1 Sharp pulses

In the case that the electrons arrive independently from one another (Poisson process) and
that the duration during which they arrive is negligible compared to the timespan between the
arrival of successive electrons, we can model the current as

I(t) = q
N∑

n=1

δ(t − tn)
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where {ti} are the independent arrival times of the electrons, uniformly randomly distributed
in the interval [−T

2 ,
T
2 ]. The average current 〈I〉 is given by 〈I〉 =

qN
T . The Fourier transform is

given by

Ĩ(ω) = q
∫ ∞

−∞

dteiωt
N∑

n=1

δ(t − tn) = q
N∑

n=1

eiωtn

Thus, the one-sided power spectrum is

S I(ω) = 2〈Ĩ(ω)Ĩ∗(ω)〉 = lim
T→∞

2q2

T

 N∑
n=1

eiωtn
N∑

m=1

e−iωtm


The cross terms (n , m) vanish in the limit T → ∞ because the {ti} are independent.5 Thus,
we are left with

S I(ω) = lim
T→∞

2q2N
T

= 2q〈I〉

Note that this corresponds exactly to the expected result for shot noise. The spectrum
2q〈I〉 is uniform in all frequencies, it is called white noise.

3.3.2 Rectangular pulses

Suppose that we can no longer neglect the duration of the arrival of the electrons, which
is a more realistic assumption. Then we may model each arriving electron as a rectangular
pulse in our current. Let

r(t) =

 1
τ
, if t ∈ [− τ2 ,

τ
2 ]

0, otherwise

for some electron tick duration τ > 0 (note that the integral over each rectangular pulse is
normed to 1) and

I(t) = q
N∑

n=1

r(t − tn)

where {ti} are the independent arrival times of the electrons, uniformly randomly distributed
in the interval [−T

2 ,
T
2 ]. The Fourier transform is given by

Ĩ(ω) = q
N∑

n=1

∫ ∞

−∞

dteiωtr(t − tn) = . . . = q
N∑

n=1

eiωtn

[
sin(ωτ/2)
ωτ/2

]
We continue as before

S I(ω) = 2〈Ĩ(ω)Ĩ∗(ω)〉 = lim
T→∞

2q2

T

[
sin(ωτ/2)
ωτ/2

]2  N∑
n=1

eiωtn
N∑

m=1

e−iωtm


and obtain

S I(ω) = 2q〈I〉
[
sin(ωτ/2)
ωτ/2

]2

This noise is no longer white, but it still reproduces the expected result S I(0) = 2q〈I〉. It
falls off to 0 for ω � 1

5Heuristically, the expectation value of exp [iω(tn − tm)] vanishes, since this term describes a uniform distri-
bution on the unit circle in the complex plane for n , m and T → ∞. The expectation value is the center of this
circle, i.e. zero.
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3.4 Scattering theory
This chapter only provides a brief overview of the main results of scattering theory that

are of interest in our case; detailed derivations of the following results can be found in [BB00]
and [B9̈2].

The idea of the scattering approach (also called Landauer approach) is to relate the fluctu-
ation properties of the system to its scattering properties. We consider our model of the QPC:
two baths / leads (left and right) being linked by a sample, which only allows for a single
transverse mode. To this end, we introduce creation and annihilation operators: a†L(E), aL(E)
create/annihilate electrons that are incoming from the left sample with energy E, while b†L(E),
bL(E) create/annihilate electrons that are outgoing to the left lead with energy E. Similarly,
we introduce operators for the right lead. They obey the usual fermionic anticommutation
rules: let q be the set of all quantum numbers describing an electron, then

a†q(E)aq′(E′) + aq′(E′)a†q(E) = δq,q′δ(E − E′)

while creation and annihilation operators anticommute with operators of the same nature re-
spectively.

Figure 6: Two-terminal scattering with one transverse channel. [BB00]

The scattering matrix s relates the outgoing current amplitudes to the incoming ones:(
bL

bR

)
= s

(
aL

aR

)
, where s ≡

(
sLL sLR

sRL sRR

)
=

(
r t
t′ r′

)
The generalization to multiple transverse channels is straightforward: individual creation /

annihilation operators are introduced for each channel and the entries r, t, . . . of the scattering
matrix s are no longer complex numbers but block matrices.

Intuitively speaking, the current leaving the left bath is given by the difference between the
number of outgoing electrons (a†LaL) and incoming electrons (b†LbL). Under the assumption
that the electron velocities vary quite slowly with energy, while the energies of the incoming
and outgoing electrons are relatively close to each other, it can be shown that the current
operator is given by

ÎL(t) =
e

2π~

∫
dE

(
a†L(E)aL(E) − b†L(E)bL(E)

)
=

e
2π~

∑
α,β

∫
dE

(
a†α(E)Aαβ(E)aβ(E)

)
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with Aαβ = δLαδLβ− s∗LαsLβ, where we used the definition of the s-matrix. We wish to calculate
the mean current by using the fact that

〈
a†α(E)aβ(E′)

〉
= δαβδ(E − E′) fα(E), where fα is the

equilibrium fermionic distribution function

fα(E) =
1

exp
(

E−µα
kBT

)
+ 1

In scattering theory, one additional crucial assumption is made. We assume that our de-
scription includes all possible physical states, which implies that the scattering matrix s is
unitary as each incoming state is transformed into a superposition of our list of outgoing
states. However, this assumption neglects inelastic scattering; for example, an incoming elec-
tron being transformed into two outgoing electrons and one outgoing hole is not part of this
description. Thus, we have to keep in mind that the results of scattering theory are only exact
in the non-interacting regime and in the zero-temperature limit of the interacting regime.

To this end, chapter 7.4.1 of [Sch18] analyzes this loss of ’one-particle probability’. Gen-
erally speaking, our assumption is correct when the chemical potentials are far from the peak
of the potential barrier. The subopen regime, where the chemical potentials are near to the
maximum of the barrier, is problematic and requires more careful treatment due to the domi-
nation of inelastic processes.

From the unitarity of s we obtain |r|2 + |t|2 = 1 and thus〈
ÎL(t)

〉
=

e
2π~

∫
dE

〈
a†LaL − |r|2a†LaL − |t|2a†RaR − r∗ta†LaR − rt∗a†RaL

〉
=

e|t|2

2π~

∫
dE ( fL(E) − fR(E))

(3)

We used the fact that 〈a†LaR〉 = 〈a†RaL〉 = 0, as mentioned above.
Here we ignored the energy dependence of the s-matrix, as we are mainly interested in the

relatively narrow energy range at the Fermi level. In fact, the term in the integral vanishes for
energies far from the Fermi level, which makes this a reasonable approximation. In order to
obtain the conductance, we take the derivative of the mean current with respect to Vsd = ∆µ/e.
In the zero-temperature limit, the fermionic distribution functions are step functions with the
step at µL (and µR respectively). We obtain

G =
e2

2π~
|t|2 (4)

This reproduces the expected result, i.e. that the conductivity is given in units of e2

h at low
temperatures. Note that it is multiplied with |t|2, which can be interpreted as the transmission
probability of a single particle; it is the factor by which the amplitude of the squared norm
of the wave function of an incoming electron is multiplied after being transmitted through
the sample. In the case of multiple transverse channels, the transmission probability |t|2 is
replaced with Tr[t†t], i.e. the sum of all eigenvalues of the transmission matrix t†t.

Once again, we are interested in the noise term. Using the definition ∆Îα(t) ≡ Îα(t) − 〈Îα〉,
the autocorrelation function is defined as

S αβ(t − t′) =
1
2

〈
∆Îα(t)∆Îβ(t′) + ∆Îβ(t′)∆Îα(t)

〉
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Note that it only depends on the difference (t− t′) of the times, since we are in a stationary
state. In order to calculate the noise, which is its Fourier transform

2πδ(ω + ω′)S αβ(ω) =
〈
∆Îα(ω)∆Îβ(ω′) + ∆Îβ(ω′)∆Îα(ω)

〉
we employ expressions for the quantum statistical expectation value of the product of four
operators a. We obtain for zero-frequency noise S ≡ S LL(0) = S RR(0) = −S LR(0) = −S RL(0),6

which is our main point of interest, the following result:

S =
e2

2π~

∑
γδ

∫
dE.Aγδ(E)Aδγ(E)

(
fγ(E)

(
1 − fδ(E)

)
+ fδ(E)

(
1 − fγ(E)

))
=

e2

π~

∫
dE.

{
|t|2

(
fL

(
1 − fL

)
+ fR

(
1 − fR

))
− |t|2(1 − |t|2)

(
fL − fR

)2
} (5)

In the last line of the equation above, the first term in the integral (proportional to |t|2) is
the equilibrium noise contribution, while the last term (which is second order in the Fermi
distribution functions) is the non-equilibrium or shot noise.7

Let us now consider some interesting cases in order to apply this result.

3.4.1 Equilibrium noise

In the case of an equilibrium TL = TR and µL = µR (thus Vsd = ∆µ/e = 0) we obtain
fγ = fδ and the noise can be calculated to be merely a multiple of equation (4):

S = 4kBTG (6)

Note that this result can also be proven in a more general context where we do not assume
an invariant scattering matrix. [BB00]

3.4.2 Zero temperature noise

In the case that TL = TR = 0, the fermionic distribution functions become step functions
and the calculation of equation (5) is straightforward and leaves us with the result

S =
e3Vsd

π~
|t|2(1 − |t|2) (7)

In the case of low transparency (1−|t|2) ≈ 1, we use that the integral in equation (3) simply
gives ∆µ = eVsd and obtain the classic result by Schottky

S cl =
e3Vsd

π~
|t|2 = 2e〈I〉

The Fano factor F = S/S cl = (1 − |t|2) ∈ [0, 1] is a measure of whether the noise is
Poissonian (F = 1) or whether the sample is transparent (F = 0).

6These equalities follow from current conservation, as explained in [BB00].
7In the equilibrium case, fL = fR, which implies that the shot noise term vanishes.



3. Noise 15

3.4.3 Constant scattering matrix

In the case that |t| in equation (5) is energy-independent,8 the remaining integral can be
calculated analytically and the noise term simplifies to

S =
e2

π~

[
2kBT |t|2 + eVsd coth

(
eVsd

2kBT

)
|t|2(1 − |t|2)

]
(8)

This is consistent with the previous results, as it reduces to equation (6) in the equilibrium
case Vsd → 0 and to equation (7) in the zero temperature case T → 0.

8This is well-justified if the temperature and applied voltage are not on the same scale as the scale of the
energy dependence of s.



4 Keldysh formalism
We employ the (Schwinger-) Keldysh formalism in our description of the QPC, which

is able to treat arbitrary out-of-equilibrium many-body systems. Our goal is to employ an
approach, which will allow us to calculate correlations between physical quantities, i.e. we
wish to evaluate the expectation values of arbitrary observables.

Note that from here on ~ = 1 for reasons of simplicity.

4.1 Basic introduction to the closed time contour
Let us consider a quantum many-body system, which is governed by a time-dependent

Hamiltonian Ĥ(t) = Ĥ0(t) + V̂(t), which we decoupled into a single-particle part Ĥ0(t) and
a part V̂(t), describing the interactions and couping between particles.9 We assume that in
the distant past t = −∞ the system is in equilibrium, i.e. there are no interactions between
particles, while it is described by the density matrix ρ ≡ ρ(−∞). We are interested in the
behavior under time evolution, which generally drives the system away from equilibrium.

Operators ÔH(t) in the Heisenberg picture evolve in time given by ÔH(t) = Û(t0, t)ÔS Û(t, t0),
where Û(t, t0) is the unitary10 time evolution operator.11 As the Hamiltonian operators evalu-
ated at different moments in time do not necessarily commute with each other, Û(t, t0) should
be understood as an infinite product of evolution operators with instantaneously constant
Hamiltonians

Û(t, t0) = lim
N→∞

e−iĤ(t−δt)δte−iĤ(t−2δt)δt · · · e−iĤ(t−Nδt)δte−iĤ(t0)δt

=1 + (−i)
∫ t

t0
dt′Ĥ(t′) + (−i)2

∫ t

t0

∫ t′

t0
dt′dt′′TĤ(t′)Ĥ(t′′)

. + (−i)3
∫ t

t0

∫ t′

t0

∫ t′′

t0
dt′dt′′dt′′′TĤ(t′)Ĥ(t′′)Ĥ(t′′′) + . . .

≡T exp
(
−i

∫ t

t0
dt′Ĥ(t′)

)
(9)

where δt = (t− t0)/N is the infinitesimal time step and T denotes time ordering, i.e. the earlier
in time an operator is evaluated the further to the right it stands.

The evolution of the density matrix ρ(t) is described by the von Neumann Equation

∂tρ(t) = −i[Ĥ(t), ρ(t)]

By using the identities ∂tÛ(t, t0) = −iĤ(t)Û(t, t0) and ∂t0Û(t, t0) = iÛ(t, t0)Ĥ(t), one ob-
serves that the equation above is solved by

ρ(t) = Û(t,−∞)ρ(−∞)Û(−∞, t) (10)

We assume Tr[ρ] = 1, which is satisfied if ρ is the density matrix of a physical system.
If ρ describes a system in equilibrium, it is given by ρ = 1

Z e−βK̂ , where β = 1
kBT and Z =

9The Heisenberg picture will be employed, where operators evolve in time, while wavefunctions are t-
independent.

10[Û(t, t0)]† = Û(t0, t)
11The Schrödinger equation takes the form ∂tÔ(t) = −i[̂ÔH(t), Ĥ(t)] in this convention.
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Tr[e−βK̂]. In the case of the canonical ensemble K̂ = Ĥ, while in the case of the grand
canonical ensemble K̂ = Ĥ − µN̂. The expectation value of some observable Ô at time t is
defined as

〈Ô〉(t) ≡ Tr[Ôρ(t)]

Using the invariance of the trace under cyclic permutations, equation (10) and the fact that
Û(−∞,+∞)Û(+∞, t) = Û(−∞, t) and trivially U(−∞, t)Û(t,−∞) = 1, one can show

〈ÔS 〉(t) = Tr[ÔÛ(t,−∞)ρÛ(−∞, t)]

= Tr[Û(−∞, t)ÔS Û(t,−∞)ρ]

= Tr[ÔH(t)ρ]

=〈ÔH(t)〉

= Tr[Û(−∞,+∞)Û(+∞, t)ÔS Û(t,−∞)ρ]

(11)

Read from right to left, the last line corresponds to evolving the initial state forward from
−∞ to t, acting on it with the operator Ô, evolving it forward again to +∞ and, finally, evolv-
ing it backwards in time to −∞, as illustrated in figure 7.

Time t

Figure 7: Graphic representation of the Keldysh contour with a single operator Ô, which is
evaluated at time t (on the forward branch) with initial density matrix ρ.

Evolution along this closed time contour C is a keystone of the Keldysh formulation. Note
that the operator Ô could also equivalently have been inserted on the backwards branch of the
contour(i.e. the branch which is evolving backwards in time) by writing

Û(−∞,+∞)Û(+∞, t)ÔÛ(t,−∞)ρ = Û(−∞, t)ÔÛ(t,+∞)Û(+∞,−∞)ρ

This alternative representation is illustrated in figure 8 and is completely equivalent to the
first representation.

In general, we are interested in the evolution operator along this closed contour ÛC =

Û(−∞,+∞)Û(+∞,−∞). In the case that the Hamiltonian is the same on the forward and
backward branch, the forward-backward evolution brings the system back exactly to the initial
state; we obtain ÛC ≡ 1. By modifying the Hamiltonian to include different contributions on
the forward and backward branch (e.g. Ĥ±(t) = Ĥ0(t) ± Ô(t)V(t) ) ÛC becomes nontrivial.
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Time t

Figure 8: Graphic representation of the Keldysh contour with a single operator Ô, which is
evaluated at time t (on the backward branch) with initial density matrix ρ.

4.2 General correlation functions
We are interested in calculating correlation functions, which depend on more than one

point in time. To that end, let ÔH(t1, . . . , tn) be an arbitrary operator, composed of creation
and annihilation operators, each acting at either of the times t1, . . . , tn. Our goal is to calculate
its expectation value. First, we make the simplification that Ô is of the form ÔT̃({ti})ÔT({ti}),
where ÔT is internally time ordered12, while ÔT̃ is internally anti-time ordered13. For example,
if t1 > t2 > t3 > t4, then

Ô = c†(t4)c(t2)c(t1)c†(t2)c(t3)

has the desired form, with c and c† being annihilation and creation operators respectively. By
applying the previous notions, we obtain (assuming for simplicity t1 > t2 > . . . > tn):

〈ÔH({ti})〉 = Tr[Ô′n(tn) · · · Ô′2(t2)Ô′1(t1)Ô1(t1)Ô2(t2) · · · Ôn(tn)ρ]

= Tr[Û(−∞, tn)Ô′nÛ(tn, tn−1) · · · Û(t3, t2)Ô′2Û(t2, t1)Ô′1Û(t1,+∞)

......Û(+∞, t1)Ô1Û(t1, t2)Ô2Û(t2, t3) · · · Û(tn−1, tn)ÔnÛ(tn,−∞)ρ]Ô′n−1

Thus, reading the equation from right to left we are again following the contour C on the
complex plain(−∞ → +∞ → −∞). The operators Ô1, . . . , Ôn are evaluated on the forward
branch, while the operators Ô′1, . . . , Ô

′
n are evaluated on the backward branch. This is illus-

trated in figure 9.

Time t
. . .

. . .

Figure 9: Graphic representation of the Keldysh contour with operators Ô1, . . . , Ôn evaluated
on the forward branch at times t1 > . . . > tn and operators Ô′1, . . . , Ô

′
n evaluated on the forward

branch at times t1 > . . . > tn with initial density matrix ρ.

