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1 Introduction

Recent developments such as the ascent of self-driving cars, the introduction of face recognition
into our daily lives, and the omnipresence of machine learning algorithms in todays Internet
show the enormous potential of neural networks and machine learning techniques. They are also
used in a wide range of applications in chemistry, material science and condensed matter physics
[1, 2, 3, 4, 5, 6].
Despite being highly successful, the formal understanding of these algorithms is only gradually
unfolding and for a surprisingly big part still remains illusive. Most of the methods used in
practice to optimize neural networks are largely based on heuristics and lack deeper theoretical
understanding and foundation [7, 8].
Meanwhile they exhibit great structural similarities to one of the most successful and important
tools in theoretical condensed matter physics, the renormalization group and the later developed
tensor networks. These techniques have been applied to a great variety of physics problems and
stand on a very solid theoretical basis.
Both �elds can bene�t from potential conceptual and technical overlaps and recently a lot of work
has been published trying to shed some light on the topic, for example by using the mathematical
and physical understanding of tensor networks to optimize neural networks [9] or using neural
networks to �nd the ground state of quantum wavefunctions [10].
In this bachelor thesis we follow the work of Stoudenmire and Schwab [11] who use a tensor
network ansatz based on matrix product states (MPS), a very popular computational tool in
quantum many-body physics, in the context of machine learning. Speci�cally we focus on the
application of MPS to the recognition of handwritten digits from the MNIST dataset and explore
the details of the algorithm of Ref. [11].
This thesis is structured as follows. First we will give an introduction into the most basic concepts
of machine learning to enable the reader to understand the current research topics and have a basic
understanding of the �eld (Ch. 2). Then some foundations of matrix product states and tensor
networks will be covered (Ch. 3) to enable the reader to follow chapter 4 of this work, where the
method presented in [11] will be explicitly implemented and explained. The work concludes in a
discussion of the presented method and introduces some possibilities for further research into the
topic (Ch. 5).
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2 Machine learning

In recent years machine learning has been getting an enormous amount of attention, in the media,
in science, and in society. In machine learning, a system of connected units, a so called neural net-
work, is trained using a speci�c training algorithm to solve a speci�c task without being explicitly
programmed.
This sub�eld of computer science is extremely successful in solving complicated classi�cation tasks
which are not directly accessible through explicit coding. Therefore, it is used today in a wide
range of applications reaching from image classi�cation, recommender systems and language pro-
cessing to applications in chemistry, material science and condensed matter physics [1, 2, 3, 4, 5, 6].
In the following we will introduce the most basic elements of machine learning before giving a short
overview of applications in connection to condensed matter physics. We will start by discussing
arti�cial neurons, the most basic building blocks of neural networks, to gain an understanding
on how machine learning uses non-linear elements for their success. Then we will present some
basics about the architecture of neural networks and give a detailed explanation of how learning
is achieved in order to enable the reader to understand the analogies of our MPS approach to
the techniques used in machine learning. In the �nal part of this chapter we introduce additional
concepts of machine learning that are subject of current research and give a short résumé about
the applications in connection to condensed mater physics.

2.1 Arti�cial neurons

The fundamental building blocks of a neural network are arti�cial neurons, which are named after
the neurons in our brain. The neural model applied in machine learning (Fig. 1) contains, just
like our brain, connecting links or synapses with respective weights or strengths. In mathematical
terms this yields an input signal xi connected through a synapse to neuron k and multiplied by
the weight wki. After summing the weighted input signals, an activation function is applied to
limit the output of the neuron to a signal of �nite value. The model also includes a bias bk which
in- or decreases the net input of the activation function. A neuron k is therefore mathematically
described by

yk = ϕ(

m∑
i=1

wkixi + bk), (1)

with x1, x2, ..., xm being the input signals, wk1, wk2, ..., wkm the respective weights for neuron
k, bk the bias, ϕ(·) the activation function and yk the output signal of the neuron [12].

Figure 1: Nonlinear model of a neuron labeled k. [12]
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2.1.1 The perceptron

The most basic type of arti�cial neuron is the so-called perceptron developed by Rosenblatt in
the 1950s and 60s [13]. While in todays applications other models of arti�cial neurons, known as
sigmoid neurons, are used, it is instructive to start with perceptrons in order to understand the
rationale behind the de�nition of the sigmoid neurons.
From several binary inputs x = x1, x2, ... a perceptron produces a single binary output. Real
numbered weightsw = w1, w2, .. are introduced as an expression of the importance of the respective
inputs to the output. The perceptron's output f(x) is de�ned as:

f(x) =

{
1, if w · x + b > 0

0, otherwise
, (2)

with w · x =
∑n
i=1 wixi, n being the number of inputs to the perceptron and b being the bias.

The bias shifts the decision boundary of the perceptron and does not depend on any input value.
Following the analogy of neural networks to the human brain, the bias is a measure of how easy it
is to get the perceptron to �re. McCulloch and Pitts showed in 1943 [14] that every simple logical
operator, acting on one or more binary inputs to produce a single binary ouput, e.g. NOT, AND,
OR, XOR, NAND, NOR or XNOR, can be approximated with a combination of perceptrons.
The perceptron is a linear classi�er, a classi�cation algorithm making decisions based on a linear
predictor function, which uses the Heaviside step function as the activation function [15].

2.1.2 The sigmoid neuron

For the purpose of making learning possible, a small change in a weight or bias should cause only a
small corresponding change in the output. In this way we can gradually make small changes to the
weights and biases to gradually improve the behavior of our net. Obviously, a network consisting
of perceptrons is not very practical for that purpose since a tiny change in w or b can yield a
di�erent output of a perceptron, changing the behavior of the rest of the network completely.
Thus another type of arti�cial neuron called the sigmoid neuron is introduced [15] .
The de�ning feature of the sigmoid neuron is that, instead of using the Heaviside step function as
an activation function, it uses the sigmoid function σ(w · x+ b) which is de�ned as

σ(z) ≡ 1

1 + e−z
. (3)

As can be seen in Fig. 2, the sigmoid neuron basically represents a smoothed version of a per-
ceptron. The strictly increasing σ exhibits a solid balance between linear and non-linear behavior
and the smoothness ensures that small changes δwi and δb in the weights and bias will lead to a
small change in the output.

2.2 Architecture of neural networks

To describe the layout of a neural network, a simpli�ed architectural graph is used omitting explicit
mentioning of biases and activation functions. Each neuron is then represented by a node, as shown
in Figure 3, and the di�erent neurons are connected by synapses.
In this text, we will concentrate on layered neural networks where the neurons are structured in
layers named after their constituents. The input layer contains all input neurons, the output layer
all output neurons and the so-called hidden neurons constitute the layers in between. The term
"hidden" refers to the fact that this part of the network can neither been seen directly from the
input nor output of the network.
The hidden neurons act as feature detectors by performing a nonlinear transformation on the
input data into the so-called feature space. Through this transformation, classes of interest, that
are hardly separable in the original input space, may be more easily separable in feature space.
This step is crucial for the extraction of higher-order statistics from the input.
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Figure 2: Comparison of the Heaviside step and the sigmoid function, the respective activation
functions of the perceptron and sigmoid neuron.

The neural network shown in Fig. 3 is not fully connected as not every node in each layer is
connected to every node in the next forward layer and is therefore called partially connected [12].

The design of in- and output layer is often straightforward and dictated by the task at hand.
In the case of identifying handwritten digits (for a detailed description of the MNIST dataset of
handwritten digits see Ch. 4.2) each pixel of the input picture will be an input neuron with the
grayscale intensities scaled between 0 and 1, while the ten possible di�erent outputs 0, 1, 2, .., 9
make up the ten output neurons.
This choice seems rather natural at �rst, but from a programming perspective it would seem much
more e�cient to use just four output neurons taking on binary values resulting in 24 = 16 > 10
possibilities. The justi�cation for the choice of output neurons here is empirical and using an
architecture with ten neurons instead of four just learns to recognize digits better [15]. This is a
great example of how much of the optimization of neural networks just depends on heuristics.
The design of the hidden layers is usually more di�cult. Neural network researchers have developed
many design heuristic for hidden layers, e.g. by determining trade-o�s between the number of
hidden layers and the required training time [15].
If the signal is not passed in a circle but instead the output of one layer is used as the input
for the next layer, the underlying neural network is called a feedforward neural network. Models
of networks allowing feedback loops are known as recurrent neural networks. The loops in the
network create an internal state of the network which allows for dynamic temporal behavior.
While recurrent neural networks are less popular than feedforward networks, partly because their
learning algorithms are less powerful, they are much closer to how the human brain works [15].

