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Abstract

A single-impurity Anderson model is used as a minimal model for a Quantum
Point Contact (QPC), which is then solved with the Numerical Renormalization
Group (NRG) method. As the coupling between the QPC and the surrounding
conduction electron bath is strongly energy-dependent, sharp features occur in
the hybridization function. Since we are interested in the regime at the band edge,
where the hybridization is suppressed to zero, this necessitates the application of
the recently developed Open Wilson Chain approach to the NRG. Overall this
results in a minimal model that can be efficiently simulated at any temperature
using NRG. The qualitative correspondence to experimental results is discussed
for a range of possible parameter choices. The model reproduces the quantised
step in conductance as a function of QPC gate voltage. At zero temperature, a
sub-structure very similar to the 0.7 anomaly in transport through a QPC is
found. At this stage, some qualitative differences to experimental observations
occur at finite temperatures.
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Chapter 1

Introduction and Motivation

A Quantum Point Contact (QPC) is a very narrow constriction through which
electrons move between two otherwise disconnected areas of an electron gas in
effectively one-dimensional fashion. For instance, this constriction can be formed
between two areas of a two-dimensional electron gas (2DEG) by two gates which
generate an electric potential (see figure 1.1). In this setup, the width of the
constriction can be modified by changing the gate voltage [2, 12, 18, 19].

Such a device has been realised in several experiments, where the conductance g
through a QPC as a function of gate voltage was found to be quantised in steps of
g0 = 2e2

h [19]. Thomas et al. [18] unexpectedly discovered an additional structure at
g ≈ 0.7 g0, which has become known as the 0.7 anomaly [2]. Said structure forms
a shoulder or a smaller step, the shape of which depends on a number of external
parameters. In particular, dependence on temperature T and external magnetic field
B have been extensively studied [1, 2, 18].

While a number of theoretical explanations have been proposed, the origin of the
effect is still debated [1, 2, 12, 16]. Some explanations focus on observed similarities
between the 0.7 anomaly and the Kondo effect, where the local moment of impurity
states scatters conduction electrons at high temperatures while being screened at
low temperatures leading to anomalous behaviour of the resistivity of certain dilute
alloys [2, 11]. This motivated explanations on the basis of a quasi-localized state
with local moment, for example by Meir et al. [16].

Assuming the existence of a quasi-localized state, a single-impurity Anderson
model (SIAM) can be used as a minimal model for a QPC coupled to a 2DEG.
This model is a considerable simplification, as the entire structure of the potential

ga
te

2DEG 2DEG

Figure 1.1: Schematic of a quantum point contact. Two gates (white) generate an
electric potential (light grey) which forms a constriction to the movement of electrons
in a lead connecting two areas of a 2-dimensional electron gas (dark grey).
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landscape which forms the QPC is only represented by a single level with local on-site
interaction and energy-dependent coupling strengths.

Solving the SIAM at low temperatures is non-trivial, as perturbation theory is
not applicable in the low-temperature regime. This can be accomplished numerically
using the Numerical Renormalization Group (NRG) method originally developed by
Wilson [23] for the Kondo model [5, 14, 21]. However, the aforementioned model for
the QPC is problematic for the standard approach: If the coupling between impurity
level and bath modes contains weak contributions at finite energies, as is the case
in the QPC model, certain significant contributions are neglected. Therefore, the
recently developed Open Wilson Chain approach by Bruognolo et al. [3] will be
employed.

The single-impurity Anderson model will be introduced in chapter 2, followed
by an explanation of how the SIAM can be used as a minimal model for a QPC
and the relations which will be used to calculate the conductance and occupation
number. Chapter 3 contains a brief presentation of the Numerical Renormalization
Group method and the Open Wilson Chain approach. Before these numerical
methods are utilized, some analytical properties of the model are demonstrated in
chapter 4. Numeric results calculated using NRG including qualitative comparisons
to experimental results are shown in chapter 5. The final chapter 6 summarizes the
results and mentions some starting points for future work.
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Chapter 2

The Physical Model

2.1 Single-Impurity Anderson Model (SIAM)
The single-impurity Anderson model describes an impurity level coupled to a continu-
ous non-interacting bath of states. Annihilation and creation operators of impurity
states will be denoted dσ and d†σ respectively; annihilation and creation operators
of bath states k will be denoted ckσ and c†kσ. As these operators describe spin-½-
fermions, σ only takes values ↑, ↓. These operators obey fermionic anticommutation
relations, namely {

d†σ, dσ′
}

= δσσ′
{
c†kσ, ck′σ′

}
= δσσ′ δkk′ (2.1)

The Hamiltonian, when expressed in terms of these operators, takes the form [5, 11,
21]

H =
∑
σ

εdσ d
†
σdσ + U d†↑d↑ d

†
↓d↓︸ ︷︷ ︸

≡Himp

+
∑
kσ

(
Vkσd

†
σckσ + V ∗kσc

†
kσdσ

)
︸ ︷︷ ︸

≡Hhyb

+
∑
kσ

εkσ c
†
kσckσ︸ ︷︷ ︸

≡Hbath

(2.2)

H consists of 3 parts: Himp describes the energy εdσ of the impurity state and
the coulomb repulsion U of the two fermions in the double-occupation case, Hhyb
describes the coupling Vkσ of the impurity to bath states, and Hbath accounts for
the energy εkσ of bath states. Typically, the energies and couplings are taken to be
spin-independent.

The Hamiltonian can also be expressed in the energy representation as [5, 14]

H = Himp +
∑
σ

+1ˆ

−1

dω

√
Γ(ω)
π

(
d†σcωσ + c†ωσdσ

)
+
∑
σ

+1ˆ

−1

dω ω c†ωσcωσ (2.3)

where
Γ(ω) = π

∑
k

|Vk|2δ(ω − εk) (2.4)

is called the hybridization function. It describes the hybridization of the impurity
state with bath states at level ω. Remarkably, it is the only information concerning
the bath which is necessary to solve the single-impurity Anderson model. Using
Kramers-Kronig relations (see appendix A), the full (complex) hybridization function
∆(ω) can be defined such that Γ(ω) = − Im ∆(ω): [11]

∆(ω) =
∑
k

|Vk|2
ω+ − εk

(2.5)
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2.2 Resonant Level Model
The resonant level model (also known as non-interacting Anderson model) is a
simplification to the SIAM, where the spin-up and spin-down impurity states are
assumed to be non-interacting, i.e. U = 0. Thus, the spin-up and spin-down parts of
the Hamiltonian decouple. Dropping the spin indices for simplicity, the Hamiltonian
becomes [11]

H = εd d
†d+

∑
k

(
Vk d

†ck + V ∗k c
†
kd
)

+
∑
k

εk c
†
kck (2.6)