12T: earlier times go to the right
13T̃: later times go to the right
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One observes that our request for Ô to have a specific form can easily be dropped, since
one can always bring the operator to the desired contour-ordered form TCÔ = ÔT̃({ti})ÔT({ti})
by using the elementary (anti-)commutator relations of the creation and annihilation opera-
tors.14 Only in the fermionic case, one may pick up a relative minus sign if an uneven amount
of exchanges of creation-annihilation pairs is necessary, while the relative sign is conserved
is the bosonic case.

The methods described up to now are very general and powerful, since we never assumed
to stay in equilibrium under time evolution. Thus, they can be used to describe Hamiltonians
with explicit time dependence, such as in the case of boundary conditions and external fields.
Also, time in Keldysh formalism always stays on the real axis, without ever taking imaginary
values. Both of these properties are in stark contrast to the Matsubara formalism, which is
used to describe many-body systems in equilibrium.

4.3 Greens functions and Keldysh rotation

We introduce the contour indexes - and + to denote if an operator is acting on the forward
branch (c−) or on the backward branch (c+) of C respectively. Given contour indexes ji and
times ti we define the one-particle Green’s function as

G j1 | j2(t1|t2) ≡ −i〈TCc j1(t1)c j2†(t2)〉 (12)

Specifically, the following relations hold true:

G+|+(t1|t2) = −i〈TCc+(t1)c+†(t2)〉 = −i〈T̃c(t1)c†(t2)〉

G+|−(t1|t2) = −i〈TCc+(t1)c−†(t2)〉 = −i〈c(t1)c†(t2)〉

G−|+(t1|t2) = −i〈TCc−(t1)c+†(t2)〉 = −iσ〈c†(t2)c(t1)〉

G−|−(t1|t2) = −i〈TCc−(t1)c−†(t2)〉 = −i〈Tc(t1)c†(t2)〉

where the relative sign σ = 1 for bosons and σ = −1 for fermions is picked up from the
(anti-)commutator relations. We get

G+|+(t1|t2) + G−|−(t1|t2) −G+|−(t1|t2) −G−|+(t1|t2)

= −i〈(T + T̃)(c(t1)c†(t2)) − c(t1)c†(t2) − σc†(t2)c(t1)〉

= −i〈
(
c(t1)c†(t2) + σc†(t2)c(t1)

)
− c(t1)c†(t2) − σc†(t2)c(t1)〉

= 0

(13)

This linear relation satisfied by the four Greens functions illustrates a redundancy in our de-
scription. This motivates the choice of another basis, in which the redundant degree of free-
dom is eliminated:

cc =
1
√

2
(c− + c+), ...cq =

1
√

2
(c− − c+)

14Under TC operators are ordered in the sequence, in which they are transversed in the complex contour C.



20 4. Keldysh formalism

Here we replaced the contour indices + and− by the Keldysh indices classical (c) and quantum
(q).15 By performing the substitutions using the definitions above, we obtain

GK ≡ Gc|c(t1|t2) ≡ −i〈TCcc(t1)cc†(t2)〉 =
1
2

(
G+|+ + G−|− + G+|− + G−|+

)
= G+|− + G−|+

GR ≡ Gc|q(t1|t2) = · · · =
1
2

(
G+|+ −G−|− + G+|− −G−|+

)
= θ(t1 − t2)

(
G+|− −G−|+

)
GA ≡ Gq|c(t1|t2) = · · · =

1
2

(
G+|+ −G−|− −G+|− + G−|+

)
= θ(t2 − t1)

(
G−|+ −G+|−

)
and finally Gq|q(t1|t2) =

1
2

(
G+|+ + G−|− −G+|− −G−|+

)
= 0

The superscripts K, R and A stand for Keldysh, retarded and advanced respectively. The
causality structure is such that the advanced component vanishes for t1 > t2, while the retarded
component vanishes in the case t1 < t2.

The last equality in the second and third line holds only for t1 , t2. The case t1 = t2

presents some technical complications16.
We observe that GR + GA = G+|+ − G−|− from above equations. By observing that time

ordering T and anti-time ordering T̃ coincide at equal times, we obtain the useful identity

GR(t|t) + GA(t|t) = 0 (14)

In practice, we will usually be able to neglect the case of equal times in our calculations.
Finally, one can use the (anti)commutation rules to show that for t1 , t2:[

G+|−(t1|t2)
]∗

=
[
−i〈c(t1)c†(t2)〉

]∗
= i〈c(t2)c†(t1)〉 = iσ〈c†(t1)c(t2)〉 = −G−|+(t2|t1)

which leads to [
GR(t1|t2)

]∗
=

[
θ(t1 − t2)

(
G+|−(t1|t2) −G−|+(t1|t2)

)]∗
= θ(t1 − t2)

(
G−|+(t2|t1) −G+|−(t2|t1)

)
= GA(t2|t1)

This observation leads to the fact that knowledge of GR leads to full knowledge of GA.

4.4 General Greens functions
Let us now consider a general multi-particle system. A particle with quantum number i

has a corresponding creation operator c†i and annihilation operator ci.17 The canonical com-
mutation relation cic

†

i − σc†i ci = δi j holds. It will prove useful to define the multi-particle
Greens functions:

G j| j′

s|s′(t|t
′) = (−i)n

〈
TCc j1

s1
(t1) · · · c jn

sn
(tn)c j′n

s′n

†

(t′n) · · · c j′1
s′1

†

(t′1)
〉

15The names ’classical’ and ’quantum’ stem from the following fact: in a purely classical configuration the
action on the forward part of the branch is canceled by that on the backward part. This corresponds to a vanishing
quantum component cq = 0, which implies c+ = c−, as one would expect in the classical case.

16We can resolve the ordering ambiguity of creation and annihilation operators acting at the same time by
using the definition Tc†(t)c(t) = 1

2 c†(t)c(t) + 1
2σc(t)c†(t) of the continuous time formalism.

17In this context, i is the set of all quantum numbers necessary to specify the creation or annihilation operator
of the particle.
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where j, j′ are n-component vectors whose entries are either + or − (this determines on which
part of the contour C the corresponding operator is inserted on), s, s′ are n-component vectors
containing the quantum numbers of the operators and t, t′ are n-component vectors specifying
the times at which the operators act. In this case, we only considered operators that contain
an equal number of creation and annihilation operators, which is sufficient for the description
of the QPC.

Analogous to the one-particle case, we can generalize the notion of the Keldysh rotation,
which is going to prove quite useful. Let Greek letters α ∈ {c, q}n denote n-component vectors
of Keldysh indices, while Latin letters j ∈ {+,−}n denote n-component vectors of real indexes.
In the one-particle case (n = 1), we had defined the transformation

Gα|β =
∑

j,k∈{+,−}n
(D−1)α| jG j|kDk|β (15)

where
D+|q = −

1
√

2
, ...D−|q = D±|c =

1
√

2

(D−1)q|+ = −
1
√

2
, ...(D−1)q|− = (D−1)c|± =

1
√

2
The generalization of this transformation is the implicit summation over all internal in-

dices

D j|α =

n∏
k=1

D jk |αk

where equation (15) still applies.
Let us consider two characteristic examples of the inverse transformation, which is going

to be useful later on18:

G−|+ =
∑

α,β∈{c,q}

D−|αGα|β(D−1)β|+ =
1
2

(Gc|c −Gc|q + Gq|c −Gq|q) =
1
2

(GK −GR + GA − 0)

G−−|++ =
∑

α,α′∈{1,2}2

D−−|αGα|β(D−1)α
′ |++ =

∑
α1,α2,α3,α4

D−|α1 D−|α2Gα1α2 |α3α4(D−1)α3 |+(D−1)α4 |+

=
1
2

∑
α3,α4

Gα1α2 |α3α4(D−1)α3 |+(D−1)α4 |+ =
1
4

∑
α1,α2,α3,α4

(−1)α3+α4Gα1α2 |α3α4

The generalized Keldysh rotation again has the benefit of transforming our correlation
functions into a basis with useful properties. Recall: in the one-particle case we had Gq|q = 0.
More generally, the ordering of operators under contour ordering TC does not change if the
operator corresponding to the largest time is moved between the + and − branch. Since the
quantum Keldysh component takes the difference between the + and − contour, it vanishes
whenever the largest time is quantum. As a result, Gq···q|q···q = 0 and, furthermore, Gcq···q|q···q is
retarded, i.e. it is only non-zero if t1 is the largest time.

Another useful property of our description up to this point stems from the fact that the
initial state ρ is stationary, since it describes the system in equilibrium. Hence, it obeys time

18We denote (−1)α+β ≡

1 , if α = β

−1 , if α , β
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translational invariance, which implies that an expression such as 〈TCc j1(t1)c j2†(t2)〉 depends
only on the time interval (t1 − t2) rather than the concrete values of t1 and t2. Generally, the
n-particle Greens function depends on 2n−1 time arguments. Thus, the single-particle Greens
function satisfies

G(t|t′) = G(t − t′|0) C G(t − t′)

As a result, we obtain for the Fourier transform

G j| j′

s|s′(ω|ω
′) B

"
dtdt′ei(ωt−ω′t′)G j| j′

s|s′(t|t
′)

=

"
dtdt′ei(ωt−ω′t′)G j| j′

s|s′(t − t′)

= 2πδ(ω − ω′)
∫

dtG j| j′

s|s′(t) C 2πδ(ω − ω′)G j| j′

s|s′(ω)

(16)

4.5 Interaction picture
Now our goal is the development a diagrammatic language, which will allow us to easily

calculate the Greens functions defined above for any Hamiltonian Ĥ = Ĥ0 + V̂ . To this
end, we employ the interaction picture of quantum mechanics. In the interaction picture,
wavefunctions and operators evolve according to

|ψI(t)〉 = ÛI(0, t)|ψS (t)〉

ÔI(t) = ÛI(t0, t)ÔS ÛI(t, t0),

with ÛI(t, t0) = exp
(
− iH0(t − t0)

)
unitary19

where |ψS (t)〉 is the wavefunction in the Schrödinger picture. Thus

|ψI(t)〉 = ÛI(0, t)|ψS (t)〉 = ÛI(0, t)Û(t, t0)|ψS (t0)〉 = ÛI(0, t)Û(t, t0)ÛI(t0, 0)|ψI(t0)〉

i.e. the evolution of the wave function is given by û(t, t0) B ÛI(0, t)Û(t, t0)ÛI(t0, 0) and
|ψI(t)〉 = û(t, t0)|ψI(t0)〉. From the definition of û follow several interesting properties:

• û is unitary, i.e. [û(t, t0)]† = û(t0, t)

• û(t1, t2)û(t2, t3) = û(t1, t3)

• û(t1, t2)û(t2, t1) = 1

Now we derive the equation of motion of |ψI(t)〉 from the Schrödinger equation:20

i∂t|ψI(t)〉 = i∂t

(
eiH0t|ψS (t)〉

)
= −H0eiH0t|ψS (t)〉 + eiH0ti∂t|ψS (t)〉

= −H0eiH0t|ψS (t)〉 + eiH0t(H0 + VS )|ψS (t)〉

= eiH0tVS |ψS (t)〉

= eiH0tVS e−iH0t|ψI(t)〉
=⇒ i∂t|ψI(t)〉 = VI(t)|ψI(t)〉

19[ÛI(t, t0)]† = ÛI(t0, t)
20Note that Ĥ0 is time-independent in the interaction picture. This follows from the fact that Ĥ0 commutes

with ÛI and ÛI(t0, t)ÛI(t, t0) = 1.
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By inserting |ψI(t)〉 = û(t, t0)|ψI(t0)〉 into the last equation we obtain

i∂tû(t, t0) = V̂I(t)û(t, t0)

This equation is solved by the infinite series (compare comprehensive notation to equation
(9)):21

û(t, t0) = T exp
(
−i

∫ t

t0
dt′V̂I(t′)

)
By using ρ(t) = Û(t,−∞)ρ(−∞)Û(−∞, t) (equation (10)) and the fact that ρ and H0 com-

mute if H0 contains no interaction terms, it follows (compare with equation (11)):

〈Ô〉(t) =〈ÔH(t)〉 = Tr[Û(−∞, t)ÔS Û(t,−∞)ρ]

= Tr[Û(−∞, t)ÛI(t, 0)ÔI(t)ÛI(0, t)Û(t,−∞)ρ]

= Tr
[(

ÛI(−∞, 0)ÛI(0,−∞)
)
Û(−∞, t)ÛI(t, 0)ÔI(t)ÛI(0, t)Û(t,−∞)ρ

]
=
〈
ÛI(0,−∞)Û(−∞, t)ÛI(t, 0)ÔI(t)ÛI(0, t)Û(t,−∞)ÛI(−∞, 0)

〉
=
〈
û(−∞, t)ÔI(t)û(t,−∞)

〉
=
〈
û(t,−∞)†ÔI(t)û(t,−∞)

〉
=

〈[
T̃ exp

(
+ i

∫ t

−∞

dt′V̂I(t′)
)]

ÔI(t)
[
T exp

(
− i

∫ t

−∞

dt′V̂I(t′)
)]〉

Having two different time orderings in the last equation follows from the fact that we have
a forward and a backward evolution in time. Once again, we are free to choose our contour
indices − and + in order to get

〈Ô〉(t) =

〈[
T̃ exp

(
+ i

∫ t

−∞

dt′V̂+
I (t′)

)]
Ô−I (t)

[
T exp

(
− i

∫ t

−∞

dt′V̂−I (t′)
)]〉

=

〈
TC

[
exp

(
+ i

∫ t

−∞

dt′V̂+
I (t′)

)
Ô−I (t) exp

(
− i

∫ t

−∞

dt′V̂−I (t′)
)]〉

=

〈
TC

[
exp

(
+ i

∫ ∞

−∞

dt′V̂+
I (t′) − i

∫ ∞

t
dt′V̂−I (t′)

)
Ô−I (t) exp

(
− i

∫ t

−∞

dt′V̂−I (t′)
)]〉

=

〈
TC

[
exp

{
− i

( ∫ −∞

∞

dt′V̂+
I (t′) +

∫ ∞

−∞

dt′V̂−I (t′)
)}

Ô−I (t)
]〉

We could also have chosen + as the contour index of ÔI(t) and would then have made a
similar calculation to the right side of the operator.

The most suggestive way to write the last line is

〈Ô〉(t) =

〈
TC

[
exp

{
− i

( ∫ −∞
∞

dt′V̂+
I (t′) +

∫ ∞
−∞

dt′V̂−I (t′)
)}

Ô−I (t)
]〉

〈
TC

[
exp

{
− i

( ∫ −∞
∞

dt′V̂+
I (t′) +

∫ ∞
−∞

dt′V̂−I (t′)
)}]〉 (17)

21This can be easily checked by inserting the solution directly into i∂t |ψI(t)〉 = VI(t)|ψI(t)〉 and comparing the
terms with the same power of V̂ on both sides.
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where the term in the denominator is equal to 1. Equation (17) has a diagrammatic interpre-
tation, which is going to be discussed in the following section.

4.6 Wick’s theorem
We may expand equation (17) in the powers of the interaction to obtain

〈Ô〉(t) =

∞∑
n=0

(−i)n

n!

∑
j∈{+,−}n

(− j1) · · · (− jn)
∫ ∞

−∞

dtn · · · dt1

〈
TCV̂ jn

I (tn) · · · V̂ j1
I (t1)Ô−I (t)

〉
(18)

A powerful tool to calculate such expectation values as in the above expression is Wick’s
Theorem.

To that end, one needs to introduce a few concepts first. We can express the operators
V̂I(t) and OI(t) in terms of creation and annihilation operators

[
c j

s

]
I
(t),

[
c j

s
†]

I
(t). Each such

substitution yields a block of creation and annihilation operators with identical time argument.
We may define contour ordering TC so that the internal ordering of such blocks of operators
is left unchanged.

Let c̃ j
s be either a creation or an annihilation operator. The contraction between two oper-

ators is defined as [
c̃ j

s

]
(t)

[
c̃ j′

s′

]
(t′) B

〈
TC

[
c̃ j

s

]
(t)

[
c̃ j′

s′

]
(t′)

〉
We observe that the contraction between two creation or two annihilation operators van-

ishes if our dynamics conserve the particle number, which is the case for most applications.
We define the total pairing P as the sum over all permutations of complete pairwise contrac-
tions

P(c̃1 · · · c̃n) B
(
c̃1c̃2c̃3c̃4 · · · c̃n−2c̃n−1c̃n

)
+

(
c̃1c̃2c̃3c̃4 · · · c̃n−2c̃n−1c̃n

)
+ . . .

Simple combinatorics shows us that there are a total of n(n − 1)/2 such permutations in
this sum. Before evaluating above expression, the operators in each summand have to be
permuted in such a way that operators which are contracted to each other are adjacent. In the
fermionic case one picks up a relative (−1) sign for odd permutations.

Wick’s theorem (in the special case of applying the vacuum expectation value) connects
the contour ordered expectation value of arbitrary creation and annihilation operators to their
total pairing: 〈

TC
[
c̃ j

s1

]
(t1) · · ·

[
c̃ j

sn

]
(tn)

〉
= P

([
c̃ j

s1

]
(t1) · · ·

[
c̃ j

sn

])
(19)

This allows us to calculate 〈Ô〉(t) from equation (18) by applying the diagram rules result-
ing from Wick’s theorem. These so-called diagram rules are just a helpful way of visualizing
terms from the powers of the interaction Hamiltonian (see equation (18)). Let us examine
some examples:

Time dependence will not be explicitly denoted for the rest of this section, while all oper-
ators are assumed to be evaluated in the interaction picture, i.e. all creation and annihilation
operators are evolved under the free Hamiltonian, which includes no interactions. The dia-
grammatic representation of G−|+ = −i〈TCc−c+†〉 = −ic−c+† is a line between an incoming −
annihilation operator to an outgoing + creation operator. By convention, arrows are directed
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from annihilation to creation operators. Similarly, G+|− corresponds to a line between an in-
coming + line and an outgoing − line, while G+|+ corresponds to an incoming and outgoing
+ line. This diagrammatic way of thinking can also be applied to operators with Keldysh
indices. For example, GR = Gc|q corresponds to a vertex between an incoming classical line
and an outgoing quantum line.