2.3 Learning

In a neural network context, there are generally three di�erent types of learning: unsupervised
learning, reinforcement learning and supervised learning, which will be the focus of this section
and our approach in Ch. 4 also falls under this category.
Training a neural network means gradually adjusting the weights and biases of the network so that
the output eventually approximates the desired output y(x) for all training inputs x. Generally
speaking, given a speci�c task and a class of functions F , learning means using a set of observations
to �nd f∗ ∈ F which solves the task in some optimal sense.
Supervised learning requires a teacher, whom we may think of as having knowledge about the
environment of interest in the form of input-output examples. The neural network however does
not know about the environment. Therefore a cost function C : F 7→ R is de�ned so that for the
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Figure 3: Architectural graph of a layered feedforward partially-connected neural network consisting
of an input, a hidden and an output layer.

optimal solution f∗

C(f∗) ≤ C(f) ∀f ∈ F. (4)

Take for example

C(w, b) ≡ 1

2n

∑
x

||y(x)− a(x,w, b)||2, (5)

with weights w, biases b, total number of training inputs n, and a the vector of outputs from the
network for the input x. C is called the quadratic cost function or mean squared error (MSE) [15].
The cost function is a measure of how far away from an optimal solution a particular solution is. A
learning algorithm then searches through the solution space in the form of a multidimensional error
surface to �nd a function that minimizes C. The network parameters are then adjusted iteratively
in a step-by-step fashion with the aim of the network eventually emulating the supervisor. In this
way, knowledge about the environment is passed to the neural network through supervised training
examples, which is stored in the form of synaptic weights representing the long-term memory. The
network can then be separated from the teacher and deal with the environment independently [12].
Unsupervised and reinforcement learning are categorized as learning processes without a teacher.
This implies that there are no labeled training examples. In reinforcement learning the network
is continuously in contact with the environment. One form of a reinforcement-learning scheme is
built around a so-called critic, which is de�ned as converting a primary reinforcement signal from
the environment into a heuristic reinforcement signal. The learning then occurs through delayed
reinforcement as the network observes the temporal sequence of reinforcement signals. This can
be interpreted as a cost-to-go function, the expectation of the cumulative cost of actions taken
over a number of steps, being minimized [12].
Unsupervised learning works completely without external teacher or critic. The parameters of the
network are adjusted through a task-independent measure and some sort of a competitive-learning
rule, where neurons in a competitive layer compete for the chance to respond to features in the
input data. The simplest form being a �winner takes it all� model where only the neuron with the
greatest total input turns on, while the others switch o� [12].
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2.3.1 Gradient descent

Since we apply a modi�ed gradient scheme in the context of our implementation in Chapter 4 to
train our MPS, we introduce the basic concept of gradient descent. It is instructive to go into
detail here to understand where the ideas for the algorithm in Ch. 4.1.3 come from and how they
are justi�ed.
In a supervised learning context, a system is able to reach a global (or local) extremum through
the gradient of the error surface. The gradient is the vector that points in the direction of steepest
slope [12]. In order to �nd a local minimum of the surface one takes steps proportional to the
negative of the gradient therefore always moving in the direction of steepest descent. For C being
a function of n variables, v1, v2, ..., vn with ∆v = (∆v1,∆v2, ...,∆vn)T we get

∆v = −η∇C, (6)

where η is a small, positive parameter called the step size or learning rate and ∇C the gradient
vector ∇C ≡ ( ∂C∂v1 ,

∂C
∂v2

, ..., ∂C∂vn )T .
One typically uses the approximation,

∆C ≈ ∇C ·∆v = −η||∇C||2, (7)

which guarantees ∆C ≤ 0. In this way, the function C is always decreased in every iteration.
This results in a simple update rule for v,

v → v′ = v − η∇C. (8)

In order for this method to work, one must choose the learning rate η su�ciently small for (7) to
be a good approximation. Otherwise ∆C could become positive. If η exceeds a certain critical
value the method becomes unstable and diverges. At the same time the learning rate should not
be chosen too small, since this would lead to a small step size (6) and therefore the time needed
for the gradient descent algorithm to reach a minimum would become very large. In the context
of neural networks, the gradient descent update rule (8) takes the following form

wk → w′k = wk − η
∂C

∂wk
(9)

bl → b′l = bl − η
∂C

∂bl
. (10)

As can be seen from Eq. (5), the quadratic cost function ∇C = 1
n

∑
x∇Cx strongly depends

on the number of training inputs n, as the gradient for each training input has to be calculated
separately before averaging over all of them. Therefore learning slows down signi�cantly for large
n.
To speed up learning in these regimes, stochastic gradient descent can be used. The idea of this
methods is to estimate the gradient ∇C by computing ∇Cx for a small so-called mini-batch of
m randomly chosen training inputs X1, X2, ..., Xm. Averaging over this sample results in a good
approximation of the true gradient within a small amount of time, provided m is large enough
and

∇C ≈ 1

m

m∑
j=1

∇CXj
. (11)

The update rule for the weights and biases then becomes

wk → w′k = wk −
η

m

∑
j

∂CXj

∂wk
(12)

bl → b′l = bl −
η

m

∑
j

∂CXj

∂bl
, (13)
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where the sums include all Xj in the current mini-batch. For each training step a new mini-
batch is randomly selected until all training inputs are exhausted, concluding a so called epoch of
training. Training then continues with a new training epoch [15]. While batch learning allows for
a parallelization of the learning process, it also comes with a high demand in storage requirements.
The extremal case of m = 1 is known as on-line or incremental learning, where the network learns
from just one learning example at a time, and avoids this disadvantage. The stochastic nature of
the procedure reduces the likelihood of the learning process getting stuck in a local minimum [12].
Stochastic gradient descent can dramatically speed up learning in neural networks and is therefore
commonly used today. A very detailed explanation of the algorithm can be found in [12].

2.3.2 Backpropagation

In order to apply the gradient descent algorithm, one has to compute the gradient of the cost
function, ∇C. This is typically performed employing a process known as backpropagation. In this
procedure the error is calculated at the output of the neural net and then propagated backwards
through the layers to compute the gradients for the individual weights and biases in a simple and
e�ective way. Even though this algorithm is not implemented in our MPS approach, it is integral
to many approaches in the �eld of machine learning. For completeness it is also instructive to go
into a little bit of detail here.
For the algorithm to work, two assumptions about the cost function C are necessary:

1. The cost function can be written as an average C = 1
n

∑
x Cx over cost functions Cx for

individual training examples x.

2. The cost can be written as a function of the outputs from the neural network.

Assumption 1 ensures that partial derivatives ∂Cx

∂w and ∂Cx

∂b can be computed for individual training

examples. This allows for averaging over all training examples to compute ∂C
∂w and ∂C

∂b .
Assumption 2 �xes both the training input x and the corresponding desired output such that the
only parameter, that can be in�uenced by modifying the weights and biases, is the networks actual
output [15].
As described earlier, the hidden neurons are not directly accessible but still contribute to the
overall error. To enable learning, it is crucial to determine how each internal decision of a hidden
neuron contributed to the overall result and how to correct the corresponding weights and biases
accordingly. This problem is known as the credit-assignment problem and backpropagation o�ers
an elegant way to resolving it in a two-phase process.
In the �rst phase, the forward phase, the input signal is propagated, layer-by-layer, through the
network until it reaches the output, while the weights and biases of the network are �xed.
In the second, the backward phase an error signal is calculated at the end of the network by
comparing the actual output of the network with the desired, correct output. This error is then
propagated backwards through the network, hence the name backpropagation. During that process
the weights of the network are successively updated [12].
Next, we will derive the fundamental equations of the backpropagation algorithm following [15].
A more detailed derivation can be found in [12], chapter 4.
We begin by de�ning the local error δlj of the j

th neuron in the lth layer as

δlj ≡
∂C

∂zlj
, (14)

where zlj is the weighted input.

In combination with the output activation aLj the error in the output layer can simply be computed
by applying the chain rule,

δLj =
∑
k

∂C

∂aLk

∂aLk
∂zLj

. (15)
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Since the output aLk of neuron k only depends on the weighted input zlj for neuron j when k = j
this further simpli�es to

δLj =
∂C

∂aLj

∂aLj
∂zLj

=
∂C

∂aLj
σ′(zLj ), (16)

where the second part follows from aLj = σ(zLj ). Note that the exact form of ∂C
∂aLj

depends on the

cost function, yet, it is still easily computable. For the quadratic cost function C = 1
2

∑
j(yj−aLj )2

δL is given by
δLj = (aLj − yj)σ′(zLj ) (17)

In a next step, the error δl will be expressed in terms of the error in the next layer δl+1, which
will be crucial to propagate the error from the output through the network,

δlj =
∂C

∂zlj
=

∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=

∑
k

∂zl+1
k

∂zlj
δl+1
k , (18)

where the chain rule is used to rewrite δlj in terms of δl+1
k = ∂C/∂zl+1

k . For further simpli�cation
note that

zl+1
k =

∑
j

wl+1
kj a

l
j + bl+1

k =
∑
j

wl+1
kj σ(zlj) + bl+1

k , (19)

and therefore
∂zl+1
k

∂zlj
= wl+1

kj σ
′(zlj). (20)

Inserting (20) into (18):

δlj =
∑
k

wl+1
kj δ

l+1
k σ′(zlj) = ((wl+1)T δl+1)jσ

′(zlj) (21)

with (wl+1)T the transpose of the weight matrix wl+1 for the (l+1)th layer. A compacti�ed matrix
notation is used in the last step. This form o�ers a very intuitive perspective on the algorithm.
Suppose the error δl+1 at the l+ 1th layer is known. To calculate the error of the next layer l, the
transpose weight matrix is applied moving the error backward through the layers. Componentwise
multiplication with σ′(zl) then propagates the error backwards through the activation function in
layer l yielding δl, the error in the weighted input to layer l.
Simply applying the chain rule analogous to the derivations above, equations for the rate of change
of the cost with respect to any bias and with respect to any weight in the neural network are derived
as

∂C

∂blj
= δlj (22)

∂C

∂wljk
= al−1k δlj . (23)

Revisiting the sigmoid function (Fig. 2), it is clear that σ′(zLj ) → 0 when σ(zLj ) goes towards 0
or 1. This indicates that learning occurs very slowly in the regimes of low or high activation, as
can easily been seen from equations (16) and (21). This phenomenon is known as saturation. To
avoid this behavior, other activation functions have to be used.
With the equations above, the two-phase backpropagation algorithm can be written as:
Phase 1, forward phase:

1. Setting the corresponding activation a1 for the input layer

2. Forwarding the signal through the network successively computing zl = wlal−1 + bl and
al = σ(zl) for every layer.



2.4 Basic neural networks 9

Phase 2, backward phase:

1. Calculating the output error δLj = ∂C
∂aLj

σ′(zLj ).