Since the Hamiltonian is now quadratic, the choice of U = 0 considerably simplifies
the problem. In contrast to the full SIAM, analytic solutions based on the solution
of the 1-particle problem can be derived in the non-interacting case, which can then
be compared to the solutions obtained by numerical methods. The impurity spectral
function A(ω), which gives the local density of states [11], can be determined by
calculating the retarded Green’s function GR

dd†(ω) (see appendix B). The starting
point is the equation of motion1 (B.4)

ω+GRdd† =

1︷ ︸︸ ︷〈{
d, d†

}〉
+GR[d,H],d† = 1 + εdG

R
dd† +

∑
k

VkG
R
c
k
d†

(2.7)

Now, the Green’s functions GR
c
k
d†

can be calculated the same way:

ω+GR
c
k
d†

= εkG
R
c
k
d†

+ V ∗k G
R
dd† (2.8)

⇒ GRdd†(ω) = 1
ω+ − εd −

∑
k
|Vk|2
ω+−εk

= 1
ω+ − εd −∆(ω) (2.9)

The last term in the denominator of this expression is the full hybridization function
from equation (2.5).

∆(ω) =
∑
k

|Vk|2
ω+ − εk

Equation (B.5) can be used to obtain the spectral function

A(ω) = − 1
π

ImGRdd†(ω) = Γ(ω)/π
(ω − εd − Re ∆(ω))2 + (Γ(ω))2 (2.10)

For a constant hybridization Γ(ω) = Γ0, Re ∆(ω) vanishes and A(ω) becomes a
Lorentz peak centered on εd of width Γ0.

A(ω) = Γ0/π

(ω − εd)2 + Γ2
0

(2.11)

The spectral function is normalized to unity by construction, even for non-constant
hybridization functions [6].

1The notation ω+ is a shorthand for ω + iη, where η > 0. It is used to obtain the Cauchy
principal value by taking the limit η → 0 at the end of the calculation. Further details can be found
in appendix A.
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Figure 2.1: Approximation of a QPC
with a single-impurity Anderson model.
Even for a smooth potential, quasi-
localised states exist. Thus, the QPC
may be modelled as an impurity if a suit-
able hybridization function is used.
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ω/D
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ω
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Figure 2.2: Hybridization functions for
the QPC model from equations (2.12)
and (2.19) using δ = 0.1 for both func-
tions.

2.3 Modelling a Quantum Point Contact Using a SIAM
A minimal model for a quantum point contact may consist of the single level in a
single-impurity Anderson model if the gate voltage introduces a potential barrier of
similar magnitude to the Fermi energy εF . The band is then bent upwards as shown
in figure 2.1. As Meir, Hirose and Wingreen showed using spin-density functional
theory [16], even a smooth potential barrier at the location of the QPC leads to a
quasi-localised state, which will be considered the impurity state εd of a SIAM. The
coupling to band states corresponds to the hybridization in the SIAM. To model
different gate voltages, the parameter ω0 is used, which describes the band shift in
respect to a symmetric configuration where the band edges are at εF ±D, with D
being one-half of the bandwidth. The impurity level is then offset in parallel to the
band edges, i.e. εd = εd,0 + ω0.

As pointed out in section 2.2, the hybridisation function Γ is the only information
about bath states which is necessary to solve the SIAM. There are several reasonable
possibilities of choosing Γ which will be investigated in this thesis.

2.3.1 Double-sided Fermi Function

To model the conduction band, a double-sided Fermi function can be used. It is of
the form

ΓFermi(ω) = Γ0
(
fδ(ω −D−)− fδ(ω −D+)

)
; D± = ω0 ±D (2.12)

where fδ(ω) = 1/
(
1 + exp

(
ω
δ

))
is the Fermi function with sharpness δ, D is one-half

of the bandwidth (such that for an unshifted band, the band edges are at ±D) and
Γ0 is the parameter controlling the overall coupling strength. More precisely, it is
the value of ΓFermi(ω = 0) for an unshifted band ω0 = 0.2

2This is not exactly true, as the Fermi function f(ω) only approaches 0 and 1 asymptotically
as ω → +∞ and −∞ respectively. However, for δ � D, the exponential decay is sufficiently
fast such that the difference between Γ0 and Γ(0) is far below numerical accuracy. For example,
|Γ0 − Γ(0)| ≈ 10−43 Γ0 for δ/D = 10−2.
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2.3.2 Semicircle

In the region close to the QPC, transversal movement of the electrons is constrained
to a very narrow channel, which can be reasonably approximated as a one-dimensional
structure. The density of states of the first site of a semi-infinite tight-binding chain
with equal couplings t and site energies ε can be derived starting with its Green’s
function [11]

G(ω) = 1

ω+ − ε− t2

ω+−ε−
t2

ω+−ε−...

= 1
ω+ − ε− t2G(ω)

(2.13)

Multiplication with the denominator gives a quadratic equation for G(ω):(
ω+− ε

)
︸ ︷︷ ︸

ω′

G(ω)− t2G2(ω)− 1 = 0 ⇒ G(ω) = 1
2t2

(
ω′ ±

√
ω′2 − 4t2

)
(2.14)

The spectral function A(ω) is obtained by taking the imaginary part of the negative
square root (since A(ω) > 0):

A(ω) = − 1
π

ImG(ω) ∝ Im

√(
ω′

2t

)2
− 1 =


√

1−
(
ω′

2t

)2 ∣∣∣ω′2t

∣∣∣ ≤ 1
0 otherwise

(2.15)

Clearly, A(ω) describes a semicircle. However, in the vicinity of the QPC, the electric
potential shifts the site energies upwards and ε differs between sites. In that case,
the density of states will be shifted upwards as well, while its shape remains largely
the same. Below the lower band edge, however, the density of states is not perfectly
zero due to contributions from lattice sites further away.

This behaviour was modelled using a shifted semicircle which is then broadened
throughout with a Lorentzian to smoothen the band edge. Band shift is again
controlled by the parameter ω0, Γ0 controls the overall hybridization strength and D
is the bandwidth. With these parameters,

Γsemicircle(ω) = Γ0
N

∞̂

−∞

dω′
√

1−
(
ω′ − ω0
D

)2 ( δ/π

(ω − ω′)2 + δ2

)
(2.16)

where N is a normalization constant to allow Γ0 to be defined as Γ(ω0).