Now let us examine an interaction Hamiltonian of the form

V̂(t) =
g
2

(cc†cq†cccc + cc†cc†cccq + cq†cc†cqcq + cq†cq†cqcc) (20)

For example, the first summand corresponds to a vertex with two incoming classical lines,
one outgoing classical line and one outgoing quantum line, while the second summand cor-
responds to a vertex with one incoming classical line, one incoming quantum line and two
outgoing classical lines. g/2 is called the vertex factor of each of these vertices. Some exam-
ples of this diagrammatic way of thinking are illustrated in figure 10.

Figure 10: [Kam11] (a) Graphic representation of GR, GA and GK . Full lines represent clas-
sical field components φcl, while dashed lines represent the quantum components φq. Arrows
are directed from annihilation operators towards the the creation ones, i.e. from φ to φ̄. (b)
Graphic representation of the first two vertices in equation (20), including vertex factors. The
last two terms correspond to the same diagrams under complex conjugation, i.e. with the
direction of all arrows reversed.

It is simple to check that 〈TCV̂〉 = 0. Firstly, the contour ordered expectation value of
the last two terms vanishes because 〈TCcqcq†〉 = 0. By applying the definitions of the Greens
functions and Wick’s Theorem to the first two terms, we obtain〈

TCcc†cq†cccc
〉

= 2GR(t|t)GK(t|t)...and...
〈
TCcc†cc†cccq

〉
= 2GA(t|t)GK(t|t)

The sum of these two terms vanishes because of the identity in equation (14).
One can calculate the higher powers of the interaction term in a similar manner, for exam-

ple 〈TCV̂(t1)V̂(t2)〉 = 0. In fact, it can be shown that 〈TCVn〉 = 0 for all n ∈ N.22

22Chapter 5, [Kam11]
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To sum up, one notices that the diagram rules in this formalism are completely analogous
to the Feynman rules in other quantum field theories. The main difference lies in the existence
of an additional contour index j ∈ {+,−} for each internal vertex. To evaluate such a diagram,
we sum over all possible permutations of contractions. This corresponds to a summation over
all possible internal indices in the diagrammatic representation.

It is important to note that no disconnected23 diagrams contribute to our infinite sum. The
denominator in equation (17) plays the role of canceling out all such diagrams.

After this introduction, let us consider how the non-interacting baths from section 2.3 can
be included in our expansion, which up to now only treats the interaction Hamiltonian of
our system, the QPC. We assume that the baths are coupled to the outer sites of the tight-
binding chain with a coupling constant τ, which corresponds to an electron traveling between
the bath and the chain. Let the Greens function describing the free evolution of electrons in
the baths be Glead. We now construct the complete set of diagrams of both the baths and the
QPC, by starting from the diagrams of the QPC as constructed above and adding additional
diagrams in powers of τ. Since there are no interactions in the bath, all diagrams linear
in τ are irrelevant, as they describe electrons escaping the system. At second order in τ, one
Greens function G0

QPC from our existing diagrams is respectively changed to G0
QPCτGleadτG0

QPC,
which corresponds to propagation in the QPC, hopping to the lead, propagation in the lead,
hopping to the QPC and, finally, propagation in the QPC. All orders are implemented by
exchanging G0

QPC with
∑

n G0
QPC(τGleadτG0

QPC)n. This is a geometric sum, i.e. we replace
G0

QPC with G0
QPC(1 − τGleadτG0

QPC)−1. Equivalently this corresponds to replacing G0
QPC with

(G0
QPC

−1
− τGleadτ)−1. This simple replacement is all we need to do here to take the interaction

with the baths into account.

4.7 Fluctuation dissipation theorem
The FDT is a general and powerful property of physical systems. It connects the response

of a system to perturbations to its equilibrium fluctuation properties. Heuristically speaking,
the response of a system to fluctuations is similar to its response to small perturbations from
the equilibrium state. Specifically, it gives a relation between the response and correlation
functions of a system in thermodynamical equilibrium.

In our formalism, for fermionic particles it takes the form

GK(ω) = tanh
(
ω − µ

2T

) (
GR(ω) −GA(ω)

)
(21)

Note that this equation only holds in the equilibrium case, i.e. only if the temperatures and
chemical potentials of the baths surrounding the QPC are the same. A complete derivation
that only relies on the conventions and definitions which are used in this thesis can be found
in [Jak10].

4.8 Free and exact propagators
It is very important to distinguish in the definition of the Greens functions whether the

operators are evaluated in the Heisenberg picture or in the interaction picture. In the former,

23A disconnected diagram is a diagram with two or more connected components.
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the full interaction Hamiltonian is factored into the time evolution of the operators, while in
the latter case the operators do not ’see’ the interactions between particles. Thus, the free
one-particle Greens function, also called the free propagator, is defined as

ĝ j1 | j2
s1 |s2

(t1|t2) ≡ −i
〈
TC

[
c j1

s1

]
I
(t1)

[
c j2

s2

†
]

I
(t2)

〉
while the full / dressed / exact Greens function is defined as

Ĝ j1 | j2
s1 |s2

(t1|t2) ≡ −i
〈
TC

[
c j1

s1

]
H

(t1)
[
c j2

s2

†
]

H
(t2)

〉
In order to obtain this exact propagator, which is an object of central interest for our con-

siderations, one must first calculate the free propagator. This is done thoroughly in Appendix
A. It is shown that the free propagator of a fermionic system in frequency space is given by

ĝR(ε) =
1

ε − ε0 + i0

ĝA(ε) =
1

ε − ε0 − i0
ĝK(ε) = −2πi(1 − 2nF(ε0))δ(ε − ε0)

(22)

where nF(ε0) = (eβ(ε0−µ) + 1)−1 is the fermionic equilibrium distribution function and the in-
finitesimal term ±i0 is to be understood as a prescription for calculations involving integration
through the residue theorem.

Now we turn our attention to the derivation of the exact propagator. Since interactions can
no longer be neglected, it does not suffice to only consider the bare action of the system (i.e.
the action that does not include any interactions). Instead, the interaction action which stems
from the interaction Hamiltonian has to be added to the total action. This is treated formally
in Appendix B.

From here on, our argumentation will mainly be diagrammatic, since this is the most
intuitive and fast approach. Note that the rigorous definition of the diagrammatic language
makes this approach self-contained and not any less rigorous than any other approach. For
further reading, books like [Neg18] and [FW03] are recommended.

4.8.1 Dyson equation

The one-particle irreducible diagrams are defined as the Feynman diagrams which can’t be
cut into two disconnected parts by removing a single line from the interior of the digram. The
self-energy Σ̂ is defined as the sum of the inner parts of all one-particle irreducible propagator
diagrams (with the two external legs cut off). The self-energy is an extremely important
quantity, since calculating the self-energy allows us to evaluate the exact propagator.

One can express the exact propagator diagrammatically in terms of the free-propagator
and the self-energy, as demonstrated in figure 11.

Translated into an equation, this means

Ĝ = ĝ + ĝ ◦ Σ̂ ◦ ĝ + ĝ ◦ Σ̂ ◦ ĝ ◦ Σ̂ ◦ ĝ + . . .

The ◦ symbol stands for a convolution of space-time coordinates along with a multiplica-
tion of the respective (2 × 2) Greens matrices (indexed by the Keldysh indices 1 and 2). We
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= + + + . . .

Figure 11: Diagrammatic Dyson series of the full Greens function. The self-energy blocks Σ̂

are to be understood as the sum of all one-particle irreducible diagrams.

observe that the equation above simplifies to

Ĝ = ĝ + ĝ ◦ Σ̂ ◦ Ĝ

which, written explicitly, is the same as

G j| j′

s|s′(t|t
′) = g j| j′

s|s′(t|t
′) +

∑
i,i′

∫
u,u′

"
.dτ.dτ′.g j|i

s|u(t|τ)Σi|i′

u|u′(τ|τ
′)Gi′ | j′

u′ |s′(τ
′|t′)

This equation is the famous Dyson equation. We solve it by bringing Ĝ to the left side and
obtain

Ĝ =
(
ĝ−1 − Σ̂

)−1
(23)

with the convention that −1 means inversion of the Greens matrix. The Greens matrix Ĝ has
the structure (2 × 2) in Keldysh components, while the sub-matrices GR, GA and GK may be
arbitrarily complicated.

By using the results from the calculation of the free propagator and by evaluating the
self-energy through Wick’s theorem, we are thus able to calculate the exact one-particle prop-
agator.

4.8.2 Multiple particles

Similar to the one-particle propagator, whose diagrammatic representation consists of one
incoming and one outgoing line, we are also interested in multi-particle Greens functions. For
example, a two-particle Greens function Gα1α2 |α3α4

i1i2 |i3i4
(t1, t2|t3, t4) = −

〈
TCcα1

i1
(t1)cα2

i2
(t2)cα3

i3
†(t3)c4

i4
†(t4)

〉
consists of two external and two internal legs, with the the two-particle interaction in between.

Similar to the self-energy in the one-particle case, we define the two-particle vertex func-
tion γα1α2 |α3α4

i1i2 |i3i4
(t1, t2|t3, t4) as the sum of all one-particle irreducible diagrams, which have two

incoming and two outgoing legs that have been cut off. Our goal is to connect γ and G.
To that end, consider the object

Gc
α1α2 |α3α4
i1i2 |i3i4

(t1, t2|t3, t4) = −i ·Gα1 |β1
i1 | j1

(t1)Gα2 |β2
i2 | j2

(t2)γβ1β2 |β3β4
j1 j2 | j3 j4

(t1, t2|t3, t4)Gβ3 |α3
j3 |i3

(t3)Gβ4 |α4
j4 |i4

(t4) (24)

where summation over all double indices β and j is implicit. Essentially, we have connected
two incoming and two outgoing one-particle propagators to the vertex function (which in itself
has had its external legs cut off) and summed over all possible combinations of such legs, given
external indices α and i. The resulting object Gc is called the ’connected Greens function’;
by definition it is the sum of all one-particle irreducible diagrams with two incoming and two
outgoing legs.
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The full Greens function contains more diagrams than the connected one. It contains the
diagrams in which the first incoming leg is connected to the first outgoing leg, while the sec-
ond incoming leg is connected to the second outgoing leg - without these two connections
being joined together through any vertices. Additionally, it also contains the diagrams, in
which the first incoming leg is connected to the second outgoing leg, while the second incom-
ing leg is connected to the first outgoing leg. By adding these two types of diagrams to Gc,
we obtain the full two-particle Greens function. Translated into a formula, this means

Gα1α2 |α3α4
i1i2 |i3i4

(t1, t2|t3, t4) = Gc
α1α2 |α3α4
i1i2 |i3i4

(t1, t2|t3, t4)+
(
Gα1 |α3

i1 |i3
(t1|t3)Gα2 |α4

i2 |i4
(t2|t4) −Gα1 |α4

i1 |i4
(t1|t4)Gα2 |α3

i2 |i3
(t2|t3)

)
The minus sign in the equation above comes from the anti-commutativity of fermions

under the exchange of two external legs. The more intuitive diagrammatic representation of
this equation can be seen in figure 12.

= − −

Figure 12: Diagrammatic representation of the connected two-particle Greens function in
terms of the two- and one-particle Greens functions

For more than two particles, exactly the same diagrammatic argument can be made by
defining the n-particle vertex function and expressing the full n-particle Greens function
through (n − 1)-particle Greens functions and the connected n-particle Greens function.

Thus, we can calculate any n-particle Greens function by evaluating the n-particle vertex
function.



5 Description of physical observables

The goal of this chapter is the derivation of expressions for the various physical observ-
ables of a QPC in the framework of the Keldysh formalism.

5.1 The Hamiltonian

In section 2.3 we already briefly discussed our basic assumptions about the QPC, namely
our neglect of phonons and impurities, the short-ranged nature of the Coulomb force and our
modeling of the QPC as a one dimensional tight-binding chain with N discrete sites, while
the sites indexed 1 and N are coupled to the leads that are in equilibrium.

Let c†j be the creation operator of an electron at site j and c j the corresponding annihilation
operator. The additional index σ ∈ {↑, ↓} denotes spin. We are interested in the case of a single
transverse mode.

Our general QPC-Hamiltonian24 under the presence of no magnetic field25 is thus given
by

ĤQPC =
∑
j, j′,σ

t j′ j,σc†j′,σc j,σ +
∑
j, j′

v j j′c
†

j,↑c j,↑c
†

j′,↓c j′,↓ (25)

where we have used the same conventions as in [Sch18].
The first term describes the binding between two adjacent sites and thus models the exter-

nal potential along the QPC.

t j′ j,σ = τ j′δ j j′+1 + τ jδ j+1 j′

where τ j is the hopping parameter between the sites j − 1 and j.
The second term in the Hamiltonian describes the electron-electron interaction and is mod-

eled by
v j j′ = δ j j′U j

where U j is the interaction strength.

5.2 The current

We define the site-resolved current at site j as the change in particle number in the system
to the left of site j + 1:

Î j B −e
∑
i≤ j

ṅi (26)

Note that this expression is independent of j in theory. For reasons of clarity, we assume
implicit summation over spin indices from this point, whenever they are omitted.

24Here we do not include the interaction with the baths, which is considered and fully accounted for in section
4.6.

25We are mainly interested in the case of a vanishing magnetic field h = 0 in this thesis. In the case h , 0, the
term

(
−

∑
j,σ

σh
2 c†j,σc j,σ

)
has to be added to the Hamiltonian, so that the energy contribution from the magnetic

field is accounted for.
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Using the Hamiltonian, one obtains∑
i≤ j

ṅi =
i
~

[
ĤQPC,

∑
i≤ j

ni

]
=

i
~

[
t j+1 jc

†

j+1c j + t j j+1c†jc j+1., .
∑
i≤ j

ni

]
+

iUi

~

[
c†i,↑ci,↑c

†

i,↓ci,↓,
∑
i≤ j

ni

]
where we used the fact that the sum of all particles which are left of site j + 1 commutes with
terms that describe the hopping of particles left of that site, since it is invariant under such
hoppings. Thus, only the only hopping term remaining is the one connecting the sites j and
j + 1. We also observe that the product of two identical fermionic operators vanishes because
of the anti-commutation rules, i.e. cqcq = c†qc†q = 0. This implies that the entire second term
vanishes. By applying this identity and the fermionic anti-commutation rules in each step, we
are left with26 ∑

i≤ j

ṅi =
iτ j

~

[
c†j+1c j + c†jc j+1., .n j

]
=

iτ j

~

(
c†j+1c jc

†

jc j − c†jc jc
†

j+1c j + c†jc j+1c†jc j − c†jc jc
†

jc j+1

)
=

iτ j

~

(
c†j+1c j − 2c†jc jc

†

j+1c j + 2c†jc j+1c†jc j − c†jc j+1

)
=

iτ j

~

(
c†j+1c j − 0 + 0 − c†jc j+1

)
Thus, the site-resolved current in terms of creation and annihilation operators is given by

Î j = −
ieτ j

~

(
c†j+1c j − c†jc j+1

)
(27)

In order the calculate the mean current, we introduce contour indices so as to express
everything in terms of Greens functions:

〈Î j〉 =
ieτ j

~

〈
c†jc j+1 − c†j+1c j

〉
=

ieτ j

~

〈
c jc
†

j+1 − c j+1c†j
〉

=
ieτ j

~

〈
TC

(
c−j c+

j+1
†
− c j+1

−c+
j
†
)〉

= −
eτ j

~

(
G−|+j| j+1 −G−|+j+1| j

)
By performing the Keldysh rotation G−|+ = (GK +GA−GR)/2 and transforming to Fourier

space, we obtain

〈Î j〉 = −
eτ j

2~

∫
dω
2π

(
GK

j| j+1(ω) + GA
j| j+1(ω) −GR

j| j+1(ω) + GK
j+1| j(ω) + GA

j+1| j(ω) −GR
j+1| j(ω)

)
26Additionally, note that any contributions from a magnetic field h , 0 in the Hamiltonian vanish, since

particle number operators commute.
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5.3 The noise

Our main goal is the calculation and description of the noise term in the QPC. Given
the current operators Î j(t j) and Îk(tk) at two distinct sites ( j and k) and times (t j and tk), the
autocorrelation function of the current is defined as

S jk =
1
2
〈∆Î j∆Îk + ∆Îk∆Î j〉 (28)

where ∆Î = Î − 〈Î〉. Note that the autocorrelation is defined in such a way that it is the
expectation value of a self-adjoint operator.