2. Backpropagating the error through the network by successively computing
δlj = ((wl+1)T δl+1)jσ

′(zlj).

3. Calculating the gradient of the cost function as ∂C
∂wl

jk

= al−1k δlj and
∂C
∂blj

= δlj .

This provides a simple and storage saving approach to calculating all the gradients needed for
gradient descent, and therefore o�ers a stable and quick algorithm to allow learning in neural
networks. By simultaneously computing all partial derivatives ∂C/∂wj using just one forward
and one backward pass the computational cost of the algorithm is roughly the same as only two
forward passes through the network. This o�ers a very signi�cant speedup compared to earlier
methods where gradients had to be computed individually [15].

2.4 Basic neural networks

In the last two years the intersection of machine learning and numerical methods from physics has
attracted a lot of attention. Many of these publications rely on the same fundamental elements
of machine learning known as (restricted) Boltzmann machines and deep neural networks. It is
therefore instructive to introduce these concepts before moving on to the current research.

2.4.1 Boltzmann machines

A Boltzmann machine (BM) is one of the most basic and general neural networks. It simply
consists of computing units which are interconnected by bidirectional links. The weights on the
links between the units can take on real values of either sign. Through minimizing a cost function
one arrives at the con�guration that best satis�es the constraints given by the task, e.g. 'weak'
constraints for pattern recognition [16].
A restricted Boltzmann machine (RBM) is a Boltzmann machine with a bipartite connectivity
graph. It is a two-layer network consisting of only one visible and one hidden layer. A pair of
units from each of the groups may have a symmetric link between them, but unlike BMs, no
connections between units of the same group are allowed for RBMs. An RBM can approximate
any distribution and with a su�ciently large number of hidden units can even represent them
exactly. This may need a huge number of elements and therefore training examples [17].
The hidden units of a trained RBM may also reveal correlations of the data with physical meaning.
For example in an RBM trained with the MNIST dataset of handwritten digits, the connection
weight contains the information about pen strokes [9, p.2].

v1 v2 v3

h1 h2 h3 h4 h5Hidden

Visible

Figure 4: Structure of a Restricted Boltzmann Machine with 3 visible and 5 hidden units.

2.4.2 Deep neural networks

A deep neural network or deep belief network (DBN) is a probabilistic generative model consisting
of multiple layers of stochastic, latent variables. It can be seen as a composition of simple RBMs
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where the output of one serves as the input of the next, learning features of increasingly higher
complexity. This way a DBN breaks down a very complex question into very simple question
answerable at the level of single inputs, e.g. pixels. Early layers answer very simple and speci�c
questions and later layers build up a hierarchy of ever more complex and abstract concepts.
A deep convolutional arithmetic circuit (ConvAC) is a deep convolutional network that operates
exactly as a regular convolutional network just with linear activations and product pooling layers
which introduce the non-linearity instead of the more common non-linear activations and average/-
max pooling. Its underlying tensorial structure resembles the quantum many-body wave function
[8, p.5].

2.5 Current research

With the knowledge of the fundamentals of neural networks established over the past chapters we
now highlight some interesting examples of research connecting the �elds of machine learning and
condensed matter physics and, in particular, tensor network methods.
Cichocki [18] gives a detailed discussion about the many potential applications of tensor networks
in the �eld of big data.
Mehta and Schwab show the intimate relation between deep learning and the renormalization
group, an iterative coarse-graining scheme that allows for the extraction of relevant features from
a physical system, e.g. in the form of operators. They then construct an exact mapping between
the variational renormalization group and architectures based on RBMs and illustrate this map-
ping by analytically constructing a deep neural network for the 1D Ising model and numerically
examining the 2D Ising model. Their results indicate that deep learning might be employing a
generalized renormalization group-like scheme for feature extraction [7].
Carleo and Troyer [10] introduce a representation of quantum states as an RBM and then demon-
strate a reinforcement learning scheme to train the network to represent the quantum wave function
and determine the ground-state or describe the unitary time evolution of interacting systems. To
validate their scheme they consider the problem of �nding the ground state of the transverse-�eld
Ising (TFI) model and the antiferromagnetic Heisenberg (AFH) model where they achieve some
of the best variational results so-far-reported. They describe it as a 'new powerful tool to solve
the quantum many-body problem' [10].
Novikov, Oseledets and Tro�mov [19] factorize exponentially large tensors to tensor trains 1. This
format allows them to regularize the model and control the number of underlying parameters.
They then develop a stochastic Riemannian optimization procedure to �t large tensors and use
the model on synthetic data and the MovieLens 100k dataset [19].
Chen et al. [9] developed an algorithm to translate an RBM into a tensor network state (TNS)
and give su�cient and necessary conditions to determine whether a TNS can be transformed into
an RBM of given architecture. This connection can then be used to design more powerful deep
learning architectures, rigorously quantify their expressive power through the entanglement en-
tropy bound of TNS or represent a quantum many-body state as an RBM with fewer parameter
as a TNS [9].
Levine et al. [8] show an equivalence between the function realized by a ConvAC and a quantum
many-body wave function. The construction of a ConvAC as a tensor network enables them to
carry out a graph-theoretic analysis of a convolutional network providing direct control over the
inductive bias of the network [8].
The work by Stoudenmire and Schwab [11] provides a concrete example of applying a tensor
network technique (matrix product states) to a machine learning problem, the recognition of
handwritten digits, which serves as a benchmark test for neural networks.
In this thesis, we will focus on the algorithm presented in this work, to take a closer look at
this interesting intersection between mathematical methods developed in physics and the �eld of
machine learning.

1tensor trains = matrix product states
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2.6 Problems with machine learning

The process of training a neural network comes with several di�culties, and poses the biggest
challenges in machine learning. To �nish o� the chapter on machine learning, we introduce some
of the main problems and their possible solutions. Some of these problems might apply to our
learning process, through a tensor network approach, as well.

2.6.1 Over�tting

The ability to generalize is a vital feature of a trained neural network. If the input is slightly
di�erent from the examples used to train the network it is still able to produce a correct result.
If a neural network is trained with too many training examples it may end up memorizing the
training data losing the ability to generalize properly. It ends up modeling random error or noise
instead of the underlying function. This problem is known as over�tting or overtraining and occurs
when the model is to complex, e.g. when it has too many parameters relative to the number of
observations. The root of this problem is that the criterion for training the model (minimizing the
cost function over a set of training data) is not the same as the criterion for judging its e�ectiveness
(its performance on unseen test data).
The simplest way to avoid overtraining is to increase the number of training examples. The size of
the training sample N should be of order W/ε following Widrow's rule of thumb, where W is the
number of free parameters in the network and ε the fraction of classi�cation errors permitted on
test data [12, p.166]. For a small training sample it will be easy for the neural net to just memorize
the training data in its entirety, thus minimizing the cost function but failing to correctly classify
the test data. Because acquiring a large set of structured data is mostly very di�cult in modern
applications, other methods have been developed to avoid over�tting. Employing early stopping,
one devises a set of rules determining when to stop training the network. The model is then
trained for a while and then stopped well before it approaches the global minimum.
Weight decay o�ers a more explicit method for regularization by adding a penalty λJ , with λ ≥ 0
a tuning parameter, to the error function like the weight elimination penalty

J =
∑
km

w2
km

1 + w2
km

+
∑
ml

b2ml
1 + b2ml

, (24)

which has the e�ect of dampening the weights and biases [20].

2.6.2 Starting values

The choice of the initial values for the weights and biases can have a signi�cant e�ect on the
success of the learning process. Usually random values close to zero are chosen where the sigmoid
function is roughly linear so that the model becomes nonlinear as the weights increase. Large
weights often lead to poor solutions, while zero weights lead to zero derivatives which in turn
leads to zero update in the learning algorithm. Choosing initial values close to one, results in the
sigmoid function become very �at and therefore slow down the learning speed [20].
There are many texts such as Hinton, 2010 [21] which o�er detailed recommendations on how to
optimize speci�c architectures of neural networks but are largely based on heuristics.
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3 Tensor networks and matrix product states

Machine learning has recently attracted much attention in condensed matter physics [7, 10]. It
presents a possible route to resolving long-standing physical questions like high-Tc superconduc-
tivity, which are in the center of active research. tensor network (TN) methods, where the wave
function of a system is described by a network of interconnected tensors [22], are one family of
approaches to resolve many-body problems.
Exploring the combination and connections of tensor networks and machine learning can poten-
tially be very useful for both �elds. Machine learning can by improved by TN ideas, e.g. neural
network architectures can be optimized through physical considerations such as the entanglement
entropy bound TN states after developing an exact mapping between the two [9]. At the same
time, condensed matter physics can pro�t from machine learning ideas, e.g. by representing quan-
tum systems as neural networks to �nd the ground state of the system [10] or by representing
quantum many-body states as an RBM with fewer parameters compared to a TN [9].
There exist di�erent TN representations suitable for the description of di�erent systems. In this
text we will only focus on one type of tensor network, so-called matrix product states (MPS), which
will be applied in the machine learning context in chapter 4. In the following, we will introduce
the graphical tensor network notation, then explain the basic ideas behind MPS, before going into
some important technical details like the singular value decomposition needed for our machine
learning application as well.