2.3.3 Van Hove Ridges

As the QPC is coupled to quasi-one-dimensional leads on both sides, another rea-
sonable hypothesis concerning the shape of the hybridisation function would be a
proportionality to the density of states of an infinite (rather than a semi-infinite)
chain. Its density of states can most easily be derived by observing that an infinite
chain is a single site coupled to two identical semi-infinite chains with Green’s
functions Gl = Gr. Therefore, the Green’s function is

G(ω) = 1
ω+ − ε− t2Gl(ω)− t2Gr(ω)

= 1
ω+ − ε−

(
ω+ − ε−

√
ω′2 − 4t2

)
= 1√

ω′2 − 4t2
(2.17)
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from which the spectral function can be obtained by

A(ω) = − 1
π

ImG(ω) = Im −2t/π√(
ω′

2t

)2
− 1

=


2t/π√

1−
(
ω′
2t

)2 ∣∣∣ω′2t

∣∣∣ ≤ 1

0 otherwise
(2.18)

This is the well-known density of states of a infinite tight-binding chain, where van
Hove singularities proportional to 1/

√
1− ω2 occur at the band edges. As in the

case of a semi-infinite chain, adjusting the gate voltage simply offsets the spectral
function by some ω0. Due to the varied potential landscape of the bath levels around
the impurity, the system is not perfectly translationally invariant in 1D. This will
smoothen singularities such that instead of divergences, smooth peaks (van Hove
ridges) occur at the band edges. This reasoning is in part inspired by the local
density of states in a QPC described by Bauer et al. [1].

In this thesis, the van Hove ridges were modelled by convolution of the van Hove
singularities with a Lorentzian.

ΓvanHove(ω) = Γ0
N

D+ˆ

D−

dω′ 1√
1−

(
ω′−ω0
D

)2

(
δ/π

(ω − ω′)2 + δ2

)
(2.19)

The meaning of D± and Γ0 remains the same as above. δ is again the parameter
controlling sharpness, as it is the width of the Lorentz peak used to smoothen the
van-Hove singularities, and N is a normalization constant dependent on D and δ to
make sure Γ(ω0) = Γ0.

A plot of the hybridization functions is shown in figure 2.2.

2.4 Meir-Wingreen Formula
For small voltages, where linear response theory is applicable, the conductance
through a QPC can be obtained from the spectral function using the Meir-Wingreen
formula for symmetric coupling: [17]

g

g0
=
ˆ

dω πΓ(ω)A(ω)
(
−∂f(ω)

∂ω

)
(2.20)

where g0 = 2e2
h is the conductance quantum of a spinful system and f is the Fermi

function. This formula is very useful for NRG calculations, since the spectral function
can be readily obtained using NRG. The derivative of the Fermi function is

− ∂f

∂ω
= β/2

1 + cosh(βω) (2.21)

where β = 1/T . As the derivative of the Fermi function is 0 everywhere except
around ω = 0, the conductance is only dependent on the values of the spectral
function and hybridization at small energies, which can be calculated very accurately
using NRG. Furthermore, in contrast to the Kubo formula for linear conductance
which is based on current operators, the Meir-Wingreen formula does not require
any numerical derivatives that would introduce a major source of numerical errors.
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2.5 Friedel Sum Rule
The Friedel sum rule is the explicit formulation of the intuitive observation that the
change in electron density must be consistent with the number of electrons introduced
by the impurity. The number of states introduced by the impurity which lie below
the Fermi level εF = 0 must therefore be equal to the average occupation of the
impurity level 〈nd〉 [6, 11].

〈nd〉 =
0ˆ

−∞

A(ω) dω = − 1
π

Im
0ˆ

−∞

dω
ω+ − εd −∆(ω)− Σ(ω) (2.22)

where the proper self-energy Σ(ω) accounts for the interaction U [9, 11].
The integral can be rewritten using

∂

∂ω
ln
(
ω − εd −∆(ω)− Σ(ω)

)
=

1− ∂∆
∂ω − ∂Σ

∂ω

ω − εd −∆(ω)− Σ(ω)

=
(

1− ∂∆
∂ω
− ∂Σ
∂ω

)
G(ω) (2.23)

The term ∂Σ
∂ωG(ω) vanishes upon integration [11, 15]. The two remaining terms can

be identified as the displaced charge of the bath in the presence of the impurity

δnc =
0ˆ

−∞

∂∆/∂ω
ω+ − εd −∆(ω)− Σ(ω) dω (2.24)

and the scattering phase shift3 η up to a factor of π: [11]

η = − Im ln
(
ω − εd −∆(ω)− Σ(ω)

)∣∣∣0
−∞

= − tan−1
(
b

a

)
(2.25)

where, for convenience, a and b have been defined as the real and imaginary part of
the argument to the logarithm, evaluated at 0:

a := −εd − Re ∆(0)− Re Σ(0) (2.26)
b := − Im ∆(0)− Im Σ(0) = Γ(0) (2.27)

The last equality holds because Im Σ(0) = 0. [11, 15] As a first preliminary result,

〈nd〉+ δnc = η

π
= − 1

π
tan−1

(
b

a

)
(2.28)

The Green’s function at ω = 0, expressed in terms of a and b, is

G(0) = 1
(−εd − Re ∆(0)− Re Σ(0))− i (Im ∆(0) + Im Σ(0))

= a− ib
a2 + b2

(2.29)

Therefore, the spectral function at ω = 0 is

A(0) = b/π

a2 + b2
= 1
πb

1
1 + cot2 η

= 1
πb

sin2 η (2.30)

3This derivation shows that for a wide band, π 〈nd〉 = η, the phase shift of a scattered particle
at ω = 0. This is true because Gdσ,dσ(ω) is proportional to T , where T is the transmission matrix.
As these relations are irrelevant for this thesis, they will not be discussed. For more details, see the
derivation by Langreth [15] or pages 113–115 in the book by Hewson [11].
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The value of the spectral function at ω = 0 and the occupation number are thus
connected by [11]

(πΓA)ω=0 = sin2 η ≈ sin2 (π 〈nd〉) (2.31)

for a wide, flat band (∂∆
∂ω ≈ 0). This relation only holds approximately if the Fermi

energy is near band edges, since there the displaced charge δnc becomes significant.
In the limit T → 0, the left side of (2.31) is equal to the conductance g/g0, since

the derivative of the Fermi function in the Meir-Wingreen formula (2.20) becomes a
very sharp peak centered on the Fermi energy εF = 0 and thus [7]

g

g0
=
ˆ

dω πΓ(ω)A(ω)
(
−∂f(ω)

∂ω

)
= (πΓA)ω=0 ≈ sin2 (π 〈nd〉) (2.32)

This relation will be used as a consistency check for the numeric method.