First, let us assume that j < {k − 1, k, k + 1}. This restriction ensures that all annihilation
and creation operators with j-indices anti-commute with operators containing a k-index. By
using this fact and our previous calculations about the site-resolved current, we obtain

S jk =
1
2

〈
∆Î j∆Îk + ∆Îk∆Î j

〉
=

1
2

〈
Î j Îk + Îk Î j

〉
−

〈
Î j

〉〈
Îk

〉
= −

e2τ jτk

2~2

〈
(c jc

†

j+1 − c j+1c†j)(ckc
†

k+1 − ck+1c†k) + (ckc
†

k+1 − ck+1c†k)(c jc
†

j+1 − c j+1c†j)
〉
−

〈
Î j

〉〈
Îk

〉
= −

e2τ jτk

~2

〈
(c jc

†

j+1 − c j+1c†j)(ckc
†

k+1 − ck+1c†k)
〉
−

〈
Î j

〉〈
Îk

〉
= −

e2τ jτk

~2

〈
c jc
†

j+1ckc
†

k+1 + c j+1c†jck+1c†k − c jc
†

j+1ck+1c†k − c j+1c†jckc
†

k+1

〉
−

〈
Î j

〉〈
Îk

〉
=

e2τ jτk

~2

〈
ck+1c jc

†

j+1c†k + ckc j+1c†jc
†

k+1 − ckc jc
†

j+1c†k+1 − ck+1c j+1c†jc
†

k

〉
−

〈
Î j

〉〈
Îk

〉
=

e2τ jτk

~2

〈
c†kc†j+1c jck+1 + c†k+1c†jc j+1ck − c†k+1c†j+1c jck − c†kc†jc j+1ck+1

〉
−

〈
Î j

〉〈
Îk

〉
Now it is time to insert contour indices in order to introduce Greens functions:

S jk =
e2τ jτk

~2

〈
TC

(
c+†

k c+†

j+1c−j c−k+1 + c+†

k+1c+†

j c−j+1c−k − c+†

k+1c+†

j+1c−j c−k − c+†

k c+†

j c−j+1c−k+1

)〉
−

〈
Î j

〉〈
Îk

〉
=

e2τ jτk

~2

〈
TC

(
c−k+1c−j c+†

j+1c+†

k + c−k c−j+1c+†

j c+†

k+1 − c−k c−j c+†

j+1c+†

k+1 − c−k+1c−j+1c+†

j c+†

k

)〉
−

〈
Î j

〉〈
Îk

〉
and thus, by using the definition of the Greens function and equation (27), we obtain the
following result:

S jk = −
e2τ jτk

~2

(
G−−|++

k+1, j|k, j+1 + G−−|++

k, j+1|k+1, j −G−−|++

k, j|k+1, j+1 −G−−|++

k+1, j+1|k, j

)
−

e2τ jτk

~2

(
G−|+j| j+1 −G−|+j+1| j)(G

−|+

k|k+1 −G−|+k+1|k

) (29)

Recall the result S LL = S RR = −S LR = −S RL from scattering theory (section 3.4). As-
suming we model our QPC as a tight binding chain with sites indexed by 0, 1, 2, . . . ,N , this
translates to S 00 = S NN = −S 0N = −S N0. Qualitatively, this means that one would expect
the case j = k to lead to a similar result as in equation (29). After some calculations, which
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require the careful application of the anti-commutation rules and which are performed in Ap-
pendix C, one obtains

S kk = −
e2τ2

k

~2

(
G−−|++

k+1,k|k,k+1 + G−−|++

k,k+1|k+1,k −G−−|++

k,k|k+1,k+1 −G−−|++

k+1,k+1|k,k

)
−

e2τ2
k

~2

(
G−|+k|k+1 −G−|+k+1|k)(G

−|+

k|k+1 −G−|+k+1|k

)
+

e2τ2
k

~2

(
iG−|+k|k + iG−|+k+1|k+1 − 2

)
which is exactly equal to the previous case in equation (29) with an additional third term.

Note that we are mainly interested in the noise, which is the Fourier transform of the
autocorrelation function. A Greens function of the form Gk|k is constant in time, since it only
depends on the difference of its time arguments (tk|tk), as already shown.27 Thus, the entire
additional term is time-independent and, therefore, only adds a δ(ω) contribution to the noise
term, which we will neglect for now. As a result, the case j = k is qualitatively the same for
our purposes and we can continue our derivation of the noise term with equation (29).

The second line in equation (29) (which comes from the product of the mean currents) is
also constant in time, following exactly the same argumentation. This also makes sense from
a physical standpoint, as the mean current is time-invariant.

We are now going to express the two-particle Greens functions in terms of connected
Greens functions (see section 4.8.2):

S jk = −
e2τ jτk

~2

(
Gc
−−|++

k+1, j|k, j+1 + G−|+k+1|kG
−|+

j| j+1 −G−|+k+1| j+1G
−|+

j|k + Gc
−−|++

k, j+1|k+1, j

+ G−|+k|k+1G
−|+

j+1| j −G−|+k| j G−|+j+1|k+1 −Gc
−−|++

k, j|k+1, j+1 −G−|+k|k+1G
−|+

j| j+1

+ G−|+k| j+1G
−|+

j|k+1 −Gc
−−|++

k+1, j+1|k, j −G−|+k+1|kG
−|+

j+1| j + G−|+k+1| jG
−|+

j+1|k

)
−

e2τ jτk

~2

(
G−|+j| j+1G

−|+

k|k+1 + G−|+j+1| jG
−|+

k+1|k −G−|+j+1| jG
−|+

k|k+1 −G−|+j| j+1G
−|+

k+1|k

)
= −

e2τ jτk

~2

(
Gc
−−|++

k+1, j|k, j+1 + Gc
−−|++

k, j+1|k+1, j −Gc
−−|++

k, j|k+1, j+1 −Gc
−−|++

k+1, j+1|k, j

+ G−|+k| j+1G
−|+

j|k+1 + G−|+k+1| jG
−|+

j+1|k −G−|+k+1| j+1G
−|+

j|k −G−|+k| j G−|+j+1|k+1

)

(30)

and are left with a far more simplified result, where no more constant terms are left. Phys-
ically, the subtraction of the product of the mean currents eliminated all contributions that
were constant in time. Once again, we note that all Greens functions in the term above do not
depend on the individual times t j and tk, but only on the difference (t j − tk).28

We are interested in calculating the noise

S jk(ω) =

∫
d(t j − tk)eiω(t j−tk)S jk (31)

which is the Fourier transform of the autocorrelation function with respect to its time argu-
ment. We consider the contributions from the two-particle Greens functions and the one-
particle functions separately, i.e. from here on we denote29

S jk(ω) ≡ T 1
jk(ω) + T 2

jk(ω)

27see section 4.4.
28see section 4.4.
29T 2 includes all terms that consist of Gc, while T 1 includes the rest of the terms. Note that T 2 = 0 by

definition if we consider a non-interacting system.



34 5. Description of physical observables

Each of these two terms will now be treated individually. Generally, we wish to transform
everything to frequency space, as we have already done in section 4.8.

5.3.1 One-particle contribution

From equation (30) we obtain that the one-particle term of the noise is given by

T 1
jk(ω) =

e2τ jτk

~2

∫
d(t j − tk)eiω(t j−tk)

{
G−|+k+1| j+1(tk|t j)G

−|+

j|k (t j|tk) + G−|+k| j (tk|t j)G
−|+

j+1|k+1(t j|tk)

−G−|+k| j+1(tk|t j)G
−|+

j|k+1(t j|tk) −G−|+k+1| j(tk|t j)G
−|+

j+1|k(t j|tk)
}

By transforming all Greens functions to Fourier space we obtain

T 1
jk(ω) =

e2τ jτk

~2

∫
d(t j − tk)

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π
eiω(t j−tk)e−iω1tke−iω2t jeiω3tkeiω4t j{

G−|+k+1| j+1(ω1|ω4)G−|+j|k (ω2|ω3) + G−|+k| j (ω1|ω4)G−|+j+1|k+1(ω2|ω3)

−G−|+k| j+1(ω1|ω4)G−|+j|k+1(ω2|ω3) −G−|+k+1| j(ω1|ω4)G−|+j+1|k(ω2|ω3)
}

=
e2τ jτk

~2

∫
d(t j − tk)

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π
eiω(t j−tk)e−iω1tke−iω2t jeiω3tkeiω4t j

2πδ(ω1 − ω4) · 2πδ(ω2 − ω3)
{

G−|+k+1| j+1(ω1)G−|+j|k (ω2) + G−|+k| j (ω1)G−|+j+1|k+1(ω2)

123456789012345678901234 −G−|+k| j+1(ω1)G−|+j|k+1(ω2) −G−|+k+1| j(ω1)G−|+j+1|k(ω2)
}

where we used equation (16). This leads to

T 1
jk(ω) =

e2τ jτk

~2

∫
d(t j − tk)

∫
dω1

2π

∫
dω2

2π
exp{i(ω + ω1 − ω2)(t j − tk)}

{
G−|+k+1| j+1(ω1)G−|+j|k (ω2)

+ G−|+k| j (ω1)G−|+j+1|k+1(ω2) −G−|+k| j+1(ω1)G−|+j|k+1(ω2) −G−|+k+1| j(ω1)G−|+j+1|k(ω2)
}

Finally, we use the fact that∫
d(t j − tk) exp{i(ω + ω1 − ω2)(t j − tk)} = 2πδ(ω + ω1 − ω2)

and, by eliminating the ω2-integral, we conclude

T 1
jk(ω) =

e2τ jτk

~2

∫
dω1

2π

{
G−|+k+1| j+1(ω1)G−|+j|k (ω1 + ω) + G−|+k| j (ω1)G−|+j+1|k+1(ω1 + ω)

−G−|+k| j+1(ω1)G−|+j|k+1(ω1 + ω) −G−|+k+1| j(ω1)G−|+j+1|k(ω1 + ω)
} (32)
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5.3.2 Two-particle contribution

Similarly, equation (30) implies

T 2
jk(ω) =

∫
d(t j − tk)eiω(t j−tk)

(
Gc
−−|++

k, j|k+1, j+1 + Gc
−−|++

k+1, j+1|k, j −Gc
−−|++

k+1, j|k, j+1 −Gc
−−|++

k, j+1|k+1, j

)
(tk, t j|tk, t j)

=
e2τ jτk

~2

∫
d(t j − tk)

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π
eiω(t j−tk)e−iω1tke−iω2t jeiω3tkeiω4t j

1234567890
(
Gc
−−|++

k, j|k+1, j+1 + Gc
−−|++

k+1, j+1|k, j −Gc
−−|++

k+1, j|k, j+1 −Gc
−−|++

k, j+1|k+1, j

)
(ω1, ω2|ω3, ω4)

As before, we use the fact that Gc only depends on three frequencies and denote this as

Gc(ω1, ω2|ω3, ω4) = 2πδ(ω1 + ω2 − ω3 − ω4)Gc(ω1, ω2, ω3)

By eliminating the ω4-integral, we are left with

T 2
jk(ω) =

e2τ jτk

~2

∫
d(t j − tk)

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π
exp{i(ω + ω1 − ω3)(t j − tk)}(

Gc
−−|++

k, j|k+1, j+1 + Gc
−−|++

k+1, j+1|k, j −Gc
−−|++

k+1, j|k, j+1 −Gc
−−|++

k, j+1|k+1, j

)
(ω1, ω2, ω3)

The time integral yields a δ-distribution, which allows us to eliminate the ω3-integral. Finally,
we are left with

T 2
jk(ω) =

e2τ jτk

~2

∫
dω1

2π

∫
dω2

2π

(
Gc
−−|++

k, j|k+1, j+1 + Gc
−−|++

k+1, j+1|k, j −Gc
−−|++

k+1, j|k, j+1 −Gc
−−|++

k, j+1|k+1, j

)
(ω1, ω2, ω + ω1)

(33)

5.4 General properties of the noise
We will now prove several general and useful properties of the physical quantities under

consideration:

• Recall the definition of the autocorrelation function and the fact that it only depends on
the difference of its time arguments:

S jk(t − t′) B S jk(t|t′) =
1
2
〈∆Î j(t)∆Îk(t′) + ∆Îk(t′)∆Î j(t)〉

From this we obtain

S jk(t) =
1
2
〈∆Î j(t)∆Îk(0) + ∆Îk(0)∆Î j(t)〉 =

1
2
〈∆Îk(0)∆Î j(t) + ∆Î j(t)∆Îk(0)〉 = S k j(−t)

Thus, we have shown the following general identity for the noise:

S jk(ω) = S k j(−ω) (34)
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• We have already shown in section 4.3:[
G−|+j|k (t j|tk)

]∗
= −G−|+k| j (tk|t j)

By applying this result to the one-particle contribution in equation (30), one obtains

[
T 1

jk(t j|tk)
]∗

= −
e2τ jτk

~2

(
G−|+k| j+1G

−|+

j|k+1 + G−|+k+1| jG
−|+

j+1|k −G−|+k+1| j+1G
−|+

j|k −G−|+k| j G−|+j+1|k+1

)∗
= −

e2τ jτk

~2

(
G−|+j+1|kG

−|+

k+1| j + G−|+j|k+1G
−|+

k| j+1 −G−|+j+1|k+1G
−|+

k| j −G−|+j|k G−|+k+1| j+1

)
= T 1

jk(t j|tk)

Note that all time arguments in the equation above are implicit.30 This translates to[
T 1

jk(t)
]∗

= T 1
jk(t)

Thus, in Fourier space, we obtain[
T 1

jk(ω)
]∗

= T 1
jk(−ω) (35)

• One can use the basic definition of the Greens functions to derive the following iden-
tity:31 [

G−−|++

ab|cd (ta, tb|tc, td)
]∗

= G−−|++

cd|ab (tc, td|ta, tb)

By applying this to equation (30) we obtain[
T 2

jk(t j, tk)
]∗

= −
e2τ jτk

~2

[(
Gc
−−|++

k+1, j|k, j+1 + Gc
−−|++

k, j+1|k+1, j −Gc
−−|++

k, j|k+1, j+1 −Gc
−−|++

k+1, j+1|k, j

)
(tk, t j|tk, t j)

]∗
= −

e2τ jτk

~2 [
(
Gc
−−|++

k, j+1|k+1, j + Gc
−−|++

k+1, j|k, j+1 −Gc
−−|++

k+1, j+1|k, j −Gc
−−|++

k, j|k+1, j+1

)
(tk, t j|tk, t j)

= T 2
jk(t j, tk)

In Fourier space, this becomes [
T 2

jk(ω)
]∗

= T 2
jk(−ω) (36)

• By combining equations (35) and (36), we conclude[
S jk(ω)

]∗
= S jk(−ω) (37)

Note that this serves as a self-consistency check for our calculations. This identity also
follows immediately from the fact that S jk(t) is real, since it is defined as the expectation
value of a self-adjoint operator.

30An index j corresponds to time t j and an index k corresponds to time tk.
31see [Jak10]
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• In the case of an equilibrium, i.e. µL = µR and TL = TR, and if the potential barrier
in the QPC is symmetric, then all physical observables are invariant under parity trans-
formations. In particular, the identity S 1N(ω) = S N1(ω) holds. By combining this with
equations (34) and (37), one immediately obtains

S 1N(ω) = S 1N(−ω) = [S 1N(ω)]∗ in equilibrium case (38)

i.e. the noise between the left and right lead is real and symmetric around ω = 0 in
equilibrium.

• In section 3.3.2 we demonstrated that shot noise is non-white under the assumption that
the arrival times of the individual electrons cannot be neglected. Specifically, under the
assumption that the electron detection events can be modelled as rectangular pulses, we
showed

Shot noise = 2e〈Î〉
[
sin(ωt0/2)
ωt0/2

]2

(39)

where t0 is a constant corresponding to the pulse duration of an individual electron. This
equation should be understood as a qualitative classical expectation rather than an exact
result that can be applied to our specific setup.



6 Implementation and results
For the purpose of simplicity, plots of physical quantities throughout this section will

contain dimensionless parameters. To this end, we use the convention kB = ~ = e = 1 and
express everything in terms of the bandwidth 4τ of the QPC. For example, T = 2 stands for
T = 2τ/kB in SI units, while ω = 2 stands for ω = 2τ/~.

6.1 Modelling the system
The system is modeled as a one-dimensional tight binding chain consisting of N sites

(indexed 1, . . . ,N) with constant lattice spacing and a bandwidth of 4τ, ranging from −2τ to
2τ. In the case of a chemical potential µ the Fermi energy level lies at εF = 2τ + µ.32

The potential barrier of the QPC is modeled through the hopping parameters, using the
same conventions as in [Sch18]:

τ j = τ −
1
4

Vg exp

− x2
j

1 − x2
j

 , where x j = 2
j − 1

N − 2
− 1 for j ∈ {1, . . . ,N − 1}

where Vg is a parameter for the gate voltage. The height of the potential V(x) is given by 2Vg.
This describes an almost parabolic potential which is centered around the middle ( j = N/2)
and which becomes constant at the flanks of the barrier region. The parabolic shape can be
observed in the expansion

τ j = τ −
1
4

Vg +
1
4

Vgx2
j + O(x4

j)

The shape of the barrier is determined entirely by its curvature parameter Ωx. In this case

Ωx =
4
√
τ · 2Vg

N − 1
For the on-site interactions the form used in [BHS+13], [BHvD14], [WBvD17] and [Sch18]

respectively is implemented:

U j = U0 exp

− l6
j

1 − l2
j

 , where l j = 2
j − 1

N − 1
− 1 for j ∈ {1, . . . ,N}

It is approximately constant and almost equal to the interaction strength parameter U0 in
the center of the QPC and drops to zero at the flanks of the barrier region.

For the purpose of specific calculations in this thesis the conventions

N =

61 in equilibrium case
41 in non-equilibrium case

U0 = 0.55
Vg = 0.25

µ =


−1.475 open regime
−1.5 subopen regime
−1.55 closed regime

32In this thesis: µ < 0
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are used. Thus, the curvature parameter in units of τ is given by

Ωx =

0.04714 in equilibrium case
0.07071 in non-equilibrium case

The temperature is varied between 0 and 0.005 in our calculations, which corresponds
to ≈ 1.45K in SI units. The frequencies are discretisized in such a way that they are more
densely packed around the center of the band, which lies at frequency zero. Specifically, we
use about 1600 discrete frequency values, out of whom 50% lie between −3τ and 3τ. Our
exact choice of the discretization procedure is described in [Sch18], Chapter 8.

6.2 The functional Renormalization Group
The functional Renormalization Group (fRG) is a powerful method of computing corre-

lation functions in quantum systems, which are too large and complex to be fully described
or solved analytically. In our case, we wish to solve a system consisting of at least 40 to
60 sites and two semi-infinite leads.33 Additionally, we cannot make the assumption of an
equilibrium or linear electron dispersion in our system, since we wish to model a quadratic
barrier and non-zero source-drain bias voltage. All these requirements call for a treatment
with fRG within the Keldysh formalism, since it is a numerically relatively cheap albeit pow-
erful method.