3.1 Tensor network theory

In quantum mechanics states are typically described by a set of coe�cients of a wave function
in a certain basis. Tensor networks adopt a di�erent representation of a quantum state in terms
of a set of interconnected tensors. This allows for a numerically more e�cient treatment of a
many-body wave function, since one can mediate the otherwise exponential increase in numerical
complexity with system size [23]. This formulation also makes information about the structure
of entanglement in the system directly available [22]. In the machine learning context we also
deal with an exponentially large number of parameters. Therefore, the TN mechanism potentially
o�ers an elegant way to perform the optimization of a neural network.

3.2 Graphical notation for tensor networks

A huge bene�t of working with tensor networks is the simple and very transparent notation that
has been developed for them. The graphical notation elegantly avoids the explicit treatment of
many indices in the standard notation and makes the structure manifest and clean. The tensor
network notation (TNN) can be considered a generalization of the Einstein summation notation
[24]. TNN is essential when dealing with more complex tensor networks such as PEPS [25] and
MERA [26], since their structure is so complex that traditional notation becomes unmanageable,
but it is already helpful in the context of MPS.

3.2.1 Tensors

Tensors represent the generalization of scalars (rank-0 tensors), vectors (rank-1 tensors) and ma-
trices (rank-2 tensors). While a d-dimensional vector lives in Cd and a m × n matrix is element
of Cm×n, a rank-r tensor of dimensions d1× ...× dr is an element of Cd1×...×dr . For our purposes,
a tensor is a multidimensional array of complex numbers, with the rank equal to the number of
indices.
The basic graphical notation for a tensor is a closed geometrical shape, typically a circle, though
other shapes can be used to distinguish di�erent kinds of tensors. Each index of the tensor is
represented by a line or �leg� coming from it. The direction of the legs can be used to indicate
certain properties, e.g. whether a quantum state lives in Hilbert space (�ket�) or is dual (�bra�).
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This is analogous to denoting upper and lower indices in Einstein notation [24].

i

i ij j

k

vi Mij Tijk

Figure 5: Graphical notation for a vector vi, a matrix M ij and a rank-3 tensor T ijk.

3.2.2 Tensor operation

Tensor operations also have a very simple diagrammatic representation. To indicate that a certain
pair of indices are contracted, the corresponding legs are simply connected through a line.

i i

M
ij

                                                                                          v    
j   

w
i

=

=§
j

A
ijkl

                                                                                             B    
klm

C
ijm

=

=§
k  l

Figure 6: Graphical (top) and explicit index (bottom) notation for a matrix-vector multiplication
(left) and a more general tensor contraction of a rank-4 and a rank-3 tensor.

Other operations like the tensor product and the trace have equally simple and instructive
representations:

= A⊗BA B = Tr
Right(     )

Figure 7: Graphical notation for the tensor product (left) and the trace operation (right).

Instead of explicitly writing out the full expressions, the TNN is compact and avoids the need to
explicitly write every index sum performed in an operation. The rank of the �nal result can easily
be determined by counting the number of open lines after all operations have been performed. In
particular a complicated set of tensor operations can be recognized as a scalar result if no indices
remain open in a particular diagram [11].

3.3 Matrix product states

An arbitrary quantum state can be represented by a coe�cient tensor in Fock space. Consider
a one-dimensional lattice with L sites and d-dimensional local state spaces |σi〉 on the sites i =
1, ..., L. A general pure quantum state on the lattice is given by

|Ψ〉 =
∑

σ1...σL

cσ1...σL
|σ1...σL〉, (25)

with a coe�cient tensor containing dL elements, that clearly scales exponentially with system size
L.
How can we represent a quantum state of such a system as a tensor network and avoid the
exponential scaling of the number of coe�cients with system size? To this end, the coe�cient
tensor is approximated by an array of N lower-rank tensors, which are then contracted over a
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sequence of virtual bond indices,

|Ψ〉 =
∑

σ1,...,σL

∑
α1,...,αL+1

Aσ1
α1α2

Aσ2
α2α3

...AσL−1
αL−1αL

AσL
αLαL+1

|σ1, ..., σL〉, (26)

where we have used a compact notation of the rank-3 tensors A
[σj ]
αjαj+1 , with virtual bond indices

αj = 1, ...,m. For open boundary conditions, as realized in Ch. 4, α1 and αL+1 are 1. This
one-dimensional decomposition of a tensor (see Fig. 8) is called a matrix product state (MPS)
[11], and will be discussed in more detail later.
To avoid the exponential scaling of the number of coe�cients we now limit the coe�cient space
by a bound on the bond indices, the so-called bond dimension controlling the accuracy of the
MPS approximation. Despite neglecting large parts of the Hilbert space in this way, the MPS
is still an excellent approximation for many physical states of 1D quantum systems, e.g. low
energy or thermal states [27]. Many numerical techniques in condensed matter physics rely on the
MPS framework. The most famous example is the density matrix renormalization group (DMRG)
[28, 29] and its generalizations. In Ch. 3.3.1 we will explain the rationale for the truncation and
the resulting approximation.
Matrix product states present a formalism that can not only be used in physics but also has
great potential for applications in machine learning. In this thesis we will use a set of techniques
derived from DMRG to optimize our neural network in chapter 4. Next, we introduce a key
mathematical method used for most MPS algorithms, the singular value decomposition (SVD),
which also represents an important tool for our machine learning algorithm.

¾
1

¾
2

¾
3

¾
4

¾
5

¾
6

¾
7

A1 A2 A3
A4 A5 A6 A7

Figure 8: Graphical notation of a matrix product state for a length-7 system consisting of 7 tensors
Ai

3.3.1 Singular value decomposition

A singular value decomposition (SVD) is a linear algebra tool which lies at the core of most MPS
algorithms. A SVD decomposes an arbitrary (rectangular) matrix M of dimension (NA × NB)
into

M = USV †, (27)

with the following properties:

� U is a (NA × min(NA, NB)) matrix with orthonormal columns the so-called left singular
vectors. U†U = I especially if NA ≤ NB also UU† = I (in that case U is unitary).

� S is a (min(NA, NB) ×min(NA, NB) diagonal matrix with non-negative entries called the
singular values Saa ≡ sa. The number of non-zero singular values is the (Schmidt) rank of
M and descending order of the singular values is assumed in this text: s1 ≥ ... ≥ sr ≥ 0.

� V † is (min(NA, NB)×NB) matrix with orthonormal rows the so-called right singular vectors.
V †V = I especially if NA ≥ NB also V V † = I (in that case V is unitary).

An important consequence is the optimal approximation of M of rank r by a matrix M ′ of rank
m < r in the Frobenius norm ||M ||2F =

∑
ij |Mij |2 induced by the inner product 〈M |N〉 =

Tr(M†N) given by

M ′ = US′V †, with S′ = diag(s1, s2, ..., sm, 0, ...). (28)
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=
=

Figure 9: Graphical representation of the matrix shapes resulting from a SVD M = USV †. The
diagonal line indicates that S is a strictly non-negative diagonal matrix.

This is achieved by setting all but the largest m singular values to zero. In numerical practice the
column dimension of U and the row dimension of V † are also reduced accordingly [27].
This o�ers a very simple method to reduce or limit the dimension of a tensor. When the dimension
of the tensor M becomes bigger than a desired value during an application it can simply be
truncated by using its optimal approximation M ′ instead, thereby keeping the dimension �xed to
the desired m. The value of m for truncation can also be set adaptively by keeping only the those
singular values bigger than a certain threshold. Truncation is also very important in our machine
learning algorithm. There the dimension of the tensor being optimized grows very quickly and
therefore has to be truncated to a �xed value to keep the time needed for computation low.

3.3.2 Decomposing arbitrary states into a MPS

An arbitrary quantum state can easily be decomposed into a matrix product state. This is impor-
tant since an analogous construction will enable us to describe the weights of our neural network
as a MPS.
The decomposition of the state (25) into (26) is achieved through a series of SVDs (a very detailed
derivation can be found in [27, Chapter 4.1.3]), where A

σj
ai,aj = U(aiσj),aj and the decomposition

was started from the left.
These A-tensors exhibit the following properties:

� For an exact decomposition of the state the bond indices (ai, aj) of the �rst A-tensor start
of as (1, d), then scale exponentially until they reach (dL/2−1, dL/2) and (dL/2, dL/2−1) for
the A-tensors in the middle of the chain, assuming even L, and then decrease exponentially
to reach (d, 1) at the last site. In practical calculations, it is typically impossible to carry
out this exact decomposition as the tensor dimensions blow up exponentially. To allow for
numerical feasibility a upper cuto� dimension m is required.

� Each SVD guarantees U†U = I and therefore∑
σl

Aσl†Aσl = I. (29)

Tensors ful�lling this condition are called left-normalized and matrix product states consist-
ing of only left-normalized tensors are left canonical.