2.6 Kondo Temperature
In the particle-hole-symmetric case of εd = −U/2 and U,Γ → ∞ with U/Γ & 10
roughly constant, the SIAM transitions into a Kondo model for magnetic impu-
rities [11]. In this context, the Kondo temperature is of interest, as it gives the
order of magnitude of the dynamically generated lowest energy scale in the system.
Consequently, it is the approximate temperature where significant deviations from
the strongly-correlated and pertubatively not accesible zero-temperature regime arise.
The Kondo temperature is intrinsically related to the spin dynamics since charge
fluctuations are frozen out at much higher energy scales. Therefore, the Kondo
temperature can be related to the inverse of the static spin susceptibility χ0 by

TK = 1
4χ0

(2.33)

The static spin susceptibility is straightforwardly accessible within NRG. Further
details (which are not important for the following) can be found in [5].

13



Chapter 3

Numerical Renormalization
Group Method

3.1 General Method
The Numerical Renormalization Group (NRG) method is a numeric method for
solving impurity problems at arbitrary temperature, in particular also below the
Kondo temperature TK where perturbation theory fails. This method uses a coarse-
grained approximation to the continuous Hamiltonian where the Hamiltonian is
discretized in a logarithmic scheme. The discrete Hamiltonian is then transformed to
a semi-infinite chain. Because of the initially chosen logarithmic discretization, the
energy scales of different chain sites are separated and the chain Hamiltonian can be
solved iteratively using Wilson’s method. The procedure will be briefly described,
summarising the essential points of the work of Krishna-Murthy et al. [14] and the
review by Bulla et al. [5]. As an example, the application of the NRG method on a
SIAM will be presented.

3.1.1 Discretization

The Hamiltonian can be written in energy representation as

H = Himp +
∑
σ

+1ˆ

−1

dε

√
Γ(ε)
π

(
d†σcεσ + c†εσdσ

)
+
∑
σ

+1ˆ

−1

dε ε c†εσcεσ (3.1)

where Γ(ε) = πρV 2
ε and having chosen D := 1 as the unit of energy. Now, the

bath will be divided into several discretization intervals. To obtain energy scale
separation, which becomes important in later steps, the discretization points must
be chosen logarithmically as xn = Λ−n with dimensionless discretization parameter
Λ > 1 (typically Λ = 2). For each interval, a complete set of orthonormal states
can be constructed by Fourier expansion. The discrete approximation is then
obtained by neglecting all but one state in each interval1 and choosing appropriate
coupling strengths. The discretization scheme is depicted in figure 3.1 (a). The
bath Hamiltonian can be expressed in terms of the fundamental frequency state
annihilation / creation operators anσ / a†nσ for positive and bnσ / b†nσ for negative
frequency, where positive (negative) energies correspond to particles above (within)
the Fermi sea, respectively.

Hbath = 1
2
(
1 + Λ−1

) ∞∑
n=0

Λ−n
(
a†nσanσ − b†nσbnσ

)
(3.2)

1Only the state related to the fundamental Fourier frequency ωn in each interval is kept.
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Figure 3.1: Mapping of the Hamiltonian from the energy representation to a Wilson
chain. (a) Transition from the continuous to discretized bath. (b) Wilson chain of
length N with site energies εi and couplings ti.

To reduce artefacts which occur due to the specific position of the discretization
points, a method proposed by Oliveira et al. [10, 24] will be used. Instead of choosing
xn = Λ−n, the discretization scheme is modified such that xn=0 = 1; xn≥1 = Λ−(n+z),
introducing a parameter 0 ≤ z < 1. Then, after calculating quantities for different
values of z, the uniform average of these results over z ∈ [0, 1[ mitigates discretization
artefacts to a large extent. This method is also known as “z-averaging”.

3.1.2 Mapping to Wilson Chain

By introducing a new local operator

f0σ = 1√
2

+1ˆ

−1

dk akσ =

√
1 + Λ−1

2

∞∑
n=0

Λ−n/2 (anσ + bnσ) (3.3)

the hybridization part of the Hamiltonian can be expressed in a simple form:

Hhyb =
√

2Γ
π

(
d†σf0σ + f †0σdσ

)
(3.4)

where the prefactor of
√

2 comes from the integrated hybridization function for
a box distribution of width 2D = 2. As anσ and bnσ are not orthogonal to f0σ,
the Hamiltonian needs to be expressed in a new orthonormal basis containing f0σ.
A suitable transformation can be found by using the Lanczos algorithm, which
is a standard algorithm that takes a hermitian matrix and constructs a unitary
transformation to a basis in which the input matrix is tridiagonal [8, 11]. This
algorithm is initialized with an arbitrary start vector which will become the first
vector in the basis set. Thus, by choosing f0σ as the start vector, the algorithm
can be used to construct a basis {fnσ} which contains f0σ and in which Hbath is
tridiagonal:

H = Himp +
√

2Γ
π

(
d†σf0σ + f †0σdσ

)
+

+
∞∑
n=0

(
εn f

†
nσfnσ + tn f

†
nσf(n+1)σ + tn f

†
(n+1)σfnσ

)
(3.5)
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If a logarithmic discretization scheme has been chosen, the couplings tn fall of
exponentially (proportional to Λ−n/2), leading to energy scale separation of different
contributions to the Hamiltonian. This allows the chain Hamiltonian to be iteratively
solved using Wilson’s NRG method [5].

3.1.3 Iterative Diagonalization

The tridiagonal Hamiltonian (3.5) can be expressed as the limit

H = lim
N→∞

Λ−
1
2 (N−1)HN (3.6)

of a series of Hamiltonians

HN = Λ
1
2 (N−1)

Himp +
√

2Γ
π

(
d†σf0σ + f †0σdσ

)
+

+
N∑
n=0

εnf
†
nσfnσ +

N−1∑
n=0

tn
(
f †nσf(n+1)σ + f †(n+1)σfnσ

) (3.7)

where the factors Λ± 1
2 (N−1) cancel the N -dependence of tN−1 such that the lowest

energy contribution is always of order 1. The relation between two successive
Hamiltonians is given by

HN+1 =
√

ΛHN + ΛN/2
(
ε(N+1)f

†
(N+1)σf(N+1)σ+

+ tNf
†
Nσf(N+1)σ + tNf

†
(N+1)σfNσ

)
(3.8)

where

H0 = Λ−1/2

Himp + ε0f
†
0σf0σ +

√
2Γ
π

(
d†σf0σ + f †0σdσ

) (3.9)

Now, the actual computation will be performed iteratively. Provided the Hamilto-
nian HN has already been diagonalized, the step HN → HN+1 corresponds to adding
a new site to the chain. The eigenbasis of HN+1 can be constructed from the known
eigenstates of HN and basis states of the new site N + 1 [5].

This iterative method leads to an exponentially growing number of states. Keeping
all states in memory and performing numerical diagonalization of exponentially
growing matrices is computationally too expensive. However, since NRG calculations
are mainly concerned with low-energy properties of the system, states that do not
contribute to low-energy behaviour can simply be discarded. It is at this point where
energy scale separation becomes important: As the contribution of the Nth site falls
off exponentially with N , one can in practice assume that high-energy states have
exponentially negligible contribution to low-energy states of future iterations. Thus,
at every iteration step, states with energies greater than a fixed energy2 Etrunc are
discarded [5, 14, 21, 22].