The main idea of fRG is the introduction of an artificial parameter Λ into the system.
For Λ = +∞ the system becomes trivial and can be solved analytically, while for Λ = 0
one obtains the actual physical system. Then one computes how the solution of the system
behaves under evolution of the flow parameter Λ from +∞ to 0 with the goal of obtaining a
solution to the actual physical system.

In terms of practical calculations, Λ may be introduced in the generating functional of cor-
relation functions of the system (thus directly changing the action), it may be introduced in the
generating functional of one-particle irreducible vertices for example or, more conveniently,
it may be introduced directly in the free propagator g.

To illustrate this, one straightforward way of implementing the flow parameter would be

gΛ(ω) = θ(|ω| − Λ)g(ω)

i.e. simply cutting off all frequencies above Λ, so that gΛ=∞ = 0, which has a trivial solution.
Generally, by making the free propagator g = gΛ depend on Λ, this changes the value of all

Feynman diagrams dn = dΛ
n of order n ∈ N, which in turn makes the vertex functions depend

on Λ, γn = γΛ
n .34 Specifically, now also the the self-energy depends on the flow parameter

and, thus, the full propagator which is calculated by solving the Dyson equation (23) also
depends on Λ. Our goal is to calculate how the solution of our system changes with respect to
Λ, which means that we need to calculate the derivative of the vertex functions with respect
to Λ.

33If we use less sites, the barrier is no longer as smooth and we obtain artifacts of the discretization in our
computations.

34The order of a Feynman diagram refers the amount of incoming / outgoing particles, e.g. a dressed two-
particle Greens function is an infinite sum of Feynman diagrams of second order.
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The most intuitive approach is once again the diagrammatic one. If we consider a Feyn-
man diagram dΛ

n of order n, then we denote d′Λn as the same diagram, where exactly one
internal leg (i.e. internal free propagator gΛ) is replaced by its derivative with respect to Λ

(i.e. with ∂gΛ/∂Λ). By the product rule we obtain

∂γΛ
n

∂Λ
=

∑
dΛ

n contributing
to γΛ

n

∂dΛ
n

∂Λ
=

∑
dΛ

n contributing
to γΛ

n

..
∑

d′Λn contributing
to ∂dΛ

n /∂Λ

d′Λn (40)

The computation of the sum above is a combinatoric diagrammatic exercise, which is
performed thoroughly in [Jak10]. The newly arising problem lies within the fact that that
the Feynman diagram d′Λn can contain all vertices up to order n + 1.35 Thus, equation (40)
corresponds to an infinite coupled hierarchy of differential equations, where the flow ∂γΛ

n /∂Λ

is given as a function of ΣΛ, γΛ
2 , γ

Λ
3 , . . . , γ

Λ
n+1.

A straightforward way to solve this system is to neglect the flow of the higher order ver-
tices, i.e. to fix an m ∈ N, such that all vertex functions of higher order are set equal to
their starting value, i.e. ∀n > m : γΛ

n ≡ γ
Λ=∞
n . This is a reasonable approximation since the

contribution of higher order Feynman diagrams is negligible compared to ones of lower order.
What remains is a system of coupled ordinary differential equations in Λ, which can be solved
numerically.

In our case, we choose m = 2 and the starting point gΛ=∞ = 0, which yields the trivial
solution ΣΛ=∞ = 0, γΛ=∞

2 = ū and ∀n ≥ 3 : γΛ=∞
n = 0, where ū is the value of the bare

two-particle interaction vertex, given our Hamiltonian. Theoretically, the exact choice of the
flow parameter is irrelevant as one should always obtain the same solution to the system for
Λ = 0. However, our neglect of higher order vertices and the numerical nature of our solution
to the system of differential equations yields inaccuracies, which have to be contained.

In theory, the set of systems described by 0 < Λ < ∞ has no physical meaning and may
thus violate physical principles and identities. For example, there could be a Λ, such that
gR(t) , 0 for t < 0, thus violating causality; or there could be a Λ, for which the fluctuation
dissipation theorem is violated. However, one should keep in mind that the truncated flow
equations only describe a part of the flow due to our approximation, which implies that the
solution at Λ = 0 still incorporates some parts of the solutions at Λ , 0. Thus, it makes sense
to implement Λ in such a way that no physical principles and symmetries are ever violated
during the flow, so as to ensure their validity in the solution of the actual system.

Finally, the calculation of the conductance requires the calculation of the derivative of
the current with respect to the voltage, which is analyzed in [Sch18], Chapter 5.4 for the
equilibrium case, where the gradient of the voltage can be assumed to be symmetric. The
non-equilibrium case is more complicated and requires more careful treatment.

In conclusion, this brief overview sums up the basic notions of Keldysh fRG for our pur-
poses. The ordinary differential equation flow is solved by a sixth-order Runge-Kutta algo-
rithm with adaptive step-size36 and a Gaussian quadrature algorithm based on Patterson sets.
These algorithms were implemented by Florian Bauer, Jan Heyder, Dennis Hank Schimmel

35By differentiating one leg of dΛ
n with respect to Λ, this leg can essentially be treated as an external leg

connected to a diagram of higher order.
36The system changes far more drastically for Λ < bandwidth than for Λ → ∞, which has to be reflected in

the algorithm.
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and Lukas Weidinger at the chair of Professor Jan von Delft at the LMU Munich. A more in
depth analysis on fRG and a detailed derivation of the flow equations can be found in [Jak10],
Chapter 4, [Sch18], Chapters 4 & 8 and [WBvD17].

6.3 Tackling the integration
In order to calculate the noise, one still needs to handle the task of evaluating integrals

such as the ones in equations (32) and (33). The main difficulty here lies within the fact that
two-particle Greens functions are very expensive to calculate. Solving the fRG flow provides
us with the values of the two-particle vertices γ2. However, in order to obtain the connected
Greens functions, all possible permutations of external legs have to be attached to γ2, leaving
us with37

Gc
α1α2 |α3α4
i1i2 |i3i4

(ω1, ω2|ω3, ω4) = −i·Gα1 |β1
i1 | j1

(ω1)Gα2 |β2
i2 | j2

(ω2)γβ1β2 |β3β4
j1 j2 | j3 j4

(ω1, ω2|ω3, ω4)Gβ3 |α3
j3 |i3

(ω3)Gβ4 |α4
j4 |i4

(ω4)

This expression is a quadruple sum over Keldysh indices β within a quadruple sum over
N = 61 site indices j. In order to evaluate the double noise integral in equation (33) for a
single value of ω, we have to calculate four such connected Greens functions and integrate
twice over N f ≈ 1600 frequencies, keeping in mind our discretization. Assuming one were to
calculate each Gc individually and then perform the double integral using the trapezoidal rule
naively, one would have to sum over

4 · 24 · N4 · N2
f ≈ 2 · 1015 terms.

We use the following facts and methods in order to reduce this vast number of terms:

• We already have theoretical knowledge about specific combinations of Keldysh indices,
e.g. Gqq|qq

c = 0.

• The indices of the vertex function γ2 are separate from the indices of Gc due to the
summation. Thus, at given frequencies each integrand only consists of 24 · N4 different
vertex function terms.

• Several well-motivated approximations and simplifications in our fRG flow allow us to
neglect the vertex function if all its site indices are different,38 thus effectively turning
the quadruple sum over sites into a triple sum.

• We use the fact that G(1) ∼ 1/ω and similarly G(2)
c ∼ 1/ω2 for large ω. Thus, we

expect, the integrand not to fluctuate much outside of the bandwidth and can use this
knowledge to dynamically adjust the step size during the integration, i.e. outside the
bandwidth we only evaluate the integrand at a certain subset of points in each step and
then adjust the fineness of the next step according to the fluctuations of these values. In
practice, this corresponds to the choice of a certain tolerance threshold, where we make
the assumption that integrand fluctuations below this threshold can be neglected.

37Recall equation (24).
38 [Sch18]
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• All results of the fRG flow (specifically the dressed propagators and the vertex func-
tions) are pre-computed and stored as custom C++ objects, which are specifically de-
signed to guarantee quick reading access. Thus, the calculation of each individual sum-
mand is greatly optimized.

6.4 Local density of states

Keeping in mind that the free propagator is given by gR(ω) = (ω − ω0 + i0)−1, the local
density of statesA of a system is defined through the relation

GR(ω) =

∫
dz

A(z)
ω − z + i0

where GR is the full propagator and dz denotes integration over the complex plane. In the case
of a homogeneous system with energy ω0 we obtain the expected result A(ω) = δ(ω − ω0).
Intuitively,A is a useful measure of which energies can occupied the most in a given system.

By using the Kramers-Kronig relations, the integral expression above can be solved forA
and one obtains39

A(ω) = −
1
π

ImGR(ω)

Thus, given a site j and a frequency ω, the local density of states is given by

A j(ω) = −
1
π

ImGR
j| j(ω)

It is very instructive to utilize this result in order to visualize and understand the system at
hand. In our case, the maximum of the potential barrier lies at the center of the QPC. If the
value of the Fermi energy εF = −2τ − µ is above the peak of the barrier, then the system is
open and electrons with high energies are almost free to pass the QPC with little resistance,
resulting in a high transmission probability and high conductance. On the other hand, a Fermi
energy level below the peak of the barrier leads a so-called closed system, where electrons
can only cross the barrier through quantum tunneling. This results in a low transmission rate
and low conductance. Finally, it is useful to distinguish the subopen regime, where the Fermi
level and the barrier peak approximately coincide. As already mentioned in section 2, this
case has the most interesting and ’non-classical’ properties, as the transmission probability is
medium and electron-electron interactions govern the physics of the QPC.40

By plotting the local density of states as a function of site index (i.e. location in the QPC)
and electron frequency41 in figures 13 and 14, the exact shape of the barrier can be studied.
It can be observed that most states are quenched into the energy levels around the potential
barrier.42 As one would expect, a low temperature leads to a denser accumulation of the states,
while raising the temperature increases thermal fluctuations in the system, which leads to a
reduction in the sharpness of the density of states.

39This requires GR(ω) ∼ 1/|ω| for large ω and GR(ω) has to be analytic in the upper half complex plane. Both
of these are fulfilled, since GR(t) grows sufficiently slowly in time.

40Recall that in this regime the 0.7 anomaly appears, which cannot be explained by a non-interacting model.
41corresponding to electron energy
42Note that one can ignore the upper portion of these figures. While the density of states at positive energies

also has certain maxima, these can realistically never be occupied by the electrons in our system, as it has a
negative Fermi energy.
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Figure 13: Local Density of statesA j(ω) in equilibrium in the open regime (µ = −1.475) with
temperature T = 0 and magnetic field h = 0.

Figure 14: Local Density of statesA j(ω) in equilibrium in the open regime (µ = −1.475) with
temperature T = 1 = 21.213 Ωx and magnetic field h = 0.
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6.5 Noise
Our main point of interest in this thesis is the analysis of the properties of the noise term

S jk(ω). Recall our derivation of this term and the fact that it can be split into two contribu-
tions: the one-particle contribution T 1

jk(ω) (equation (32)), which is numerically quite cheap
to calculate, and the two-particle contribution T 2

jk(ω) (equation (33)).
We assume that most of the times, the predominant term is the one-particle one, especially

for chemical potentials that are far from the subopen regime, i.e. in regimes where interaction
phenomena are not predominant. Thus, it is quite useful to neglect the interaction term at a
first approach and to examine the QPC in the approximation T 2

jk(ω) � T 1
jk(ω). Of course,

this approach does not yield exact results but it can be used to estimate the correctness of this
approximation and of the computations, to illustrate whether physical identities are fulfilled
and to compare the results of this thesis to other publications.

6.5.1 Equilibrium noise: one-particle contribution

First, we start with the equilibrium case, i.e. we assume that µL = µR and TL = TR, which
implies that no current flows between the two leads. This case is far easier to treat, describe
and implement in the context of the fRG flow, since the system has additional symmetries.
Specifically, it is invariant under parity transformations, which leads to the symmetry Gα1 |α2

j|k =

Gα1 |α2
k| j for generic site indices j, k and Keldysh indices α1, α2. Furthermore, the fluctuation

dissipation theorem holds:

GK(ω) = tanh
(
ω − µ

2T

) (
GR(ω) −GA(ω)

)
(21 revisited)

We have already shown that
[
GR

s1 |s2
(t1|t2)

]∗
= GA

s2 |s1
(t2|t1) holds in a general context,43 which

implies that knowledge about the retarded Greens function suffices to calculate the object of
our interest, T 1

jk(ω), from equation (32).

6.5.1.1 Noise as a function of frequency .
In order to obtain some intuition behind the noise, we consider some plots of T 1

1N(ω) in
the different regimes (by varying µ) and for different temperatures T and magnetic fields h. To
that end, observe figures 15, 16, 17 and 18. Classically, T 1

1N(ω) can be interpreted as S LR(ω),
i.e. the noise term corresponding to the correlation between the left and the right lead. We
make the following observations:

• The noise is non-white, as it takes its maximum around the zero-frequency domain and
falls off for high frequencies.44 This comes as no surprise, as thermal noise does not
have an infinite spectrum. Physically, this means that the detection of one electron is
correlated to other electrons, if they arrive not too far apart in time.

• Equilibrium noise has to be real and symmetric around the frequency ω = 0, as proven
in equation (38). We observe that all plots satisfy the first condition exactly as the imag-
inary part vanishes within machine accuracy. Furthermore, the noise is approximately

43See section 4.3.
44In this case, ω = 1 corresponds to ω = τ/h ≈ 6 THz in SI units, which is extremely high and justifies the

sudden apparent drop of the noise outside the central frequency domain.
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symmetric with slight inaccuracies, which can most likely be attributed to numerical
errors during the integration.

• An increase in temperature leads to an increase of the value of the peak noise, which
occurs at ω = 0. This is in accordance with classical scattering theory, as analyzed in
section 6.5.1.2. Intuitively, this makes sense, since the thermal fluctuations get increas-
ingly stronger with higher temperatures.

• An increase in temperature leads to a narrower noise peak around ω = 0. For very large
temperatures one expects the noise to approach a δ-peak in frequency space, i.e. only
the zero-frequency contribution becomes relevant.

In figure 19 one can observe some plots of T 1
11(ω), i.e. the noise corresponding to the

correlation between the currents measured at the same lead, S LL(ω). In figure 20 the same
physical quantities are plotted in the case of a strictly non-interacting system, i.e. U0 = 0.
Classical scattering theory predicts S LR = −S LL, as mentioned in section 3.4. However,
the results of our computation violate this principle, as one can see in the plots: they look
highly different from all previous plots and violate our expectation that the noise increases
with higher temperatures, both in the interacting and non-interacting case. Heuristically, one
could argue that the on-site noise term in the interacting case might contain larger numerical
fRG errors than S LR, since the latter contains propagation terms across the entire QPC, while
the former only contains propagators spanning a single site. However, as of now there is no
satisfying explanation of the behavior of the on-site noise term in the non-interacting case.

Figure 15: One-particle noise contribution T 1
1N(ω) in open regime (µ = −1.475) at tempera-

tures T = 0 and T = 0.0008 = 1.6971 · 10−2 Ωx, with no magnetic field
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Figure 16: One-particle noise contribution T 1
1N(ω) in subopen regime (µ = −1.5) at tempera-

tures T = 0 and T = 0.0008 = 1.6971 · 10−2 Ωx, with no magnetic field

Figure 17: One-particle noise contribution T 1
1N(ω) in closed regime (µ = −1.55) at tempera-

tures T = 0 and T = 0.0008 = 1.6971 · 10−2 Ωx, with no magnetic field
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Figure 18: One-particle noise contribution T 1
1N(ω) in open regime (µ = −1.475) at tempera-

tures T = 0 and T = 0.5 = 10.6067 Ωx, with magnetic field h = 0.5

Figure 19: On-site one-particle noise contribution T 1
11(ω) in open regime (µ = −1.475) at

temperatures T = 0 and T = 0.0008 = 1.6971 · 10−2 Ωx, with no magnetic field
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Figure 20: On-site one-particle noise contribution in a strictly non-interacting system
T 1

11(ω) in open regime (µ = −1.475) at temperatures T = 0 and T = 0.0008 = 1.6971 · 10−2

Ωx, with no magnetic field
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6.5.1.2 Comparison to scattering theory .
It is rather interesting to compare the results of our calculations in the Keldysh formalism

to classical scattering theory, so as to observe the similarities and the differences between the
two approaches. To this end, we are going to base our considerations on the results of section
3.4 on scattering theory.

We showed that the following equation holds in the equilibrium case:

S = 4kBTG (6 revisited)

where S is the noise at zero frequency, corresponding to T 1
1N in our case. Thus, we expect the

noise to be proportional to the product of the temperature and the calculated conductivity of
the system.

To that end, figure 21 is a plot of the noise as a function of T · G at the various regimes.
Additionally, figure 22 is exactly the same under the additional assumption that the system is
strictly non-interacting, i.e. U0 = 0. We make the following observations:

• In all cases, we observe that the proportionality holds for low temperatures, i.e. there is
a linear regime where the prediction of scattering theory is almost exact and the linear
fit is well justified. However, at higher temperatures, the ratio is no longer proportional
and scattering theory breaks down.

• Since the axes are given in exactly the same units, one would expect the slope of the
linear fits to be equal to 1. However, in our case, it ranges from 15 to 60 in the various
plots. Thus, we are facing a severe scaling problem within the implementation.

Let us now consider each of the three regimes individually.
In the closed regime (shown as (c) in figures 21 and 22), both the interacting and the non-

interacting system apparently severely violate the prediction from scattering theory for large
temperatures T > 0.001. However, this can be attributed to the fact that we have extremely
low confidence in our calculation of the conductivity. In this case, the conductivity lies at the
magnitude G = 10−4 × 2e2/h, which is extremely low; thus, small absolute errors lead to huge
relative errors for the value of G.