Analogously a similar decomposition can be obtained starting from the right to obtain

|Ψ〉 =
∑

σ1,...,σL

Bσ1Bσ2 ...BσL−1BσL |σ1, ..., σL〉. (30)

The B-tensors can be shown to have the same tensor dimension bound as the A-tensors and from
V †V = I follows, that ∑

σl

BσlBσl† = I. (31)

These tensors are therefore called right-normalized and an MPS built entirely from such tensors
is right-canonical.
Introducing the vectors

|al〉A =
∑

σ1,...,σl

(Aσ1 ...Aσl)1,al |σ1, ..., σl〉 (32)
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|al〉B =
∑

σl+1,...,σL

(Bσl+1 ...BσL)al,1|σl+1, ..., σL〉, (33)

the state can be written as
|Ψ〉 =

∑
al

sa|al〉A|al〉B , (34)

where sa = Saa, known as a mixed-canonical basis [27]. This representation allows for local
updates of the wave function in an optimal way, which is key to approaches such as DMRG (see
[27]) as well as for our machine learning algorithm.
In physical applications the truncation is very successful because of the so called entanglement
area laws which guarantee an exponentially decreasing singular value spectrum. Therefore the
optimal approximation truncated through a threshold is typically a good representation of the
actual state. Again [27] o�ers a very detailed discussion about the physical background but since
these area laws do not apply in the machine learning context we will not go into further detail
here. Also Cichocki o�ers further background about these more technical aspects of MPS in [18].
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4 MPS framework for machine learning

Recently, several papers suggested that tensor networks can not only be applied in quantum many-
body systems but can also be e�ective in a machine learning context. Two papers in particular
pointed out that tensor networks can represent powerful tools in the setting of non-linear kernel
learning [11, 19]. This means optimizing a decision function of the form

f(x) = W · Φ(x), (35)

where input vectors x are mapped into a higher dimensional space via a feature map Φ(x) and
the feature vector Φ(x) and the weight tensor W can be exponentially large.
Here, we adapt the approach taken in Ref. [11] following a di�erent direction than the typical
machine learning approaches described in Chapter 2. To this end, we approximate the optimal
weight tensor W as a matrix product state to optimize the weights directly and adaptively change
their number by locally varying W two tensors at a time. The rest of the network is stored in
two blocks, which are not altered during the local update. The details of this procedure closely
follow the DMRG algorithm. During training, dimensions of tensor indices grow and shrink to
concentrate resources on the most relevant correlations within the data. This training procedure
scales only linearly with the training set size. Furthermore, the MPS representation of W o�ers
the possibility to extract information from the trained model that would otherwise be hidden. Ad-
ditionally, the form of the tensor network adds another type of regularization beyond the choice
of Φ(x), which could have interesting consequences for generalization [11].
In this chapter an MPS approach for solving a machine learning task, speci�cally the recognition
of handwritten digits from the MNIST dataset, will be implemented in MatLab following Stouden-
mire and Schwab [11]. We will explain the feature map and the MPS approximation of the weight
tensor W and then go through the details of the optimization algorithm. Finally we will discuss
the results we obtained.

4.1 Algorithm

4.1.1 Encoding input data

To account for the 1D structure of the MPS representation, we �rst have to classify the input data
by mapping each component xj of the input data vector x to a d-dimensional vector. Analogous
to many-body Fock states, we choose a feature map of similar form for our machine learning
approach

Φs1s2...sN (x) = Φs1(x1)⊗ Φs2(x2)⊗ ...ΦsN (xN ). (36)

The tensor Φs1s2...sN is the tensor product of the same local feature map Φsj (xj) applied to each
input xj and the indices sj ∈ [1, d], where d is known as the local dimension. Analogous to working
with normalized wave functions in physics, local feature map is required to have unit norm, which
in turn implies that Φ(x) also has unit norm [11]. In physical terms the feature map has the
structure of a product state or unentangled wave function. The graphical notation is shown in
Fig. 10.
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Figure 10: Graphical notation of the feature map Φ, a normalized order N tensor of dimension dN

and rank-1 product structure.

In our example, the input data are grayscale pictures with N pixels. Every pixel has a value
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between 0 for white and 1 for black 2. We then choose the simple local feature map

Φsj (xj) = [cos(
π

2
xj), sin(

π

2
xj)] (37)

for the input xj from pixel j. Thus the full picture is represented by a tensor product of this local
vector for each pixel according to equation (36). Even though in our implementation only this
feature map was tested, it would be interesting to try other higher dimensional (d > 2) local feature
maps, corresponding to higher spin models, to investigate what role they play in performance and
optimization cost of the model. For a more detailed discussion see Ref. [11, Appendix B].

4.1.2 MPS approximation

For classi�cation we generalize the decision function in Eq. (35) to a set of functions indexed by
a label l,

f l(x) = W l · Φ(x). (38)

An input x is then classi�ed by choosing the label l for which |f l(x)| becomes maximal. The
quantity that depends on the label l is the weight vector W l which will be viewed as a tensor
of order N + 1 with NL · dN components, where NL is the number of labels. To regularize and
optimize this tensor e�ciently it is decomposed into a matrix product state of the form

W l
s1s2...sN =

∑
{α}

Aα1
s1 A

α1α2
s2 · · ·Al;αj−1αj

sj · · ·AαN−1
sN . (39)

The exponentially large set of components is approximated by a much smaller set of parameters
whose number only grows polynomially with the size of the input space 3. The compact graphical
notation of (39) is shown in Fig. 11.

l l

≈
Figure 11: Graphical notation of the approximation of the weight tensor W l by a matrix product
state (see Eq. (39)). The label index l is placed on an arbitrary tensor of the MPS and can be moved
to another location.

The parameter controlling the MPS approximation is the bond dimension m of the virtual
indices αj . Just like an RBM can approximate any distribution with a su�ciently large number
of hidden units (see Ch. 2.4.1), an MPS can represent any tensor for a su�ciently large m [30]. In
physics application m is typically set between 10 and 10,000 and it is desirable to set it as large
as possible since a larger bond dimension means more accuracy. In Eq. (39) the label index l is
put on the jth tensor but this choice is arbitrary. In fact, the index can be moved to any other
tensor of the MPS through a singular value decomposition similar to the procedure explained in
4.1.3 without changing the overall W l.
In our example, the MPS is initialized as a chain of N tensors �lled with random numbers between
0 and 1, where N equals the number of pixels. The label index l was put on the N th tensor of
the chain and the MPS is brought into left-canonical form through a series of SVDs. The bond
dimension m is chosen between 10 and 120.

2In the actual data the values range from 0 for white to 255 for black. They are divided by 255 for the feature
map.

3Only if we impose a cut-o� dimension m.
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4.1.3 Sweeping algorithm for optimizing weights

The core of our algorithm is a mechanism inspired by the DMRG algorithm used in physics. The
algorithm �sweeps� back and forth along the MPS iteratively minimizing the cost function C by
updating the tensors locally in a two-site update. The cost function C in our classi�cation task is
the quadratic cost

C =
1

2

NT∑
n=1

∑
l

(f l(xn)− δlLn
)2, with δlLn

=

{
1, if l = Ln

0, otherwise
, (40)

where NT is the number of training inputs and Ln is the known correct label for training input n.
For our optimization we could also choose a one-site update where we only vary one tensor at a
time, however, the procedure where two adjacent tensors are varied at the same time turns out to
be much more convenient here. This does not only enable us to adaptively change the MPS bond
dimension but also o�ers a convenient way to permute the label index l through the network.
Let us now consider the details of this two-site update procedure. Assume we have moved the
label index l to the jth tensor Alsj . This particular tensor shares the j

th bond with the (j + 1)th

tensor Asj+1 . These two are then contracted to form a single bond tensor by contracting over αj ,

Al;αj−1αj
sj Aαjαj+1

sj+1
= Bαj−1;l;αj+1

sjsj+1
. (41)

The much simpler graphical notation can be seen in Fig. 12. In analogy to the gradient descent

Figure 12: Forming the bond tensor B by contracting the two tensors on sites j and j + 1.

step used in machine learning, we now compute the derivative of the cost function C with respect
to the bond tensor Bl to iteratively update the components of the MPS. Since we only update
two sites at a time, we can use a localized approach. Therefore each training input xn is projected
through the �xed local projection of the MPS shown in Fig. 13. This results in a Φ̃n with four
indices as shown on the right-hand side of the same �gure.

=
©n ©̃n

Figure 13: Projecting a training input into the MPS basis at bond j.

A detailed discussion about how these projected inputs are e�ciently calculated and stored in
our code can be found later in Ch. 4.1.4. Here we will concentrate on the update of the bond
tensor Bl. Given the projected input Φ̃n, the local decision function can be e�ciently computed
combining Φ̃n and the current bond tensor Bl (see Fig. 14) as

f l(xn) =
∑

αj−1αj+1

∑
sjsj+1

Bαj−1;l;αj+1
sjsj+1

(Φ̃n)sjsj+1
αj−1αj+1

. (42)

Analogous to the gradient descent algorithm discussed in detail in 2.3.1, the leading order
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f l  (xn)

Figure 14: Computing the local decision function in terms of the projected input Φ̃n.

update to the bond tensor is then computed as

∆Bl ≡− ∂C

∂Bl

=

NT∑
n=1

∑
l′

(δl
′

Ln
− f l

′
(xn))

∂f l
′
(xn)

∂Bl

=

NT∑
n=1

(δlLn
− f l(xn))Φ̃n.

(43)
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Figure 15: Gradient of the bond tensor Bl.