The convergence of NRG is exponential in the number of kept states for given Λ.
In practice, convergence has to be checked. More detailed discussions of the truncation
scheme, which shall not be presented here, can be found in the review by Bulla et
al. [5], and a method for a quantitative estimation of the inaccuracy due to the
discarded states is presented by Weichselbaum in [20].

2Alternatively, only a fixed number Nstates of states with the lowest energies are kept and all
states with higher energies are discarded.
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3.2 Open Wilson Chains
The model for a QPC described in section 2.3 is problematic for the standard NRG
method due to the shape of the hybridization functions Γ(ω), which contain very
weakly coupled levels at finite energies. This results in non-monotonous behaviour
of the couplings between sites in the Wilson chain. At some late iteration, a strong
coupling tn will occur, violating energy scale separation. This problem can be solved
using the Open Wilson Chain approach by calculating the energies εn and couplings tn
on the level of Green’s functions [3].

Postulating that the bath correlator Gbath ≡ G0 can be expressed as the coupling
to a single site which is in turn coupled to a new bath, the bath correlator can be
expressed in the same form as the resonant level Green’s function:

G0(ω) = 1
ω+ − ε0 − Σ0(ω) (3.10)

where ε0 is the level energy and Σ0 the hybridisation energy. Now, the level energy
ε0 is equal to the expectation value of ω:

ε0 =
ˆ

dω ωA0(ω) = − 1
π

ˆ
dω ω ImG0(ω) (3.11)

A derivation of this fact and further details can be found in [3]. The hybridisation
energy can then be obtained by inverting equation (3.10): Σ0(ω) = ω − ε0 − 1/G0(ω)

Σ0 can be subdivided into two parts, the coupling to the slow (low-energy) and
fast (high-energy) bath. Quantities related to the slow and fast baths will be referred
to with an index S or F , respectively. This subdivision is performed by weight
functions wS(ω) and wF (ω) on the imaginary part of the hybridization [3]. Here,
Heaviside θ functions were used3as weight functions wS,F (ω) = θ(±(ω − ωtrunc)):

Im ΣS,F
0 (ω) = θ(±(ω − ωtrunc)) Im Σ0(ω); Σ0(ω) = ΣF

0 (ω) + ΣS
0 (ω) (3.12)

The full hybridisation energies can then be obtained using the well-known Kramers-
Kronig relations (see appendix A).

As it was previously postulated that ΣS
0 represents the full (i.e. complex) hybrid-

ization function of a new bath S0, the above procedure can be iteratively applied
to the slow hybridization functions ΣS

i using ΣF
i = Gi+1. Thus, an exact continued

fraction expansion of Gbath can be obtained [3].

Gbath = 1

ω − ε0 − ΣF
0 −

|tS0 |2

ω−ε1−ΣF1 −
|tS1 |2

...−
|tSN−1|2

ω−εN−ΣF
N
−ΣS

N

(3.13)

The remaining hybridisation energies ΣF
1...N and ΣS

N are then absorbed into the
level energies ε by

εi → εi + Re ΣF
i (0) (i 6= N); εN → εN + Re ΣF

N (0) + Re ΣS
N (0) (3.14)

as this is equivalent to an approximation using second order pertubation theory:

Re ΣF
i (0) = 1

π

ˆ
dω Im ΣF

i (ω)
ω

= −
ˆ

dω ΓFi (ω)
ω

(3.15)

3Instead of using Heaviside θ functions to truncate, weight functions wS,F (ω) (e.g. logistic
functions) can be chosen such that wS(ω) + wF (ω) = 1 to truncate more smoothly. For the model
considered in this thesis, Heaviside θ functions will suffice.
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In addition, this approximation reproduces Re Σbath(0) correctly. For a symmetric
hybridisation Γ(ω), Re Σ vanishes. Corrections to ε are therefore only relevant for
asymmetric hybridisation functions, as is the case in this thesis [3].

The corrected site energies and couplings can then be used in an NRG run akin
to the standard NRG method by constructing what Bruognolo et al. [3] refer to as
a renormalized Wilson chain. Since corrections to the site energies caused by fast
baths are now included in the Hamiltonian, an NRG run using a renormalized Wilson
chain remains accurate even for very asymmetric hybridization functions.
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Chapter 4

Analytic properties of the
Non-Interacting SIAM

4.1 Fixed Impurity Level Position
As a first step, the non-interacting (U = 0) single-impurity Anderson model (resonant
level model) will be considered. Because it can be solved analytically, some properties
of the full SIAM can be understood more easily in this simplified version. It is also
useful as a consistency check for the numeric method.

To understand the behaviour of the non-interacting SIAM in the case of asym-
metric hybridization, particularly near band edges, only the band will be shifted in
this first section. The impurity level stays at εd = 0 = εF and, since some features of
the resonant level model are more easily understood in this regime, a small overall
hybridization of Γ0 = 0.01 was chosen.

4.1.1 Spectral Function

In section 2.2, the spectral function for the resonant level model was derived. It is
given by equation (2.10)

A(ω) = Γ(ω)/π
(ω − εd − Re ∆(ω))2 + (Γ(ω))2

where Γ(ω) = − Im ∆(ω) is the hybridisation function, and Re ∆(ω) can be obtained
from Γ(ω) using Kramers-Kronig relations (see appendix A). Figure 4.1 contains
plots of spectral functions for different values of ω0.

In the symmetric case ω0 = 0, Re ∆(ω) is small for ω ≈ 0 (see figure 4.2).
For small ω, the spectral function is therefore very similar to a Lorentz peak with
width Γ, which is the spectral function in the case of constant Γ(ω) = Γ. Because
the Meir-Wingreen formula (2.20)

g

g0
=
ˆ

dω πΓ(ω)A(ω)
(
−∂f(ω)

∂ω

)
only samples the spectral function in the vicinity of the Fermi energy εF = 0, the
conductance for a symmetric double-sided Fermi function with sufficient bandwidth
is very close to g/g0 = 1.