In the open regime (shown as (a) in figures 21 and 22), the comparison between the non-
interacting system and scattering theory remains highly accurate up to high temperatures (be-
sides some numerical errors). However, the prediction breaks down for large temperatures
(T > 0.001) in the interacting system. This can be attributed to the fact that we have ne-
glected the interaction contribution T 2

1N and, more importantly, that the main assumption of
scattering theory, namely the unitarity of the s-matrix is no longer valid in the interacting case
at high temperatures. This leads to the insufficiency of scattering theory in the description of
such systems.45

The subopen regime (shown as (b) in figures 21 and 22) shows some interesting unex-
pected features. In this case, the interacting system remains accurate up to high temperatures,
while the non-interacting system deviates from scattering theory. This comes as a surprise,
since the non-interacting case fulfills the unitarity of the s-matrix by definition and since the
conductivity in the non-interacting case generally changes slower with regard to the varia-
tion of temperature than in the interacting case. Additionally, the interaction contribution to

45The fact that the s-matrix is highly non-unitary for finite temperatures is illustrated in [Sch18], Chapter 7.4.
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noise vanishes in the case of no interactions. Thus, this result should be the subject of further
investigation, including double-checking the numerical implementation for errors.

Figure 21: One-particle zero-frequency noise contribution T 1
1N as a function of temperature

T times conductance G in open regime (µ = −1.475), subopen regime (µ = −1.5) and closed
regime (µ = −1.55) respectively (without magnetic field). The scatter plots were created at
temperatures T = 0, 0.0002, 0.0004, 0.0006, 0.0008, 0.001, 0.002, 0.003, 0.004 and 0.005.
In units of the curvature: T = 0, 0.42427 · 10−2 Ωx, 0.84854 · 10−2 Ωx, 1.2728 · 10−2 Ωx,
1.6971 · 10−2 Ωx, 2.1213 · 10−2 Ωx, 4.2427 · 10−2 Ωx, 6.3640 · 10−2 Ωx, 8.4854 · 10−2 Ωx,
10.607 · 10−2 Ωx.

We wish to make a connection between the concept of the s-matrix in scattering theory
and our formalism. To that end, it can be shown46 that the s-matrix for our system is given by

s(ω) =

(
r(ω) t(ω)
t′(ω) r′(ω)

)
= 1 − 2πiρ(ω)τ2

(
GR

11(ω) GR
1N(ω)

GR
N1(ω) GR

NN(ω)

)

where ρ(ω) =

 1
2πτ

√
4τ2 − ~2ω2 , if ~ω ∈ [−2τ, 2τ]

0 , else
is the density of states in the leads. This

allows us, for example, to calculate the transmission probability in terms of the Greens func-
tion linking the first site to the last site.

We are going to use this relation in order to visualize this general result from scattering
theory:

S =
e2

2π~

∑
γδ

∫
dE.Aγδ(E)Aδγ(E)

(
fγ(E)

(
1 − fδ(E)

)
+ fδ(E)

(
1 − fγ(E)

))
(5 revisited)

46see [Tay12]
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Figure 22: One-particle zero-frequency noise contribution T 1
1N in a strictly non-interacting

system as a function of temperature T times conductance G in open regime (µ = −1.475),
subopen regime (µ = −1.5) and closed regime (µ = −1.55) respectively (without magnetic
field). The scatter plots were created at temperatures T = 0, 0.0002, 0.0004, 0.0006, 0.0008,
0.001, 0.002, 0.003, 0.004 and 0.005. In units of the curvature: T = 0, 0.42427 · 10−2 Ωx,
0.84854 · 10−2 Ωx, 1.2728 · 10−2 Ωx, 1.6971 · 10−2 Ωx, 2.1213 · 10−2 Ωx, 4.2427 · 10−2 Ωx,
6.3640 · 10−2 Ωx, 8.4854 · 10−2 Ωx, 10.607 · 10−2 Ωx.

This allows us to express the zero-frequency noise as an integral over all energies, specif-
ically

S =

∫
dω1ζ(ω1)

where ζ(ω1) B
e2

2π

∑
γδ

Aγδ(ω1)Aδγ(ω1)
(

fγ(ω1)
(
1 − fδ(ω1)

)
+ fδ(ω1)

(
1 − fγ(ω1)

))
(41)

where ζ depends on the s-matrix and the Fermi functions at a given frequency. The
Keldysh analogue to ζ can be found in our previous equation

T 1
jk(ω) =

e2τ jτk

~2

∫
dω1

2π

{
G−|+k+1| j+1(ω1)G−|+j|k (ω1 + ω) + G−|+k| j (ω1)G−|+j+1|k+1(ω1 + ω)

−G−|+k| j+1(ω1)G−|+j|k+1(ω1 + ω) −G−|+k+1| j(ω1)G−|+j+1|k(ω1 + ω)
}

(32 revisited)
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Thus, the zero-frequency noise can be expressed as

T 1
jk(0) =

∫
dω1σ(ω1)

where σ(ω1) B
e2τ jτk

~2

{
G−|+k+1| j+1(ω1)G−|+j|k (ω1) + G−|+k| j (ω1)G−|+j+1|k+1(ω1)

......................................... −G−|+k| j+1(ω1)G−|+j|k+1(ω1) −G−|+k+1| j(ω1)G−|+j+1|k(ω1)
}

(42)

We wish to compare σ(ω1) and ζ(ω1) as a consistency check between classical scattering
theory and the results from our calculations. This comparison is made in figures 23 and 24 in
the open and closed regime respectively. We observe that the integrands have exactly the same
form, namely a peak at the chemical potential and outside of this region, a sharp decline to
0. This means that our model is consistent with scattering theory in the sense that frequencies
around ω = µ are the only contributing factor to the noise.

Naturally, we wish to calculate the integrals over ζ and σ in order to compare the classical
result for the noise S scattering theory to the result of our calculations T 1

1N at zero frequency. This
is done in figure 25(a) for the open regime at various temperatures in the non-interacting case.
As expected, there is a linear dependence between the prediction of scattering theory and our
results. However, once again we observe a scaling problem with regard to our implementation.

Figure 25(b) serves as a self-consistency check, namely that the calculation of the s-matrix
through the retarded Greens function and the subsequent evaluation the classical integral in
equation (41) matches the expected result S scattering theory = 4kBTG. The proportionality is well
fulfilled, which is is the reason behind the fact that figures 22(a) and 25(a) look very similar.

Figure 23: Comparison between noise integrands predicted by (a) scattering theory (ζ(ω1))
and our (b) model (σ(ω1)). The system is evaluated in the open regime (µ = −1.475) at a
temperature T = 0.0008 = 1.6971 · 10−2 Ωx, with no magnetic field.
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Figure 24: Comparison between noise integrands predicted by (a) scattering theory (ζ(ω1))
and our (b) model (σ(ω1)). The system is evaluated in the closed regime (µ = −1.55) at a
temperature T = 0.0008 = 1.6971 · 10−2 Ωx, with no magnetic field.
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Figure 25: (a) Scatter plot of the zero frequency noise T 1
1N as a function of the noise predicted

by scattering theory S scattering theory in a strictly non-interacting system. In this case, the
system is in the open regime (µ = −1.475) and the temperature is varied. In units of the
curvature: T = 0, 0.42427 · 10−2 Ωx, 0.84854 · 10−2 Ωx, 1.2728 · 10−2 Ωx, 1.6971 · 10−2

Ωx, 2.1213 · 10−2 Ωx, 4.2427 · 10−2 Ωx, 6.3640 · 10−2 Ωx, 8.4854 · 10−2 Ωx, 10.607 · 10−2

Ωx. (b) Scatter plot of the product of conductance and temperature as a a function of the noise
predicted by scattering theory S scattering theory in a strictly non-interacting system. The system
is in the open regime (µ = −1.475) and the temperature is varied as in (a).
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6.5.2 Equilibrium noise: two-particle contribution

We consider the two-particle contribution to the noise T 2
1N(ω), as given by equation (33).

Evaluating this term for many frequencies is numerically very expensive, as mentioned before,
which is the reason why we have been able to analyze the one-particle term to a greater extent.

Figure 26 is a plot of the one- and two-particle contributions to noise in the open regime
at zero temperature. Note that the contribution of the two-particle term to zero-frequency
noise vanishes, i.e. T 2

1N(0) = 0. This is consistent with the fact that the contribution of the
two-particle vertex to the conductivity in the zero-temperature limit vanishes, as predicted
in [Ogu01] and [Kar06].

However, the fact that the imaginary part of the two-particle noise is nonzero and that
it has the same magnitude as its real part is a contradiction to our theoretic expectation that
equilibrium noise should be real and symmetric, as described in equation (38). This implies
that there has either been a significant error with the fRG flow or in the utilization of its
results to calculate the integrand of T 2

1N(ω). Either way, this has to be subject of further
investigations.

Figure 26: (a) One-particle noise contribution T 1
1N(ω) in open regime (µ = −1.475) at temper-

ature T = 0 and with no magnetic field. (b) Two-particle noise contribution T 2
1N(ω) in open

regime (µ = −1.475) at temperature T = 0 and with no magnetic field.
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6.5.3 Non-equilibrium noise

The non-equilibrium case is more complicated to treat in many regards, as most symme-
tries of the system break down and the fluctuation dissipation theorem is no longer valid.
Nevertheless, this section is dedicated to presenting the current results of the fRG flow as well
as pointing out which areas are in need for improvement and further investigation.

6.5.3.1 Noise as a function of frequency .
We consider the noise term T 1

1N(ω) in figure 27 for ∆µ > 0 in the open and closed regime
respectively. We make the following observations:

• The noise satisfies our expectation
[
T 1

jk(ω)
]∗

= T 1
jk(−ω) (see equation (35)), which

serves as a useful self-consistency check that the noise is indeed the Fourier transform
of a real function.

• The noise is non-white, its absolute value is maximal around ω = 0 and decreasing
for large |ω|; however this time far more slowly than in the equilibrium case. We have
already discussed the fact that a classical consideration of shot noise predicts it to have
the approximate form of a sinc-function (see equation (39)). This is well fulfilled by
its real and imaginary part respectively; we can observe the same wave-like decreasing
form as a sinc.

Figure 27: One-particle noise contribution T 1
1N(ω) in the open regime (µL = −1.455, µR =

−1.495) and the closed regime (µL = −1.54, µR = −1.56) respectively, evaluated at tempera-
ture T = 0.001 = 1.4142 · 10−2 Ωx, with no magnetic field
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6.5.3.2 Noise as a function of conductance .
Recall the following results from scattering theory:

G =
e2

2π~
|t|2. for .T � 1 (4 revisited)

S =
e2

π~

[
2kBT |t|2 + eVsd coth

(
eVsd

2kBT

)
|t|2(1 − |t|2)

]
(8 revisited)

By making the approximation 1 − |t|2 ≈ 1 (which is fulfilled very well in the closed and
subopen regimes) and by rewriting N B |t|2/2 we obtain

S − 4kBTG = 2
2e2

h
N

[
eVsd coth

(
eVsd

2kBT

)
− 2kBT

]
(43)

This equation with N as the only free fitting parameter has been used in experimental
measurements as a way to confirm scattering theory. For example, figure 28, originating
from [DZM+06], is such a fit of N as a function of the conductance G.

Figure 28: Experimental fit of the noise parameter N as a function of the measured conduc-
tance gavg for various temperatures and chemical potentials with no magnetic field. [DZM+06]

In an attempt to replicate the result above with the Keldysh fRG method, we obtained
figure 29 as a plot of N to G, where the different points correspond to various ∆µ and T .
However, as one can see from the figure, the results are far too inaccurate at this point, so as
to obtain a good fit matching the experimental results. There could be various reasons for this:

• The calculation of the local conductance is tackled in the fRG flow by differentiating
the current with respect to µL and µR and then taking the average value. This is more
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complicated than in the equilibrium case, where the chemical potentials are equal and
the calculation of the conductance is comparatively more straightforward. This leads
to a large discrepancy between the derivatives before they are averaged, which in turn
leads to a high fluctuation of G from site to site, as one can see in figures 30 and 31.
The fluctuation is as strong as 20% around the mean, which indicates a possible source
of error.

• The neglect of the two-particle term T 2
1N(ω) is not as easily justifiable in the non-

equilibrium case, as interactions between electrons are more predominant.

• The fRG flow for the non-equilibrium case has not been perfected yet to the same degree
as in the equilibrium case, which leads to high inaccuracies in some results.

Figure 29: Our calculation of the noise parameter N as a function of the mean conductance
G for various temperatures and chemical potentials with no magnetic field
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Figure 30: Local conductance G j as a function of the site index j in the open regime (µL =

−1.455, µR = −1.495) for temperature T = 0

Figure 31: Local conductance G j as a function of the site index j in the open regime (µL =

−1.455, µR = −1.495) for temperature T = 0.003 = 4.2427 · 10−2Ωx
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6.5.3.3 Comparison to scattering theory .
Once again, we wish to compare the two noise integrands, one from scattering theory and

the other from our Keldysh approach, in order the compare the results of the two theories. To
that end, we are interested in plots of ζ(ω1) and σ(ω1), which have been introduced in section
6.5.1.2 in the following way:

S =

∫
dω1ζ(ω1)

where ζ(ω1) B
e2

2π

∑
γδ

Aγδ(ω1)Aδγ(ω1)
(

fγ(ω1)
(
1 − fδ(ω1)

)
+ fδ(ω1)

(
1 − fγ(ω1)

))
(41 revisited)

T 1
jk(0) =

∫
dω1σ(ω1)

where σ(ω1) B
e2τ jτk

~2

{
G−|+k+1| j+1(ω1)G−|+j|k (ω1) + G−|+k| j (ω1)G−|+j+1|k+1(ω1)

......................................... −G−|+k| j+1(ω1)G−|+j|k+1(ω1) −G−|+k+1| j(ω1)G−|+j+1|k(ω1)
}

(42 revisited)

Figure 32: Comparison between noise integrands predicted by (a) scattering theory (ζ(ω1))
and our (b) model (σ(ω1)). The system is evaluated in the open regime (µL = −1.455, µR =

−1.495) at a temperature T = 0.001 = 1.4142 · 10−2 Ωx with no magnetic field.
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The results have been plotted in figures 32 and 33. Both integrands are real within nu-
merical accuracy, but ζ is only non-vanishing around the chemical potentials, while σ is
non-vanishing for all frequencies between the chemical potentials and ω = 0. Unfortunately,
this result is discouraging in terms of finding a direct theoretical relation between ζ and σ,
which constitutes a topic of high interest.

Figure 33: Comparison between noise integrands predicted by (a) scattering theory (ζ(ω1))
and our (b) model (σ(ω1)). The system is evaluated in the closed regime (µL = −1.54, µR =

−1.56) at a temperature T = 0.001 = 1.4142 · 10−2 Ωx with no magnetic field.



7 Conclusion

7.1 Summary of results

This thesis demonstrates the feasibility of utilizing the Keldysh formalism to describe
transport properties of strongly correlated many-body systems. We presented arguments for
our description of the quantum point contact as a tight-binding chain and discretizing the
Hamiltonian. Then we proceeded with deriving expressions for the current and noise within
this formalism and investigating the properties of these observables. We split the noise S into
two parts: a contribution arising from the dressed one-particle propagators and a two-particle
contribution, which incorporates the two-electron vertex functions.

The main focus of the work leading up to this thesis lies within the numerical implemen-
tation of the model. As a starting point, previous results about the QPC as well as an im-
plementation of the functional Renormalization Group flow equations have been used, which
have been thoroughly referenced in the respective sections of this thesis. Building on these
results, first of all, the system was modeled in both the equilibrium and the non-equilibrium
case for various temperatures, chemical potentials and interaction strength parameters. Then
we proceeded with the calculation of the full one- and two-particle propagators, as well as
with the subsequent task of evaluating the numerically expensive integrals.

First, we treated the equilibrium case and visualized our results for the one-particle noise
contributions. We showed that we obtain the best results and minimize non-physical artifacts
of the discretization by considering terms that include a propagation across the entire length of
the QPC instead of just small portions of it; or even worse, adjacent sites. We also showed that
the one-particle noise terms fulfill many important identities, thus increasing our confidence in
these results. Most importantly, we made numerous comparisons between our noise term and
the theoretical predictions of scattering theory. Specifically, we showed that the two different
approaches yield similar results in the low-temperature limit.

From this, two conclusions can be drawn. Firstly, the one-particle noise term fully suf-
fices to describe certain transport phenomena in the low-temperature limit, as it outweighs
the interaction term, which is only expected to become relevant at certain regimes or finite
temperatures. Generally, the smaller the role of electron-electron interactions becomes, the
more well justified the neglect of interaction terms is. This can be very useful, since inter-
action terms are usually more difficult and numerically expensive to compute. Secondly, the
good correspondence between the results from scattering theory and our formalism allows us
to consider the Keldysh method as a correction to the classical theory. Our approach is more
exact, in theory, as it is more powerful and fully able to describe all features of a scattering
approach, while dropping some of its basic assumptions, such as the unitarity of the s-matrix.

Then we proceeded to consider the two-particle contribution in the equilibrium case. Un-
fortunately, we have far fewer results here due to the expensive nature of the calculations.
Additionally, this noise term fails to satisfy some basic identities, which lowers our confi-
dence in the correctness of these results.

Going on, we considered the non-equilibrium case, whose fRG code is the most recent
and a somewhat still experimental addition to our repository. Again, we confirmed that all
one-particle noise terms satisfy some basic physical identities as a self-consistency check.
We noticed that the form of the noise terms bears an interesting resemblance to some classical
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results about shot noise, which can be seen as an another indicator that our approach is a more
complete extension of previous classical considerations.