The resulting object ∆Bl (see Fig. 15) has the same index structure as the bond tensor Bl.
In analogy to the gradient descent update, we now add this small update to Bl (see Fig. 16)

Bl → B′l = Bl − α ∂C
∂Bl

= Bl + α∆Bl, (44)

with α being the analogon to the step size used to control convergence. As in the case of machine
learning, the step size in our application is set following empirical observations and its e�ect on
the algorithm is discussed in detail in Ch. 5.

=
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+
l

B l

l

®B l

Figure 16: Gradient descent-like update of the bond tensor Bl with step size α.

After the update, the bond tensor Bl has to be decomposed into separate tensors to restore the
original form of the MPS and to be able to apply the algorithm again to the next bond. Assume
we are moving from left to right in our optimization process and the next bond to be optimized
is the (j + 1)th. We then compute a singular value decomposition of Bl as shown in �gure 17, or
explicitly given by

Bαj−1lαj+1
sjsj+1

=
∑
α′jαj

U
αj−1

sjα′j
S
α′j
αj V

αj lαj+1
sj+1

. (45)



4.1 Algorithm 21

In this way, we restore the MPS form and at the same time move the label index l one site to the
right onto the (j + 1)th tensor. In order to fully restore the MPS, we de�ne Usj = A′sj as the new

tensor at site j and SV lsj+1
= A′lsj+1

to be the new tensor on site j + 1.

=
l

B’l

≈
l l

Usj S Vs
l

j+1
A’sj A’s

l

j+1

SVD

Figure 17: Restoration of MPS form and translation of label index l through a SVD.

The collective dimension of Bl can increase through the contraction of the two initial MPS
tensors to one bond tensor and the subsequent SVD. Starting from two initial tensors of size
dj−1×dj×dsj×dl and dj×dj+1×dsj+1 , the matrix dimension of Bl is dj−1·dj ·dsj×dj ·dj+1·dsj+1 ·dl.
Carrying out an exact SVD the two resulting new MPS tensors therefore have a larger bond
dimension. Keeping track of the increasing bond dimension throughout the sweep quickly becomes
unfeasible.
Therefore it is crucial to control the dimension of the resulting tensors. We use the optimal
approximation (see Ch. 3.3.1) of Bl keeping only the m largest singular values in S and discarding
the rest along with the corresponding columns of U and V †. If all of the MPS tensors to the left
and the right of the bond tensor are in canonical form, then the truncation of Bl is globally optimal
for the entire MPS [11]. In our application, this is the case since our initial state is left-canonical
per construction.

4.1.4 Data block initialization

Proceeding to the next bond, it would be highly ine�cient to perform the full projection of each
input vector from scratch, as shown in Fig. 13. Therefore, we have to �nd a way to store and
compute the local projections of the input data e�ciently along the way, since they have to be
constantly updated to the current local basis.
We start by initializing the data storage. The �rst entry is formed by simply contracting the �rst
A-tensor with the corresponding input mapped trough the feature map. The next entry is then
obtained by �rst performing the same contraction between the A-tensor and the mapped input
on that site and then contracting the result with the tensor formed on the �rst site (see Fig. 18,
step 1). This procedure is iterated site-by-site and the resulting blocks for every site are saved in
a cell array until only two sites are left (see Fig. 18, step 2).

l l l

... ...

Figure 18: Initialization of the local projections of the input data.

The two remaining sites N − 1 and N are updated and decomposed into two separate tensors
through the SVD procedure described above. The N th tensor is then contracted with its corre-
sponding input ΦsN to form the �rst element of a block on the right. The relevant block on the
left side has already been calculated before and can be restored from the data storage (see Fig. 19
step (1)). During optimization, the block tensor is then iteratively updated and moved through
the MPS chain. The block on the right is updated iteratively using the procedure shown in �gure
18, while the block on the left is recycling the blocks saved in the data storage (see Fig. 19 step



4.2 The MNIST dataset 22

(2)). This procedure is iterated until only two sites are on the left (see step (3)). Now the sweeping
direction is reversed and the procedure is performed analogously in the opposite direction.

l lll

(1)(2)(3)

Figure 19: Sweeping algorithm from right to left closely resembling DMRG with one block growing
at the expense of the other block with two sites in between.

This sweeping algorithm exhibits clear analogies to DMRG. The projected inputs are obtained
and updated in a similar form, as the local Hamiltonian projections occurring in the DMRG al-
gorithm. Also sweeping occurs in the same fashion and dimensionality can similarly be controlled
through SVD.
This way of computing the projected input allows the cost of each local step of the algorithm
to remain independent of the size of input space, which allows the total algorithm to scale only
linearly with input space size.

4.1.5 Normalization

To avoid the occurrence of very high or small coe�cients in the tensors that could cause numerical
instabilities in the algorithm, normalization is necessary. After performing the update of the
bond tensor Bl the singular value spectra in the SVD are divided by the trace, tr(S†S). This
normalization is inspired by the physical application of MPS where a normalized SVD spectrum
typically yields 〈Ψ|Ψ〉 = 1. Additionally, after every step of the data block update, the blocks are
normalized by dividing each component by the largest entry.

4.2 The MNIST dataset

We test the algorithm of Ref. [11] using a standard benchmark test for machine learning: the
recognition of handwritten digits from the MNIST dataset 4. The Modi�ed National Institute of
Standards and Technology database consists of 60,000 training and 10,000 testing images. It was
created from two databases from the US National Institute of Standards and Technology contain-
ing handwritten digits collected from Census Bureau employees and from high-school students.
To get results independent of the choice of training set the two databases where then mixed 50/50
to form the new modi�ed dataset. The training and test sets contain examples from roughly 250
di�erent writers each. The two sets of writers are disjoint to ensure the system being tested can
recognize digits from people whose writing it did not see during training.

4see http://yann.lecun.com/exdb/mnist/ , the o�cial home of the database and [31]
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(a) Original Data
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(b) Downscaled Data

Figure 20: First 25 digits of the MNIST Dataset with correct labels over every image. Original (left)
and downscaled (right) as used in our application.

The original grayscale pictures were size normalized to �t a 20x20 pixel box while keeping their
aspect ratio constant and then centered in a 28x28 pixel image by computing the center of mass
of the pixels and translating that point to the center (see Fig. 20a).
To reduce computation time, we downscaled the images to 14x14 pixels (see Fig. 20b) by averaging
over clusters of four pixels. The pixels are labeled in a �zig-zag� ordering which on average keeps
spatially neighboring pixels as close to each other as possible in the MPS representation [11].
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5 Discussion

Using the sweeping algorithm described in the last chapter to optimize the weights, we now explore
the performance and the convergence properties with respect to changes in di�erent numerical pa-
rameters. In particular, we tested the sensitivity of the algorithm with respect to the number
of sweeps, the step size α and the bond dimension m. To measure convergence we use test and
training error rates, which are de�ned as the fraction of misclassi�ed images, when checking with
the test image set and the set of images the MPS was trained with, respectively.
The algorithm converges quickly in the number of sweeps over the MPS and typically only requires
two or three sweeps after which test error rates only vary slightly. This is to some extend similar
to the original paper. However, while Stoudenmire achieves �test error rates changing only hun-
dredths of a percent�[11, p.5] after two or three sweeps, our results sometimes still show changes of
tenths of a percent, for a MPS trained with 60,000 images. At a bond dimension of m = 120, with
suboptimal α = 10−6 (see minimum in Fig. 23), test error rates as low as 3.5% were achieved. This
is not far from the reported 0.97% in the original paper [11], and with the possible improvements
of the algorithm discussed in the following, similar error rates might well be achieved. We will
also discuss various uncertainties and possible sources of error in our algorithm.

5.1 Normalization

During early testing of the algorithm it became necessary to introduce some kind of normalization
as the entries of the MPS tensors would grow rapidly which eventually let the algorithm fail.
Therefore all components of the data blocks were divided by the biggest entry after every update
of the data blocks. That way the convergence of the algorithm was restored but the normaliza-
tion remains somewhat arbitrary and it remains unclear how it in�uences the performance of the
algorithm and needs to be investigated further.
Additionally the SVD spectrum was normalized during each update for the same reason. Here we
took the inspiration for the normalization from the physical application of MPS where a normal-
ized SVD spectrum typically yields 〈Ψ|Ψ〉 = 1. From this thought we decided to normalize the
spectrum by the trace, which lead to good convergence and seemed natural due to the reasoning
from physics.

5.2 Bond dimension

As in the original work, test error rates decrease rapidly with the maximum bond dimension m.
Fig. 21 illustrates this dependency of the error rates for an MPS trained with 20,000 training
images and tested on 10,000 test images with step size α = 0.001. The two lines are errors from
testing with training and with test data. Fig. 21, 22, 23 suggest that the error recognizing the
training data is higher than the error classifying unknown test data. This counterintuitive result
could be caused by the fact that the system has not completely converged after �ve sweeps or due
to numerical instabilities of our implementation.
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Figure 21: Dependence of the error rates on the bond dimension m after �ve sweeps. The MPS was
trained with 20,000 training images and tested on 10,000 test images with step size α = 0.001.