For values ω0 6= 0, Re ∆(ω) is shifted the same way as Γ(ω). In the non-symmetric
case, Re ∆(0) 6= 0: the peak of the spectral function is displaced with respect to εd by
Re ∆(0). Thus, the maximum of the spectral function is shifted away from the Fermi
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Figure 4.1: Spectral functions A(ω) in
the non-interacting case U = 0 for dif-
ferent hybridization functions shifted by
ω0. As the band edge D− = ω0 − D
crosses the impurity level energy εd, the
peak of the spectral function is shifted
to lower energies and becomes sharper,
until it eventually collapses to a Dirac-
δ distribution, here represented by very
narrow peaks of still finite width for
ω0 = 1.00, 1.04. Near the band edges,
dependence of the spectral function on
the shape of the hybridization function
is clearly visible.

energy and the conductance drops significantly already for |ω0| < D. Figure 4.2
shows the behaviour of the conductance g/g0 as a function of ω0.

For large values of |ω0| > D, the hybridisation is very weak and the system
resembles an uncoupled single level. Therefore, the spectral function approaches a
Dirac-δ distribution, the peak of which is displaced with respect to εd by Re ∆(ω).

4.1.2 Occupation Number

To verify the Friedel sum rule (2.31), the average occupation number 〈nd〉 has been
calculated for T = 0 by integrating the spectral function over energies below the
Fermi edge (see figure 4.3). As expected, the relation g/g0 = sin2 (π 〈nd〉) from
equation (2.32) holds everywhere except near the band edges.

In the symmetric case ω0 = 0, the spectral function is symmetric as well; therefore,
〈nd〉 is exactly ½. In the case of a double-sided Fermi hybridization function, the
impurity level is progressively shifted to lower energies as the band is shifted upwards.
Thus, occupation number grows smoothly. At the band edge, a sudden (but smooth)
transition occurs, where the spectral function becomes sharper and approaches the δ
distribution. Only a very small portion of its weight remains at energies within the
band. Shifting the band even further results in very weak hybridisation. While the
value of Re ∆(0) shrinks as ω0 grows further, this small shift is sufficient to place the
entire weight of the peak in the spectral function below the Fermi edge, as it now
resembles a δ distribution. Consequently, having εd = 0, the impurity level is nearly
always occupied (〈nd〉 ≈ 1) for ω0 > D.
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Figure 4.2: Conductance through the QPC as a function of band shift ω0 (left column)
and real and imaginary part of the spectral function (right column). Additionally,
sin2(π 〈nd〉) has been overlaid to verify the Friedel sum rule (2.31). The dependence
of g/g0 on the real part of the spectral function is clearly visible. The difference
between the conductance values and sin2(π 〈nd〉) near band edges is due to the
neglected displacement of bath charges. The same parameters as in figure 4.1 were
used.
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Figure 4.3: Expectation value of the impurity occupation number as a function of
band shift ω0. The same parameters as in figure 4.1 were used.

For negative values of ω0, the behaviour of the spectral function is simply mirrored
at the Fermi edge. Therefore, the conductance g/g0 is the same for ±ω0 and the
occupation number is mirrored such that 〈nd〉 (−ω0) = 1/2 − 〈nd〉 (+ω0).

4.2 Shifted Impurity Level Position
This section will discuss the behaviour of the non-interacting SIAM at similar
parameters to those that will be used to model the QPC. In the model, the impurity
level is shifted together with the hybridization function: εd = ω0 − U/2. Since a
quantum point contact is intrinsically open to the bath, large values of the overall
hybridization Γ0 = 0.5 are assumed.

In the non-interacting case, the behaviour is quite simple, since the impurity
level is shifted together with ω0. Therefore, the spectral function is shifted the
same way as the rest of the system while its shape remains unchanged, as shown in
figure 4.5. This implies that the conductance curves for different values of ω0 (see
figure 4.4) are a mirrored image of the spectral function multiplied with Γ(ω). In
the case of ΓvanHove, the peaks of A and ΓvanHove combine to form a single peak in
the conductance.
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Figure 4.4: Conductances for different hybridization functions in the non-interacting
case obtained using analytic methods.
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Chapter 5

Results

5.1 Parameter Choice
Results for U > 0 were obtained using Open Wilson Chain approach to the NRG. In
the first part of this chapter, calculations were performed for a very low temperature
of T = 10−8. Since this value is below all energy scales in this problem including
the Kondo temperature TK , this choice corresponds to the zero-temperature case.
Finite-temperature results are given in the last section of this chapter.

As already mentioned, a quantum point contact is intrinsically open towards
the baths and cannot be described as an isolated quantum dot. Therefore, a value
of Γ0 = 0.5 has been chosen to reflect the expectation of a total coupling strength
on the order of bandwidth D = 1. To get a general idea of the behaviour of the
conductance for different hybridization functions, a somewhat larger value δ = 0.1
was chosen, given that one would expect smooth transitions also in the experiment.
Besides, this also avoids any problems with numerical inaccuracy by initially using
very smooth hybridization functions. However, some features are only visible for
small values of δ that will be explored after finding parameter ranges for which the
overall behaviour of the conductance is consistent with the experimentally observed
step from g = 0 to g = g0.

5.2 Cross-check between Analytic and NRG Results
As a cross-check, analytic and numeric results for U = 0 using the same parameters
have been compared. The conductance for different hybridization functions is shown
in figures 5.1, 5.6 and 5.7, where the on-site interaction strength was varied from
no interaction (U = 0) to interaction strengths on the order of the hybridization
(U = 0.5). Analytic results for the non-interacting case are shown as well. The
analytic and NRG results match closely, confirming the previous assertion that the
NRG method together with the Meir-Wingreen formula is able to obtain conductances
with high accuracy.

5.3 Double-sided Fermi Function
In the case of Γ = ΓFermi, the spectral function for low interaction strengths is similar
to a Lorentz peak with suppressed tails. Since the hybridization is on the same
order of magnitude as the bandwidth, the spectral function is as wide as the entire
band. The conductance for ω0 > D, i.e. a band which has been shifted above the
Fermi edge in its entirety, is suppressed by vanishing Γ(ω). This effect accounts for
the shoulder visible in figure 5.1. It occurs most prominently in the non-interacting

24



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

ω0/D

g
/g

0

ΓFermi using Γ0 = 0.5, δ = 0.1 at T = 10−8;
εd = ω0 − U

U = 0.0 (analytic)
U = 0.0
U = 0.1
U = 0.2
U = 0.3
U = 0.4
U = 0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

ω0/D

〈n
d
〉

U = 0.0 (analytic)
U = 0.0
U = 0.1
U = 0.2
U = 0.3
U = 0.4
U = 0.5

Figure 5.1: Conductance through the QPC and average occupation assuming a
hybridization function shaped like a double-sided Fermi function for different values
of the on-site interaction strength U . For high U = 0.5, the initial step in the
conductance observed in experiments is reproduced very well. The shoulder apparent
in this picture must not be confused with the 0.7-anomaly.

case, which has therefore no relation to the 0.7 anomaly. This explanation can be
verified by scaling all parameters except the bandwidth by ½, which corresponds to
doubling the bandwidth.1 This results in later onset of the cut-off, which confirms
its dependence on the location of the band edge (see figure 5.2).