In the end, we compared our results in the non-equilibrium case to experimental measure-
ments of noise in quantum point contacts and, again, to theoretical predictions from scattering
theory. In both cases, the quality of the results is not as good as to justify definite conclusions,
which means that a further investigation of this case is still needed.

7.2 Outlook and future endeavours
We were able to demonstrate the effectiveness of our approach in numerous cases sur-

rounding noise phenomena. Furthermore, the pre-existing work about the Keldysh formalism
and the functional Renormalization Group is well founded and has established the respective
power and usefulness of the approaches. However, there is still some more research needed
into questions, which have been left unanswered or which arose during research for this the-
sis that could serve as a starting point for further investigation down the road. Thus, here we
present a brief overview over remaining problems:

• The scaling problem in this thesis needs to be addressed. While we have been able to
demonstrate many results of qualitative nature, the slopes in some diagrams are off by
up to two orders of magnitude from their expected value, which points us to some error
or inconsistency in unit conventions that have been used throughout the implementation.

• The subopen regime has always been demonstrating the most anomalous and interesting
features of the QPC, e.g. the 0.7 anomaly. In our case, our results concerning the
subopen non-interacting system show a far greater deviation from scattering theory than
the results in an interacting setting,47 which still lacks a satisfactory explanation. A
step-by-step investigation into this case is recommended.

• Both the on-site and the two-particle contributions to the noise violate basic identities.48

The latter may point to an error in the fRG flow or to an error in the subsequent calcu-
lation of propagators from the results of said flow.

• All the non-equilibrium results are still experimental, since the fRG flow is newer and
more inaccurate. There are still some obstacles, which have to be addressed, so that
these results can be compared to both experimental measurements and scattering theory
with sufficient confidence.

• Finally, one-loop fRG is known to have limitations, since the obtained results depend
on the specific choice and implementation of the cutoff in the flow equations. Future
work could aim to remedy this using multiloop fRG [Kv18].

47See figures 21(b) and 22(b).
48See figures 19, 20 and 26.



8 Appendix

8.1 Appendix A: Derivation of the free propagator
Here we derive the free propagator (see section 4.8). In the following steps, we are going

to follow a similar approach as in [Kam11], which is recommended for further reading.
We are going to restrict ourselves to the fermionic case, since our goal is the description

of electrons. Note that the bosonic case can be treated in a similar manner using bosonic
statistics.

We have already shown in section 4 that

gR
s1 |s2

(t1|t2) = θ(t1 − t2)
(
g+|−

s1 |s2
(t1|t2) − g−|+s1 |s2

(t1|t2)
)

= −iθ(t1 − t2)
〈
TC

(
c+

s1
(t1)c−s2

†(t2) + c−s2

†(t2)c+
s1

(t1)
)〉

∝ θ(t1 − t2)δs1,s2 by the anti-commutation rules

gA
s1 |s2

(t1|t2) = θ(t2 − t1)
(
g−|+s1 |s2

(t1|t2) − g+|−

s1 |s2
(t1|t2)

)
= iθ(t2 − t1)

〈
TC

(
c+

s1
(t1)c−s2

†(t2) + c−s2

†(t2)c+
s1

(t1)
)〉

∝ θ(t2 − t1)δs1,s2 by the anti-commutation rules

From the fluctuation dissipation theorem, we also obtain gK
s1 |s2

(t1|t2) ∝ δs1,s2 . Thus, it
suffices to restrict the following considerations to the case of fermionic particles occupying a
single quantum level. All quantum numbers s are assumed to be identical from here on.

Our approach is to calculate the above expectation values by deriving concrete expres-
sions for the action and the partition function, which serves as the generating functional of
correlation functions. This will be done in a discrete manner and we are going to consider the
limit of continuous time.

8.1.1 Grassmann algebra and fermionic coherent states

According to the Pauli exclusion principle, one may have either zero or one fermion in
such a single state. Thus, the entire many-body system is spanned by two orthonormal basis
states |0〉 and |1〉. The fermionic creation and annihilation operators c† and c fulfill following
relations:

c|0〉 = 0, ....c|1〉 = |0〉, ....c†|0〉 = 1, ....c†|1〉 = 0

For n ∈ {0, 1} the following basic properties follow from the anti-commutation relations:

c†c|n〉 = n|n〉, ....cc† + c†c = 1, ....c2 = (c†)2 = 0

We wish to introduce fermionic coherent states, which are eigenstates of the annihila-
tion operator. To that end, one needs the Grassmann algebra; an algebra of anti-commuting
numbers. The reasoning behind this is that a superposition of the two basis vectors of the
Hilbert space with complex numbers does not suffice: in particular, for x, y, λ ∈ C we have
c(x|0〉 + y|1〉) = y|0〉 , λ(x|0〉 + y|1〉), unless y = λ = 0.

The Grassmann algebra is defined by a set of generators {ψα}, α = 1, 2, 3, . . . ,N for which
there are the following available operations: they can be added, multiplied with complex
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numbers and multiplied to each other. These generators anti-commute:

ψαψβ + ψβψα = 0

In particular
ψ2 = 0

Because of this property, any function f on the Grassmann algebra is fully defined by its
first two Taylor expansion coefficients:

f (ψ) = f0 + f1ψ

For example eψ ≡ 1 + ψ. Similarly, a function f of two variables is given by

f (ψ, ψ′) = f00 + f10ψ + f01ψ
′ + f11ψψ

′

This allows us to introduce derivatives in a natural way with ∂ψ/∂ψ = 1. Thus, ∂ f (ψ)/∂ψ =

f1. In practice, the definition of the derivative is identical to the one of the complex derivative,
except for the fact that in order for ∂

∂ψ
to act on ψ, ψ has to be anti-commuted through until it

is adjacent to ∂
∂ψ

. This implies that derivatives anti-commute:

∂

∂ψ

∂

∂ψ′
f (ψ, ψ′) =

∂

∂ψ
( f01 − f11ψ) = − f11 = −

∂

∂ψ′
( f10 + f11ψ

′) = −
∂

∂ψ′
∂

∂ψ
f (ψ, ψ′) (44)

We also introduce the notion of an integral in the Grassmann algebra. It is defined as∫
dψ.1 = 0, .....

∫
dψ.ψ = 1

The only non-vanishing integral is that of ψ, because it is not a derivative in contrast to 1.
Finally, we define that the creation and annihilation operator anti-commute with the Grass-

mann numbers, i.e.
cψ + ψc = 0, .....c†ψ + ψc† = 0

We are now ready to construct coherent states. Given a Grassmann number ψ, consider a
state characterized by this number

|ψ〉 ≡ |0〉 − ψ|1〉 = (1 − ψc†)|0〉 = e−ψc† |0〉

Then c|ψ〉 = −cψ|1〉 = ψc|1〉 = ψ|0〉 = ψ|0〉 − ψ2|1〉 = ψ|ψ〉, which means that |ψ〉 is an
eigenstate of the fermionic annihilation operator with eigenvalue ψ. In an analogous way, one
defines the left coherent state 〈ψ| as a left eigenstate of c† with eigenvalue ψ̄, where ψ̄ is a
Grassmann number that is completely unrelated to ψ:

〈ψ| ≡ 〈0| − 〈1|ψ̄ = 〈0|(1 − cψ̄) = 〈0|e−cψ̄

=⇒ 〈ψ|c† = 〈0|(1 − cψ̄)c† = 〈0|ψ̄ = 〈ψ|ψ̄

The set of coherent states is not orthonormal. The overlap of two coherent states is given
by

〈ψ|ψ′〉 =
(
〈0| − 〈1|ψ̄

)(
|0〉 − ψ|1〉

)
= 1 + ψ̄ψ = eψ̄ψ
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Analogous to the completeness relation
∑

n=0,1 |n〉〈n| = 1, one can derive the resolution of
unity in the fermionic coherent state representation:∫

dψ̄
∫

dψ.e−ψ̄ψ|ψ〉〈ψ| = 1 (45)

This holds true because the term in the integral is equal to (1 − ψ̄ψ)|ψ〉〈ψ|. We obtain

(1 − ψ̄ψ)|ψ〉〈ψ| = (1 − ψ̄ψ)
(
|0〉 − ψ|1〉

)(
〈0| − 〈1|ψ̄

)
=

(
|0〉 − ψ|1〉 − ψ̄ψ|0〉

)(
〈0| − 〈1|ψ̄

)
= |0〉〈0| − |0〉〈1|ψ̄ − ψ|1〉〈0| − ψ̄ψ

(
|0〉〈0| + |1〉〈1|

)
= |0〉〈0| − |0〉〈1|ψ̄ − ψ|1〉〈0| − ψ̄ψ1

Performing the two integrations, all terms not containing ψ̄ψ vanish. The (−1) factor
disappears because one has to anti-commute ψ to be next to dψ in order to evaluate the inner
integral. This proves equation (45).

Last, we wish to calculate the trace of an operator in the coherent basis. To this end, we
observe that every normally ordered49 operator Ĥ fulfills

〈ψ|Ĥ(c†, c)|ψ′〉 = Ĥ(ψ̄, ψ′)〈ψ|ψ′〉 = Ĥ(ψ̄, ψ′)eψ̄ψ
′

(46)

We obtain

Tr[Ô] =
∑
n=0,1

〈n|Ô|n〉 =
∑
n=0,1

"
dψ̄dψ.e−ψ̄ψ〈n|ψ〉〈ψ|Ô|n〉

=

"
dψ̄dψ.e−ψ̄ψ

∑
n=0,1

〈ψ|Ô|n〉〈n| − ψ〉

=

"
dψ̄dψ.e−ψ̄ψ〈ψ|Ô| − ψ〉

(47)

where we used the resolution of unity for the orthonormal basis and the coherent states (equa-
tion (45)) and the fact that the minus sign in | − ψ〉 = |0〉 + ψ|1〉 comes from commuting the
left and right coherent states.

8.1.2 Gaussian integrals

Given two sets of independent Grassmann variables, {ψ j} and {ψ̄ j}, where j = 1, 2, . . . ,N,
we define the short notation

D[ψ̄ j, ψ j] =

N∏
j=1

[dψ̄ jdψ j]

Given a complex invertible N × N matrix Â and two additional independent sets of Grass-
mann variables, {χ j} and {χ̄ j}, we wish to calculate the Gaussian integral

I[χ, χ̄] =

∫
D[ψ̄ j, ψ j] exp

− N∑
i, j=1

ψ̄iÂi jψ j +

N∑
j=1

[ψ̄ jχ j + χ̄ jψ j]


49normally ordered: all creation operators are to the left, all annihilation operators are to the right
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We observe that for χ = χ̄ = 0 the only non-vanishing contribution to the term in the inte-
gral comes from the N-th order expansion of the exponential function, i.e.

(
−

∑
ψ̄iÂi jψ j

)N
/N!,

because the number of variables has to be exactly equal to the number of integrals. In this
expansion, only terms with all distinct ψ j and ψ̄ j survive the integration. The surviving
terms have signs which correspond to the parity of the permutations, because of the anti-
commutation rules. This proves

I[0, 0] = det(Â)

Note that the result is not 1/ det(Â), as one would expect from a Gaussian integral over
complex numbers.

For general χ and χ̄, one notices that ψ̄Âψ − ψ̄χ − χ̄ψ = (ψ̄ − χ̄Â−1)Â(ψ − Â−1χ) − χ̄Â−1χ.
The shift of integration variables ψ → ψ + Â−1χ and ψ̄ → ψ̄ + χ̄Â−1 works exactly like in
ordinary integrals. We conclude

I[χ, χ̄] = det(Â) exp

 N∑
i, j=1

χ̄i(Â−1)i jχ j

 (48)

Now consider that we wish to find the average value of an arbitrary product of Grassmann
variables ψa1 · · ·ψanψ̄b1 · · · ψ̄bn weighted with the factor exp

(
−

∑
i j ψ̄iÂi jψ j

)
. With the help of

the result above, we find

〈ψαψ̄β〉 =
1

I[0, 0]
∂2I[χ, χ̄]
∂χβ∂χ̄α

∣∣∣∣∣
χ=0

= Â−1
αβ (49)

The factor 1
I[0,0] is necessary for the normalization of the average value with the given

weight function. This can be continued for arbitrary n, for example,

〈ψαψβψ̄γψ̄δ〉 =
1

I[0, 0]
∂4I[χ, χ̄]

∂χδχγ∂χ̄β∂χ̄α

∣∣∣∣∣
χ=0

= −Â−1
αγÂ−1

βδ + Â−1
αδ Â−1

βγ

The minus sign in the last expression stems from the anti-commutativity of Grassmann
derivatives (see equation (44)).

8.1.3 Partition function and action

Let us consider a single quantized state with energy ε0. The Hamiltonian of this system
has the form

Ĥ = ε0c†c

where c and c† are the annihilation and creation operators of this state. Since we assumed that
our system is in equilibrium at −∞ and we do not consider interactions at this point, it suffices
to choose the equilibrium density matrix ρ of the system, which is given by

ρ =
e−β(Ĥ−µN̂)

Tr
[
e−β(Ĥ−µN̂)

] =
e−β(Ĥ−µN̂)∑

n=0,1 e−β(ε0−µ)n =
e−β(Ĥ−µN̂)

1 + e−β(ε0−µ)

Recall the time evolution operator ÛC = Û(−∞,+∞)Û(+∞,−∞) along the closed time
contour C (−∞ → ∞ → −∞) from section (4.1).
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The partition function (i.e. the generating functional of the correlation functions) is de-
fined as

Z = Tr[ÛCρ]

We have already observed that ÛC = 1 if the external fields on the forward branch are
the same as the fields on the backwards branch of the contour. From this we obtain the
normalization identity Z = 1 in our case, which is going to serve as a self-consistency check
in the end.

Now we will attempt to calculate Tr[ÛCρ] as the limit of infinite discrete time steps along
the contour C.

We divide the contour C into (2N − 2) infinitesimal time intervals of length δt, such that

−∞ = t1 < t2 < . . . < tN−1 < tN = +∞ = tN+1 > tN+2 > . . . > t2N−1 > t2N = −∞

as shown in figure 34. Recall that the time evolution operator during δt in the positive (nega-
tive) direction is given by Û±δt = e∓iĤ(c†,c)δt = e∓iε̂0c†cδt.

Time t

. . .

. . .

Figure 34: Graphic representation of the closed Keldysh contour with discrete time steps

We use the integral representation of the trace (equation (47)) to calculate Tr[ÛCρ]. For
example, for N = 3 one obtains

Tr[ÛCρ] =

"
dψ̄6dψ6.e−ψ̄6ψ6〈ψ6|ÛCρ| − ψ6〉

Now we insert the resolution of unity in the coherent state basis (equation (45)) at each
point j = 1, 2, . . . , 2N − 1 along the contour and obtain

Tr[ÛCρ] =

∫ 2N∏
i=1

[dψ̄idψi] exp

− 2N∑
j=1

ψ̄ jψ j

 〈ψ6|Û−δt|ψ5〉〈ψ5|Û−δt|ψ4〉

×.〈ψ4|1|ψ3〉〈ψ3|Û+δt|ψ2〉〈ψ2|Û+δt|ψ1〉〈ψ1|ρ| − ψ6〉

The generalization of this formula to arbitrary N is straightforward. By using equation



8. Appendix 69

(46) we obtain

〈ψ j+1|Û±δt|ψ j〉 = 〈ψ j+1|ê∓iε̂0c†cδt|ψ j〉 = e∓iε̂0ψ̄ j+1ψ jδteψ̄ j+1ψ j = eψ̄ j+1ψ j(1∓iε0δt)

〈ψN+1|1|ψN〉 = eψ̄N+1ψN

〈ψ1|ρ| − ψ2N〉 =
1

1 + e−β(ε0−µ) 〈ψ1|e−β(ε0−µ)c†c| − ψ2N〉

=
1

1 + e−β(ε0−µ)

(
〈0| − 〈1|ψ̄1

)
e−β(ε0−µ)c†c

(
|0〉 + ψ2N |1〉

)
=

1
1 + e−β(ε0−µ)

(
〈0| − 〈1|ψ̄1

)(
|0〉 + ψ2Ne−β(ε0−µ)|1〉

)
=

1 − ψ̄1ψ2Ne−β(ε0−µ)

1 + e−β(ε0−µ) =
e−ψ̄1ψ2Ne−β(ε0−µ)

1 + e−β(ε0−µ)

Thus, Z can be brought to the form

Z =
1

1 + e−β(ε0−µ)

∫
D[ψ̄ψ] exp

i 2N∑
i, j=1

ψ̄iĝ−1
i j ψ j

 (50)

For example, for N = 4 we obtain

iĝ−1 =



−1 −e−β(ε0−µ)

1 − iε0δt −1
1 − iε0δt −1

1 − iε0δt −1
+1 −1

1 + iε0δt −1
1 + iε0δt −1

1 + iε0δt −1


(51)

The determinant of this matrix is

det(iĝ−1) = 1 + (1 − iε0δt)N(1 + iε0δt)Ne−β(ε0−µ) = 1 +
(
1 + ε2

0δt
2
)N

e−β(ε0−µ)

Because δt is infinitesimal, we can neglect all terms of higher order than linear in δt for
N → ∞. Thus det(iĝ−1) = 1 + e−β(ε0−µ). By using the Gaussian integral derived in equation
(48), we obtain

Z =
det(iĝ−1)

1 + e−β(ε0−µ) = 1

which confirms the expected result and underlines the self consistency of our calculation.
Note that the existence of the upper right hand element of the matrix is essential for the
normalization identity to hold true.

The partition function Z = Tr[ÛCρ] generates the correlation functions of our system and
is thus connected to the action S 0 via

Z =

∫
D[ψ̄ j, ψ j] exp

(
iS 0[ψ̄ j, ψ j]

)
(52)
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where we have absorbed the constant factor 1
1+e−β(ε0−µ) into the integration measure D[ψ̄ j, ψ j].