5.3 Step size

Something that is not discussed in detail in Ref. [11] is the strong dependence of the results on the
choice of the step size α. This parameter has a strong in�uence on the error rates achieved and
is purely empirical. As can be seen in Fig. 22, the step size changes the error rates greatly and
has a clear minimum at α = 10−4 for a training set of 20,000 images. However, the optimal value
for α changes with the size of the training sample, making it necessary to determine the optimal
α every time the sample size is changed (see Fig. 23).
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(b) m = 80

Figure 22: Dependence of error rates on parameter α for di�erent bond dimensions m after 5 sweeps.
The MPS was trained with 20,000 training images and tested on 10,000 test images.
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Figure 23: Dependence of error rates on parameter α for an MPS trained with 60,000 training images
and tested on 10,000 test images after 5 sweeps with bond dimension m = 20.

Note that for some values of α, the error rates increase despite reaching already low values in
earlier sweeps. For instance, the data presented in Fig. 23 shows a local maximum for α = 10−4

after �ve sweeps. The test error rate after one sweep is as low as 18.4% before increasing to 38.48%
in the second and eventually 41.27% in the �fth and last sweep. The convergence of the algorithm
is therefore lost. It is thus very important to stress the high dependence of the algorithm on this
empirical parameter.

5.4 Additional remarks

The optimization used here represents the gradient descent step, where Bl was updated by simply
adding α∆Bl, which is not the optimal update scheme for such a optimization problem. Here it is
mainly employed for simplicity and its similarity to standard supervised learning techniques (see
Ch. 2.3.1). In fact, the conjugate gradient descent method would improve performance [11] and
could be implemented in a straightforward way. However, this is beyond the scope of this thesis.
The one dimensional mapping of the two dimensional images of handwritten digits might not
be ideal to capture the correlations between pixels. Even though MPS are optimized for one-
dimensional patterns of correlations they still o�er powerful performance for a two-dimensional
system such as the images we are dealing with [32]. However, while an MPS can still approximate
power-law decays over quite long distances [11] the choice of tensor network may also in�uence
the e�ciency of the algorithm. Other two-dimensional networks might o�er superior modeling
capacity, e.g. a MERA (multi-scale entanglement renormalization ansatz) network [26], which can
explicitly model power-law decaying correlations or Projected Entangled Pair States (PEPS) [25],
which are explicitly designed for two-dimensional systems. It would be interesting to investigate
this further and �nd the best tensor network for a given task.
As mentioned above, it is not necessary to truncate with respect to a �xed bond dimension. One
key advantage of the MPS representation is that the bond dimension can be chosen adaptively
based on some threshold. In this way, a variable number of singular values larger than some
threshold are kept depending on how much entanglement (i.e., correlations) is in the system. This
feature enables us to compress the MPS form of W l as much as possible while still ensuring an
optimal decision function [11]. However, we found that the typical singular value spectra (see
Fig. 24) are not decreasing fast enough to �nd an suitable threshold that does not exceed our
computational limitations. For an optimal representation the SVD spectra of the MPS would have
to decrease exponentially. A couple of test were performed with di�erent thresholds but none of
them had any success. Either the MPS bond dimensions exploded during the �rst sweep or so few
singular values were kept that error rates became very high.
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Figure 24: Normalized singular value spectrum before truncation at the 100th site of the MPS
recorded over �ve sweeps for a bond dimension of m = 120. Each row represents one sweep, with
the left panels being the sweep from the right side of the chain to the left side and the right panels
being the sweep back.
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6 Conclusion

In this thesis, we studied recent developments in the �eld of computational condensed matter
physics, where it becomes increasingly popular to combine machine learning with well-established
tensor network techniques. To this end, we �rst discussed some background knowledge about
machine learning and neural networks and elaborated on the basis of a speci�c class of tensor
networks, so-called matrix product states (MPS). Then we introduced a quantum-inspired tensor
network approach to multi-class supervised learning tasks. While the one-dimensional MPS ansatz
worked well even for the two-dimensional MNIST handwritten digit data, much work remains to
determine the optimal tensor network for a given domain. Other tensor networks may be more
suitable and o�er superior performance, such as PEPS, which are explicitly designed for two-
dimensional systems. Also �nding the optimal set of parameters, especially the best step size
α requires more work and tests. It would be helpful to understand the e�ects of the applied
normalization and the regularization through the tensor network parametrization.
Still, the representation of the weights of a neural network as a tensor network has many interesting
implications. Most notably, it enables non-linear kernel learning with a cost that scales only linear
with training set size for optimization, and is independent of the training set size for evaluation,
while still using a very expressive feature map (the dimension of feature space scales exponetially
with the size of the input space). It could also prove extremely useful for issues of interpretability,
since tensor networks are composed of linear operations only.
There is also much room to improve our optimization algorithm through standard approaches
known from machine learning, such as batch-learning or adaptive learning rates. Another simple
ways of improving the algorithm would be implementing a conjugate gradient descent update
instead of our gradient descent inspired update of the bond tensor Bl. It would be very interesting
to investigate the possibility to apply unsupervised learning techniques to initialize the tensor
network.
We are convinced there is great potential in investigating the power of tensor networks for machine
learning tasks and vice-versa exploring the use of neural networks in physical applications in the
future.
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A Code

This is the main code used in this thesis. It starts o� by initializing the di�erent input values,
converting them for the compiler and setting up di�erent parameters like �le names etc.
Then it initializes the MPS and the feature maps for both training and test data before imple-
menting the right and left sweeps for optimization. Finally it contracts the MPS to classify the
test and training data and check the error rates.

1 function [mps,spec,dev,trainerror,testerror] = mps_mnist(Ntrain,DB,Nsweep,alpha,
Ntest)

2 %<Description>
3 %
4 %<Input>
5 % Ntrain: [scalar] Number of training examples (max 60.000)
6 % DB: [scalar] bond dimension m (max m= 120)
7 % Nsweep: [scalar] number of (rl−lr) sweeps
8 % alpha: [scalar] empirical step size parameter the gradient update
9 % Ntest: [scalar] number of test examples for verification (max 10.000)
10 %
11 %<Output>
12 % mps: [cell] minimized matrix product state
13 % spec: [cell] svd spectra for the 2nd and 100th site of the mps
14 % dev: [vector] (1xNsweep) reduction of global cost in respective sweep
15 % trainerror: [vector] classification error for training data
16 % testerror: [vector] classification error for test data
17 %
18 % last edited D.Maier Jul6,2017
19

20

21 %% converting input for compiler
22 if isdeployed %take care of command line arguments
23 if ischar(Ntrain), Ntrain = str2num(Ntrain); end
24 if ischar(DB), DB = str2num(DB); end
25 if ischar(Nsweep), Nsweep = str2num(Nsweep); end
26 if ischar(alpha), alpha = str2num(alpha); end
27 if ischar(Ntest), Ntest = str2num(Ntest); end
28 end
29

30 %% reading MNIST dataset
31 disptime('reading MNIST dataset');
32 train = csvread('mnist_train.csv', 0, 0); % read train.csv
33 test = csvread('mnist_test.csv', 0, 0); % read test.csv
34

35 % downscaling to 14x14
36 disptime('downscaling dataset');
37 tr = train;
38 te = test;
39 train = zeros(size(tr,1),197);
40 test = zeros(size(te,1),197);
41 train(:,1) = tr(:,1);
42 test(:,1) = te(:,1);
43 %resizeing training pictures
44 for i = 1:size(tr,1)
45 ibig = reshape(tr(i, 2:end), [28,28]);
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46 ismall = imresize(ibig,1/2);
47 ismall = reshape(ismall,[1,196]);
48 train(i,2:end) = ismall;
49 end
50 %resizeing test oictures
51 for i = 1:size(te,1)
52 ibig = reshape(te(i, 2:end), [28,28]);
53 ismall = imresize(ibig,1/2);
54 ismall = reshape(ismall,[1,196]);
55 test(i,2:end) = ismall;
56 end
57

58

59 %% Setting inputs
60 train = train(1:Ntrain,:); %cutting train and test examples to size
61 test = test(1:Ntest,:);
62 imglen = 14; %defining image length do the downscaled 14x14 pixels
63 spec = cell(2,Nsweep*2); %initializing cell for the two spectra
64 trainerror = ones(1,Nsweep); %initializing vectors for errors of with training

and test data
65 testerror = ones(1,Nsweep);
66

67 D = DB; %bond dimension m , paper: max m= 120, truncate to fixed
dimension

68 d = 2; % dimension of feature map
69

70 % feature map
71 ftype = 'Normal';
72

73 % setting labels
74 labels = [0,1,2,3,4,5,6,7,8,9];
75 l = size(labels,2);
76 % ouputting parameters for easier identification in the log file
77 parameters={'Ntrain',Ntrain;'DB',DB;'Nsweep',Nsweep;'alpha',alpha;'Ntest',Ntest;

'imglen',imglen};
78 parameters
79

80 %% Setting folder name etc.
81 folder=sprintf('results/mps_mnist/alphafinal/Ntrain%iDB%iNsweep%ialpha%.gNtest%i

',Ntrain,DB,Nsweep,alpha,Ntest);
82 filename=strcat(folder,'/results.mat');
83 if ~exist(filename,'file')
84 mkdir(folder);
85 savedexist=0;
86 else
87 savedexist=1;
88 end
89

90

91

92 %% Beginning of the actual algorithm
93

94 %% setting up MPS
95 disptime('Initializing with random MPS');
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96 mps = randommps_lN(imglen^2,D,d,l); %initializing MPS with index l on last site
N

97 mps = prepareM(mps,DB,'twosite_L'); %preparing MPS to be left−normalized with l
still on last site

98 for i = 1:imglen^2−1
99 [mps{i},mps{i+1}]=prepare_twosite_L(mps,i,DB,'lr');
100 end
101