With increasing interaction strength, the conductance is enhanced. This can be
explained by the observation that the spectral functions change their shape as the
system is shifted. The peak of the spectral function becomes asymmetric for shifts
ω0 > 0 such that a greater portion of their weight is placed near the Fermi energy
compared to the non-interacting case and the value of A(0) changes more slowly.
This effect grows stronger as U is increased. Since a Fermi-shaped hybridization
function is nearly constant within the band, the conductance stays near g0 until the
band edge is reached. Thus, for U ≈ 0.5, the first quantised step in the conductance
from g = 0 to g = g0 observed in experiments [1, 2, 18, 19] is reproduced. However,
the 0.7 anomaly is not yet visible.

In the Kondo model, full conductance summed over spin gives the conductance
g0 = 2e2

h . Going to 2g0 requires an additional transverse channel, which is beyond the
current model. Therefore, instead of further increasing to g = 2g0 the conductance

1The former is accomplished more easily, as changing the value of D requires adjustment of
NRG parameters.
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in this model drops for ω0 < 0 due to the upper band edge.
The occupation number, also shown in figure 5.1, decreases almost linearly until

the band edge is reached. Since the width of the spectral functions is similar to the
bandwidth, the remaining weight below the Fermi energy is quickly lost at that point
and the average occupation drops to zero.

When the impurity level is taken closer to the lower band edge, a peak appears
beyond the band edge (see figure 5.3). The reason for this behaviour is again the
change in shape of the spectral function, where always more weight is placed near the
Fermi edge. This leads to an enhanced conductance in the range ω0 ≈ 1.1. Further
decrease of the distance between impurity level and lower band edge distorts the
conductance step.

Additional evidence that this feature is caused by the band edge is the strong effect
of variations in the hybridization strength Γ0 on the shape of the additional peak as
shown in figure 5.4. Since the hybridization strength is roughly proportional to the
width of the spectral function, a decrease in Γ0 decreases the weight of the spectral
function near the band edge. Furthermore, smoother band edges (increased δ) directly
lead to a smoothed structure, until it becomes invisible for large δ (see figure 5.5).

While this feature initially seems similar to the 0.7 anomaly, results for a wide
range of parameter sets exhibit qualitative differences to experimental observations.
The data obtained from the SIAM using ΓFermi shows a shoulder at high conductance
values of g/g0 & 0.9 or a smaller peak with a significant drop in conductance between
said peak and the plateau at g = g0. In contrast, experimental data [1, 2, 12, 18]
shows a sub-structure in the range of g/g0 = 0.4 to 0.9 in the shape of a shoulder or
small step as opposed to a distinct peak.

5.4 Van Hove Ridges
For a hybridization function containing van Hove ridges, the resulting behaviour of
the conductance for varied gate voltage does not match the experimentally observed
behaviour very well (see figure 5.6). While an initial step from g = 0 to g ≈ g0 is visible
for certain interaction strengths, the conductance drops again for further decrease
of ω0 and never forms the flat plateau near g0 which is observed in experiments (see [1,
2, 18, 19]). For interaction strengths U & 0.2, the initial peak even exceeds g0. This
unphysical data occurs due to sensitivity of the conductance formula to inaccuracy
in sampling the steep slope in the hybridization function near the band edges.

Further increase in U to ≈ 0.5 causes the peaks in hybridization strength and
spectral function to cross εF at distinct ω0, which is visible in the conductance as a
split peak near the band edge. Thus, even though the decrease in conductance for
shifts ω0 ≈ 0.7 shrinks for stronger on-site interactions, the peaks in the hybridization
function and spectral function prevent a flat plateau. As an example, U = 0.8 is
shown in figure 5.6.

The simulated behaviour never resembles the experimental observations. For
these reasons, the analysis of van Hove ridges in the hybridization function was not
further pursued.
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Figure 5.6: Conductance through the QPC and average occupation assuming a
hybridization function with two peaks (van Hove ridges) at the band edges for
different values of the on-site interaction strength U . Clearly, this hybridization
function does not reproduce experimental results. The peaks where g exceeds g0,
which is unphysical behaviour, are due to inaccuracy in sampling near the van Hove
singularities.
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5.5 Semicircle
Increasing on-site interaction strength in the case of a semi-circular hybridization
function cause a smooth transition to a broadened step function. This can be ex-
plained by the observation that for U > 0, the spectral functions become asymmetric
in a similar way as in the case of a Fermi-shaped hybridization function. The result-
ing spectral functions (see figure 5.9) are now remarkably similar to the van Hove
ridges proposed in the paper by Bauer et al. [1]. As has been pointed out in the
derivation of the density of states of an infinite chain in section 2.3.3, this chain can
be equivalently expressed as a single site coupled on two sites to a semi-infinite chain,
which is a system with semi-circular spectral functions. This corresponds exactly to
the situation in the QPC model and thus, the resemblance of the impurity spectral
function to a van Hove singularity is to be expected.

The average occupation of the impurity state is very quickly cut off at the band
edge after almost linear behaviour already familiar from the double-sided Fermi
hybridization function. The sharper cut-off can be explained by the similarly sharper
cut-off in the hybridization function as compared to the Fermi function.
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Figure 5.7: Conductance through the QPC and average occupation assuming a
hybridization function of semi-circular shape for different values of the on-site
interaction strength U . For a range of U , the initial step in the conductance
observed in experiments is reproduced, similar to 5.1.
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5.6 Anomaly in the Conductance Step
This section explores a sub-structures which can be found in the step structure of the
conductance curve using the semi-circular hybridization function. Upon decreasing δ,
the band edge becomes sharper and some previously invisible features appear for
large values of U & Γ0. For certain parameters, this feature develops a remarkable
similarity to the 0.7 anomaly. Similar to the experimentally observed shape of the
anomaly, a shoulder at a conductance g < g0 develops (see figure 5.8).

This feature shows several characteristic features of a Kondo-like effect, most
notably a sharp peak in the spectral function at the Fermi energy (see figure 5.9).
For small band shifts ω0, this peak is broadened by the hybridization Γ(ω); only at
the band edge, where Γ(ω) drops to very low values, a very sharp peak centred on
εF develops, leading to high conductance in spite of low Γ(0). As a consequence, the
shape of this feature is very sensitive to small variations in δ.

In contrast, further increase in on-site interaction energy U barely influences the
behaviour. The reason for this is likely the fixed distance of εd to the lower band
edge, whereas only the upper level position εd + U moves to even higher energies.