Thus, we can express the action through the matrix ĝ−1 by using equation (50) and obtain

S 0[ψ̄ j, ψ j] =

2N∑
j=2

(
iψ̄ jψ j − iψ̄ jψ j−1 − ε0δt jψ̄ jψ j−1

)
+ iψ̄1ψ1 + iψ̄1ψ2Ne−β(ε0−µ)

=

2N∑
j=2

δt j

(
iψ̄ j

ψ j − ψ j−1

δt j
− ε0ψ̄ jψ j−1

)
+ iψ̄1

(
ψ1 + ψ2Ne−β(ε0−µ)

) (53)

where δt j = t j − t j−1 = ±δt on the two branches of the contour respectively.
Now we take the limit N → ∞ and use the continuum notation ψ j → ψ(t). We write the

partition function as

Z =

∫
D[ψ̄ψ] exp

(
iS 0[ψ̄, ψ]

)
where the action takes the form

S 0[ψ̄, ψ] =

∫
C

dt.ψ̄ĝ−1ψ

Thus, taking equation (53) into account, in the continuum limit the operator Ĝ−1 is given
by

ĝ−1 = i∂t − ε0

This equation can be understood to be an abbreviation of the large discrete matrix. Thus,
the new compact notation has no additional meaning. In particular, in the continuum limit the
boundary term iψ̄1

(
ψ1 + ψ2Ne−β(ε0−µ)

)
of the action was discarded. However, we have already

seen the importance of the upper right entry in the matrix G−1
i j in ensuring the normalization

Z = 1. We also observe that (i∂t−ε0) is not an invertible operator because it has the eigenmode
eiε0t with eigenvalue zero. As a result, one concludes that it is necessary to keep the boundary
conditions in mind when handling this operator.

We split the integral along the closed time contour C into two components: the forward
and the backward branch. By doing so, we split ψ into ψ+ and ψ− and we obtain

S 0[ψ̄, ψ] =

∫ ∞

−∞

dt
(
ψ̄−(t)(i∂t − ε0)ψ−(t) − ψ̄+(t)(i∂t − ε0)ψ+(t)

)
The minus sign comes from the reversed direction of time on the backward (+) part of the

contour. The ψ+ and ψ− fields are correlated because of the nonzero off-diagonal elements of
Ĝ, which makes the last equation somewhat incomplete / misleading. Thus, our goal is the
development of a continuum notation which takes the normalization and proper correlations
into account.

8.1.4 Greens functions

We define

Z[χ, χ̄] =

∫
D[ψ̄ j, ψ j] exp

i 2N∑
i, j=1

ψ̄iĝ−1
i j ψ j +

N∑
j=1

[ψ̄ jχ j + χ̄ jψ j]
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where Z[0, 0] = Z = 1. The correlator of the fermionic fields is given by

〈ψαψ̄β〉 =

∫
D[ψ̄ j, ψ j]ψαψ̄β expiS 0[ψ̄ j,ψ j] =

∫
D[ψ̄ j, ψ j]ψαψ̄β exp

i 2N∑
i, j=1

ψ̄iĝ−1
i j ψ j


=
∂2Z[χ, χ̄]
∂χβ∂χ̄α

∣∣∣∣∣
χ=0

= iĝαβZ[0, 0] = iĝαβ

where we have used our previous results about Gaussian integrals (equation (49)). Thus, we
have to invert the matrix ĝ−1 in order to obtain the correlators.

We first observe that ĝ can be interpreted as a Greens function, since it is equal to the
correlator of the fermionic fields (compare with equation (12)).

We define h± B 1 ± ε0δt and ρ B −e−β(ε0−µ). For N = 4 one can check by a simple
multiplication that the inverse of the matrix (51) is given by

iĝ =
1

det[−iĜ−1]



1 ρh3
+h2
− ρh3

+h− ρh3
+ ρh3

+ ρh2
+ ρh+ ρ

h− 1 ρh3
+h2
− ρh3

+h− ρh3
+h− ρh2

+h− ρh+h− ρh−
h2
− h− 1 ρh3

+h2
− ρh3

+h2
− ρh2

+h2
− ρh+h2

− ρh2
−

h3
− h2

− h− 1 ρh3
+h3
− ρh2

+h3
− ρh+h3

− ρh3
−

h3
− h2

− h− 1 1 ρh2
+h3
− ρh+h3

− ρh3
−

h+h3
− h+h2

− h+h− h+ h+ 1 ρh2
+h3
− ρh+h3

−

h2
+h3
− h2

+h2
− h2

+h− h2
+ h2

+ h+ 1 ρh2
+h3
−

h3
+h3
− h3

+h2
− h3

+h− h3
+ h3

+ h2
+ h+ 1


This can be generalized to arbitrary N. We switch to the fields ψ±j which sit on the forward

and backward branch of the contour respectively, From here on, j = 1, 2, . . . ,N. Thus the
matrix is indexed as 1, 2, . . . ,N − 1,N,N,N − 1, . . . , 2, 1. We read out of the matrix:

〈ψ+
j ψ̄
−
j′〉 ≡ iĝ+|−

j| j′ =
ρh j′−1

+ h j−1
−

det[−iĝ−1]

〈ψ−j ψ̄
+
j′〉 ≡ iĝ−|+j| j′ =

hN− j
+ hN− j′

−

det[−iĝ−1]

〈ψ−j ψ̄
−
j′〉 ≡ iĝ−|−j| j′ =

h j′− j
+

det[−iĝ−1]
×

ρ(h+h−)N−1, j > j′

1, j ≤ j′

〈ψ+
j ψ̄

+
j′〉 ≡ iĝ−|−j| j′ =

h j− j′
−

det[−iĝ−1]
×

1, j ≥ j′

ρ(h+h−)N−1, j < j′

We define Hermitian conjugation † intuitively as complex conjugation along with the in-
terchange of indices (in this case this corresponds to an interchange in time arguments). By
noticing that h∗+ = h−, we observe that

(ĝ−|+)† = −ĝ−|+....., .....(ĝ+|−)† = −ĝ+|−....., .....(ĝ+|+)† = −ĝ−|−

Now we take the limit N → ∞, while keeping Nδt constant and denoting t = jδt, t′ = j′δt.
We observe

(h+h−)N−1 = (1 + ε2
0δt

2)N−1 N→∞
−−−−→ 1
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h j
± = (1 ± iε0δt) j =

(
1 ±

iε0t
j

) j
N→∞
−−−−→ e±iε0t

hN− j
+ hN− j′

− = (h+h−)N−1h1− j
+ h1− j′

−

N→∞
−−−−→ e−iε0(t−t′)

We observe that the fermionic distribution function nF is given by

nF(ε0) =
1

eβ(ε0−µ) + 1
=
−ρ(ε0)

1 − ρ(ε0)
= −

ρ(ε0)
det[−iĝ−1]

Thus, we obtain in the continuum limit

〈ψ+(t)ψ̄−(t′)〉 = iĝ+|−(t|t′) = −nF(ε0)e−iε0(t−t′)

〈ψ−(t)ψ̄+(t′)〉 = iĝ−|+(t|t′) = (1 − nF(ε0))e−iε0(t−t′)

〈ψ−(t)ψ̄−(t′)〉 = iĝ−|−(t|t′) = θ(t′ − t)iĝ−|+(t|t′) + θ(t − t′)iĝ+|−(t|t′)

〈ψ+(t)ψ̄+(t′)〉 = iĝ+|+(t|t′) = θ(t − t′)iĝ−|+(t|t′) + θ(t′ − t)iĝ+|−(t|t′)

Essentially, up to now we have calculated the contour-indexed Greens functions and now
wish to perform a Keldysh rotation in order to eliminate the redundant degree of freedom (one
can check that the new Greens functions satisfy exactly the same redundancy as in equation
(13)). The new fermionic fields are defined as

ψ1(t) =
1
√

2

(
ψ+(t) + ψ−(t)

)
....., .....ψ2(t) =

1
√

2

(
ψ+(t) − ψ−(t)

)
By convention the bar fields transform in a different manner:

ψ̄1(t) =
1
√

2

(
ψ̄+(t) − ψ̄−(t)

)
....., .....ψ̄2(t) =

1
√

2

(
ψ̄+(t) + ψ̄−(t)

)
In literature, the terms ’quantum’ and ’classical’ are being avoided in the case of Grassman

variables because the have no classical physical meaning and are always integrated out in
practical calculations. The resulting Greens functions are highly dependent on the convention
of the chosen transformation. In this case we obtain

ĝR(t − t′) ≡ ĝR(t|t′) ≡ ĝ1|1(t|t′) = −i〈ψ1(t)ψ̄1(t′)〉 = −iθ(t − t′)e−iε0(t−t′)

ĝA(t − t′) ≡ ĝA(t|t′) ≡ ĝ2|2(t|t′) = −i〈ψ2(t)ψ̄2(t′)〉 = iθ(t′ − t)e−iε0(t−t′)

ĝK(t − t′) ≡ ĝK(t|t′) ≡ ĝ1|2(t|t′) = −i〈ψ1(t)ψ̄2(t′)〉 = −i (1 − 2nF(ε0)) e−iε0(t−t′)

ĝ2|1(t|t′) = −i〈ψ2(t)ψ̄1(t′)〉 = 0

We notice that [ĜR]† = ĜA and [ĜK]† = −ĜK . By taking the Fourier transform with
respect to time (t − t′), we obtain the free propagators in frequency space:

ĝR(ε) =
1

ε − ε0 + i0

ĝA(ε) =
1

ε − ε0 − i0
ĝK(ε) = −2πi(1 − 2nF(ε0))δ(ε − ε0)
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We inserted the infinitesimal terms ±i0 as a prescription for calculations involving inte-
gration through the residue theorem, since one has to keep in mind that ĝR is only nonzero for
positive times (i.e. closing of the contour in the upper half of the complex plain), while ĝA is
nonzero for negative times.

To sum up, we have expressed the free propagator

ĝαβ(t|t′) = −i
∫

D[ψ̄ψ]ψα(t)ψ̄β(t′) expiS 0[ψ̄,ψ]

in terms of the bare action

S 0[ψ̄, ψ] =

∫
C

dt.ψ̄(i∂t − ε0)ψ

and calculated it.

8.2 Appendix B: Interaction action
We formally treat the action in the interacting case with the goal of calculating the exact

propagator (see section 4.8). The notation used in this section is the same as in Appendix A.
In the case of the exact propagator, interactions can no longer be neglected, as observables

and correlation functions are affected by them. Thus, it no longer suffices to only consider the
bare action S 0, which does not include any interactions. Instead, the interaction action S int

which stems from the interaction Hamiltonian has to be added to the total action.
For example, let us consider a normally ordered interaction Hamiltonian of the form

Ĥint = A
∑

k1,k2,k3

c†k1
c†k2

ck1−k3ck2+k3

where ck is an annihilation operator corresponding to an electron with wave number vector
k and energy εk = k2/(2m). The corresponding action takes the form

S int = −A
∑

k1,k2,k3

∫
C

dt.ψ̄(k1, t)ψ̄(k2, t)ψ(k1 − k3, t)ψ(k2 + k3, t)

or in continuum notation

S int = −A
∫

dk3
∫
C

dt.(ψ̄ψ)2 = −A
∫

dk3
∫ ∞

−∞

dt.
[
(ψ̄+ψ+)2 − (ψ̄−ψ−)2

]
We can finally apply a Keldysh rotation to the last term, as we have done before, in order

to express the interaction action in terms of the fields ψ1, ψ2, ψ̄1 and ψ̄2.
Once again, it is useful to interpret the terms in the action as Feynman diagrams. For

example, the term (ψ̄+ψ+)2 in the integral above can be considered a vertex with two incoming
+ lines, two outgoing + lines and vertex factor A. This allows us to calculate expressions such
as

〈
TCS n

int

〉
by using Wick’s theorem, i.e. evaluating all possible Feynman diagrams of order

n.
The exact propagator is then given by:

Ĝαβ(t|t′) = −i
∫

D[ψ̄ψ]ψα(t)ψ̄β(t′) expiS 0[ψ̄,ψ]+iS int[ψ̄,ψ]
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We can evaluate this expression by expanding the exponent in powers S int. The remaining
integration with the remaining action S 0 is performed by applying Wick’s theorem. We thus
obtain an infinite sum of terms, which can be represented as Feynman diagrams. Each such
diagram has exactly two external legs: one incoming (representing the contraction between
ψα and a ψ̄-field) and one outgoing (representing the contraction between ψ̄β and a ψ-field).

Note that no disconnected diagrams contribute to this infinite sum. This can be seen in the
following way: the partition function

Z =

∫
D[ψ̄ j, ψ j] exp

(
iS 0[ψ̄ j, ψ j] + iS int[ψ̄ j, ψ j]

)
still has to fulfill to normalization identity Z = 1,50 which implies that all terms in the

expansion of Z vanish expect the term of zeroth order in S int, which is equal to 1, as shown
before. This implies that all expansions of S int vanish if they are not contracted with ψα and
ψ̄β.

8.3 Appendix C: On-site noise
The noise term for equal site indices is calculated here (see section 5.3):

S kk =
〈
Îk Îk

〉
−

〈
Îk

〉〈
Îk

〉
= −

e2τ2
k

~2

〈
(ckc

†

k+1 − ck+1c†k)(ckc
†

k+1 − ck+1c†k)
〉
−

〈
Îk

〉2

= −
e2τ2

k

~2

〈
ckc
†

k+1ckc
†

k+1 + ck+1c†kck+1c†k − ckc
†

k+1ck+1c†k − ck+1c†kckc
†

k+1

〉
−

〈
Îk

〉2

= −
e2τ2

k

~2

〈
ckc
†

k+1ckc
†

k+1 + ck+1c†kck+1c†k − ckc
†

kc†k+1ck+1 − c†kck+1c†k+1ck

〉
−

〈
Îk

〉2

= −
e2τ2

k

~2

〈
ckc
†

k+1ckc
†

k+1 + ck+1c†kck+1c†k + c†kc†k+1ck+1ck + c†kc†k+1ck+1ck − c†k+1ck+1 − c†kck

〉
−

〈
Îk

〉2

=
e2τ2

k

~2

〈
c†k+1c†k+1ckck + c†kc†kck+1ck+1 − c†kc†k+1ck+1ck − c†kc†k+1ck+1ck + c†k+1ck+1 + c†kck

〉
−

〈
Îk

〉2

=
e2τ2

k

~2

〈
TC

(
c+†

k+1c+†

k+1c−k c−k + c+†

k c+†

k c−k+1c−k+1 − c+†

k c+†

k+1c−k+1c−k − c+†

k c+†

k+1c−k+1c−k + c+†

k+1c−k+1 + c+†

k c−k
)〉

−
〈
Îk

〉2

=
e2τ2

k

~2

〈
TC

(
c−k c−k c+†

k+1c+†

k+1 + c−k+1c−k+1c+†

k c+†

k − 2c+†

k c+†

k+1c−k+1c−k + c+†

k+1c−k+1 + c+†

k c−k
)〉
−

〈
Îk

〉2

=
e2τ2

k

~2

〈
TC

(
c−k c−k c+†

k+1c+†

k+1 + c−k+1c−k+1c+†

k c+†

k + 2c+†

k c−k+1c+†

k+1c−k + c+†

k+1c−k+1 − c+†

k c−k
)〉
−

〈
Îk

〉2

=
e2τ2

k

~2

〈
TC

(
c−k c−k c+†

k+1c+†

k+1 + c−k+1c−k+1c+†

k c+†

k − 2c−k+1c−k c+†

k c+†

k+1 − c+†

k+1c−k+1 − c+†

k c−k
)〉
−

〈
Îk

〉2

=
e2τ2

k

~2

〈
TC

(
c−k c−k c+†

k+1c+†

k+1 + c−k+1c−k+1c+†

k c+†

k + c−k+1c−k c+†

k+1c+†

k + c−k c−k+1c+†

k c+†

k+1

)〉
+

e2τ2
k

~2

〈
TC

(
− c+†

k+1c−k+1 − c+†

k c−k
)〉
−

〈
Îk

〉2

50We have argued in previous sections that Z = 1 is always true unless we insert a potential which acts
differently on the forward and backward branch of the contour.
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=
e2τ2

k

~2

〈
TC

(
c−k+1c−k c+†

k+1c+†

k + c−k c−k+1c+†

k c+†

k+1 − c−k c−k c+†

k+1c+†

k+1 − c−k+1c−k+1c+†

k c+†

k

)〉
−

〈
Îk

〉2

+
e2τ2

k

~2

〈
TC

(
2c−k c−k c+†

k+1c+†

k+1 + 2c−k+1c−k+1c+†

k c+†

k − c+†

k+1c−k+1 − c+†

k c−k
)〉

= previous +
e2τ2

k

~2

〈
TC

(
2c−k c−k c+†

k+1c+†

k+1 + 2c−k+1c−k+1c+†

k c+†

k − c+†

k+1c−k+1 − c+†

k c−k
)〉

= previous +
e2τ2

k

~2

〈
TC

(
c−k+1c+†

k+1 + c−k c+†

k − 2
)〉

= previous +
e2τ2

k

~2

(
iG−|+k|k + iG−|+k+1|k+1 − 2

)
Note that we used ckck = 0 (due to the anti-commutation rules of fermionic operators)

several times. In this context, ’previous’ refers to the term in equation (29), where j is set
equal to k, specifically:

previous ≡ −
e2τ2

k

~2

(
G−−|++

k+1,k|k,k+1 + G−−|++

k,k+1|k+1,k −G−−|++

k,k|k+1,k+1 −G−−|++

k+1,k+1|k,k

)
−

e2τ2
k

~2

(
G−|+k|k+1 −G−|+k+1|k)(G

−|+

k|k+1 −G−|+k+1|k

)
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