As discussed in section 2.6, the Kondo temperature indicates the order of mag-
nitude of the dynamically generated lowest energy scale. The data shown in figure
5.8 shows that the location of the anomaly corresponds to a minimum in TK , where
a drop by one order of magnitude with respect to the value at the plateau occurs.
This signifies enhanced spin susceptibility.
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Figure 5.8: A structure which is very similar to the 0.7 anomaly. The Kondo
temperature shows a minimum at the location of the anomaly, which corresponds to
a maximum in spin susceptibility.
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Γsemicircle using Γ0 = 0.35 and δ = 0.02 at T = 10−8

U = 0.8, εd = ω0 − 0.8 = D− + 0.2

Figure 5.9: Spectral functions Ak(ω) from which the conductances for δ = 0.02 in
figure 5.8 were obtained. In the region of the 0.7 anomaly between ω0 = 1 (lime) and
ω0 ≈ 1.05 (orange), a very sharp Kondo peak occurs. The spectral functions Ak(ω)
were offset vertically by a constant s times k to create a pseudo-3d effect, such that
ω0 increases monotonically from bottom to top.
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5.7 Finite Temperature
Results for finite temperature are shown in figure 5.10. As the minimal Kondo tem-
perature is TK ≈ 10−2, the shape of the anomaly remains the same for T . 10−4. At
higher temperatures comparable to the Kondo temperature, the peak in the spectral
function is broadened by temperature and the lowest energy scale is determined
by T .

At this point, the shoulder develops into a small peak. In the zero-temperature
case, the superposition of the overall step structure and the small peak forms the
anomaly. However, for higher temperatures, the peak structure unexpectedly turns
out to be remarkably stable compared to the overall step structure including the
plateau at g = g0, which starts to decay at temperatures T & 10−3 ≈ 0.1TK . As a
result, a peak separated from the plateau by a drop in conductance becomes visible.

In experiments, the falloff between plateau and 0.7 anomaly becomes broader
with temperature as well [1, 2, 12, 18]. However, the conductance should eventually
reach g0 at all temperatures, which is not reproduced by this model. The peak in
conductance for high temperatures is not observed in experiments.

However, as previously mentioned, the behaviour of the system at ω0 ≈ D shows
high sensitivity to changes in δ, which controls the weight of the hybridization
function placed below the lower band edge. In this thesis, the weak hybridization to
states below the band edge was modelled by convolution with a Lorentz peak. Since
very little can be inferred about hybridization from experimental data, this choice is
rather arbitrary. It is quite possible that a different choice may eventually result in
better correspondence to experimentally observed behaviour for finite T .
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Figure 5.10: Behaviour of the anomaly for finite temperature. The smallest energy
scale is never below max(T, TK). There are some qualitative differences in the
conductance compared to experimental results.
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Chapter 6

Conclusion and Outlook

It has been shown that a single-impurity Anderson model can be solved accurately
using the Open Wilson Chain approach to the NRG, even in the presence of a very
structured hybridization function. The single-impurity Anderson model was used
as a minimal model for a quantum point contact. Different hybridization functions
were considered, and the behaviour of the model conductance at varied gate voltage
compared to experimental observations. The quantised behaviour of conductance
through a QPC is reproduced in the case of a hybridization function in the shape of a
double-sided Fermi function or a semicircle, while a hybridization function with van
Hove ridges leads to a number of deviations from experimentally observed behaviour.
The latter was therefore not investigated further.

For the hybridization functions shaped like a double-sided Fermi function as well
as the semi-circular hybridization function, a sub-structure in the conductance step
is found. In the case of a semicircle, the sub-structure exhibits a shoulder with a
shape similar to the experimentally observed 0.7 anomaly. Both the shape of the
spectral function as well as the drop in Kondo temperature, which corresponds to
enhanced spin susceptibility, indicate a Kondo-like effect. In the zero-temperature
case, this model describes the anomaly quite well, while differences occur at finite
temperature.

It is possible that these deviations from experimentally observed behaviour are
caused by the particular shape of the hybridization function at the band edges. As
the hybridization itself is not accessible in experiments, this choice is rather arbitrary.
In this thesis, broadening was performed by convolution with a Lorentz peak. Choice
of a different mollifier, for example one with exponential falloff, should have a strong
effect on the shape of the anomaly and might result in behaviour which is closer to
experimental observations.

Meanwhile, some open questions about the qualitative behaviour of the model
remain. In particular, the dependence of the 0.7 anomaly on an external magnetic
field B has been studied extensively [1, 2, 12, 18]. Calculations at finite B are possible
within the NRG method as well. This would be the most obvious next step, which has
not been performed in this work due to limitations in time. Furthermore, for finite-B
data to be sensible, it would be preferable to first achieve a better correspondence of
the finite-temperature data to experimental observations.
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Appendix

A Kramers-Kronig Relations
The Kramers-Kronig relations are relations between the real and imaginary part of a
complex function which is analytic in the upper half-plane.

Let f : C → C be analytic in the upper half-plane {z | Im z > 0}. Then the
following relations hold:

Re f(z) = 1
π
P
∞̂

−∞

dw Im f(w)
w − z (A.1)

Im f(z) = − 1
π
P
∞̂

−∞

dw Re f(w)
w − z (A.2)

where P denotes the Cauchy principal value [13]. In this thesis, the principal value
was obtained using

P
∞̂

−∞

dw . . .

w − z = Re lim
η→0

∞̂

−∞

dw . . .

w + iη − z =
∞̂

−∞

dw . . .

w+ − z (A.3)

where the last expression is merely a convenient shorthand.

B Retarded Green’s Functions
The retarded Green’s function for two fermionic operators A,B is defined as [4]

iGRA,B(t, t′) = θ(t− t′) 〈{A(t), B(t′)
}〉

(B.1)

where the expectation value 〈·〉 is to be taken in respect to a thermal density matrix ρ.
If the Hamiltonian is not time-dependent, the Green’s function will only depend on
t− t′. In this case, the Green’s function becomes

iGRA,B(t) = θ(t) 〈{A(t), B(0)}〉 (B.2)

Taking the time derivative and using the Heisenberg equation of motion yields the
equation of motion for the Green’s function:

i
d
dt G

R
A,B(t) = δ(t) 〈{A(0), B(0)}〉 − i θ(t) 〈{[A,H](t), B(0)}〉

= δ(t) 〈{A(0), B(0)}〉+GR[A,H],B(t) (B.3)

This equation can be Fourier-transformed to its frequency-space version:

ω+GRA,B(ω) = 〈{A(0), B(0)}〉+GR[A,H],B(ω) (B.4)
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APPENDIX

This equation is particularly useful for many calculations.
Retarded Green’s functions can be used to calculate different quantities, most

notably the spectral function. The spectral function of a state c† is given by [6, 11]

Ac(ω) = − 1
π

ImGRc,c†(ω) (B.5)
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