102 %% calculating feature map
103 disptime('Calculating feature map for training'); %mapping training inputs
104 fm = cell(Ntrain,imglen^2);
105 for i = 1:Ntrain
106 for j= 1:imglen^2
107 fm{i,j} = featuremap2(ftype,d,train(i,j+1));
108 end
109 end
110 disptime('Calculating feature map for testing'); %mapping test inputs
111 ft = cell(Ntest,imglen^2);
112 for i = 1:Ntest
113 for j= 1:imglen^2
114 ft{i,j} = featuremap2(ftype,d,test(i,j+1)); %j+1 beause first entry is

label
115 end
116 end
117

118

119 %% initializing data storage from left >> right
120 disptime('Initializing data storage −−>>');
121 data = cell(Ntrain,imglen^2);
122 for i = 1:Ntrain
123 data{i,1} = contract(fm{i,1},2,2,mps{1,1},3,3); %contracting first entry

[1,1,D]
124 data{i,1} = permute(data{i,1},[1,3,2]); % [1,D]
125 data{i,1} = data{i,1}/max(abs(data{i,1}(:))); %normalize through max
126 end
127 %initializing the rest of the chain (except last 2, they are not needed )
128 for j = 2:(imglen^2 − 2)
129 for i = 1:Ntrain
130 data{i,j} = updateData(mps,fm,data,i,j−1,'lr');
131 end
132 end
133

134 %% Sweeps
135 %initializing cost starage with some arbitrary value
136 cstore = cell(size(mps));
137 for i = 1:size(cstore,2)
138 cstore{1,i} = 100000;
139 end
140

141 dev = zeros(1,Nsweep); % initializing vector tracking developement of cost over
sweeps

142

143 for itS = (1:Nsweep)
144 costold = cstore; %backing up old cost
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145 % right sweep (right−>left)
146 disptime(['rl <<−− sweep #',sprintf('%i/%i',[itS Nsweep])]);
147 for j = imglen^2:−1:2
148 %updating mps locally
149 [mps{1,j},mps{j−1},cstore,spec] = updateBSVD(mps,j,DB, 'rl',fm,cstore,train,

data,spec,itS,alpha); % initializing last entry for sweep back
150 if j == imglen^2
151 for i = 1:Ntrain
152 data{i,imglen^2} = contract(fm{i,imglen^2},2,2,mps{1,imglen^2},3,3);

%contracting first entry [1,1,D]
153 data{i,imglen^2} = permute(data{i,imglen^2},[1,3,2]); % [1,1,D]
154 data{i,imglen^2} = squeeze(data{i,imglen^2}); %[1,D]
155 data{i,imglen^2} = data{i,imglen^2}/max(abs(data{i,imglen^2}(:))); %

normalize
156 end
157 %updating data
158 else
159 for i = 1:Ntrain
160 data{i,j} = updateData(mps,fm,data,i,j+1,'rl');
161

162 end
163 end
164 end
165

166 % left sweep (left−>right)
167 disptime(['lr −−>> sweep #',sprintf('%i/%i',[itS Nsweep])]);
168

169 for j = 1:imglen^2−1
170

171 [mps{1,j},mps{j+1},cstore,spec] = updateBSVD(mps,j,DB, 'lr',fm,cstore,
train,data,spec,itS,alpha);

172 %initializing first entry
173 if j == 1
174 for i = 1:Ntrain
175 data{i,1} = contract(fm{i,1},2,2,mps{1,1},3,3); %contracting

first entry [1,1,D]
176 data{i,1} = permute(data{i,1},[1,3,2]); % [1,D]
177 data{i,1} = data{i,1}/max(abs(data{i,1}(:))); %normalize through

max
178 end
179 %updating data
180 else
181 for i = 1:Ntrain
182 data{i,j} = updateData(mps,fm,data,i,j−1,'lr');
183

184 end
185 end
186 end
187 %evaluating cost difference
188 cd = 0;
189 for i = 1:size(cstore,2)
190 cd = cd + (costold{1,i}−cstore{1,i});
191 end
192 dev(1,itS) = cd;
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193 disptime(['In sweep #', sprintf('%i/%i',[itS Nsweep]),' the total cost has
been reduced by:',sprintf('%i',cd)]);

194

195 %% contracting MPS with test data for check of error rates
196

197 disptime('contracting MPS with test data−−>>');
198 cont = cell(Ntest,imglen^2);
199 for i = 1:Ntest
200 cont{i,1} = contract(ft{i,1},2,2,mps{1,1},3,3); %contracting first entry

[1,1,D]
201 cont{i,1} = squeeze(cont{i,1}); % [D,1]
202 cont{i,1} = permute(cont{i,1},[2,1]); %[1,D]
203 cont{i,1} = cont{i,1}/max(abs(cont{i,1}(:)));
204 end
205 for i = 1:Ntest
206 for j = 2:imglen^2−1
207 cont{i,j}= updateData(mps,ft,cont,i,j−1,'lr');
208

209 end
210 end
211 for i = 1:Ntest
212 last = contract(ft{i,imglen^2},2,2,mps{1,imglen^2},4,3); %contracting last

entry [1,D,1,l]
213 cont{i,imglen^2} = contract(cont{i,imglen^2−1},2,2,last,4,2); % [1,1,l]
214 cont{i,1} = cont{i,imglen^2};
215 cont{i,1} = squeeze(cont{i,1});
216 cont{i,1} = cont{i,1}/max(abs(cont{i,1}(:)));
217 end
218

219

220 %% comparing with test data
221 disptime('comparing results to correct answers');
222 correct = test(:,1)+1;
223 results = zeros(Ntest,1);
224 for i = 1:Ntest
225 results(i,1) = find(cont{i,1} == max(cont{i,1}));
226 end
227 answers = correct ==results;
228 testerror(1,itS) = 1−sum(answers)/Ntest;
229 disptime(['Test examples correctly classified: ',sprintf('%i/%i',[sum(answers)

Ntest]), ' trained with: ',sprintf('%i',size(train,1)),' training examples.'
]);

230

231 %% comparing with training results
232 correct2 = train(:,1)+1;
233 B = contract(mps{imglen^2−1},3,2,mps{imglen^2},4,1); % size(B) = [D1,d,1,d,l]
234 B = permute(B,[1,3,2,4,5]);% [D1,1,d,d,l]
235

236 f = cell(Ntrain,1);
237 for i = 1:Ntrain
238 f{i} = B;
239 f{i} = squeeze(f{i}); %squeeze to [D,d,d,l]
240 f{i} = contract(f{i},4,1,data{i,imglen^2−2},2,2); %contract with left

wing
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241 f{i} = squeeze(f{i}); %squeeze to [d,d,l]
242 f{i} = contract(f{i},3,1,fm{i,imglen^2},2,2); %contract next bottom leg
243 f{i} = squeeze(f{i}); %squeeze to [d,l]
244 f{i} = contract(f{i},2,1,fm{i,imglen^2−1},2,2); %contract last bottom

leg −>[l,1]
245 end
246

247 results2 = zeros(Ntrain,1);
248 for i = 1:Ntrain
249 results2(i,1) = find(f{i,1} == max(f{i,1}));
250 end
251 answers2 = correct2 ==results2;
252 trainerror(1,itS) = 1−sum(answers2)/Ntrain;
253 disptime(['Training examples correctly classified: ',sprintf('%i/%i',[sum(

answers2) Ntrain])]);
254

255 %saving results [mps,spec;dev,trainerror,testerror]
256 save(filename,'mps','spec','dev','trainerror','testerror','parameters');
257 end

A.1 Update function

1 function [A,R,cstore,spec] = updateBSVD(mps,id,DB, direction,fm,cstore,train,
data,spec,itS,alpha)

2 %<Description>
3 %
4 % function [A,R,cstore,spec] = updateBSVD(mps,id,DB, direction,fm,cstore,train,

data,spec)
5 %
6 %<Input>
7 % mps: [array] the entire mps
8 % id: [scalar] index of tensor to be updated
9 % DB : [scalar] bond dimension for truncation
10 % direction : [char array] Must be either 'lr' or 'rl'. Determines the
11 % direction for the canonical form.
12 %fm: [array] mapped input data
13 %cstore: [array] cost storage
14 %train: training data (this is given to cost.m as the correct labels)
15 %data: [array] storage of left and right 'blocks' (this is also handed to cost.m

)
16 %spec: [array] cell with svd spetra
17 %itS: [scalar] iteration of sweeps (to put spectrum into correct place in spec)
18 %alpha: [scalar] empirical step size for update
19 %
20 % < Output >
21 % A : [tensor] The canonical form of input tensor M.
22 % R : [tensor] Tensor to be transformed next. (indec l is moved)
23 %cstore: [array] cost storage with minimized cost
24 %spec: [array] cell with svd spetra
25 %Written by D.Maier (Jun08,2017) edited Jun26,2017
26

27 switch direction
28 case 'lr'
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29 M = mps{id};
30 N = mps{id+1}; % M |l N
31 [D1,~,d,l]= size(M); % D1 − o − D2 D3 −o − D4
32 [~,D4,~]= size(N); % |d |d
33

34

35 %form two−site tensor B
36 B = contract(M,4,2,N,3,1); % size(B) = [D1,d,l,D4,d]
37 B = permute(B,[1,4,2,5,3]);% [D1,D4,d,d,l]
38

39 %% update here
40 costold = cstore{1,id};
41 [cstore{1,id}, delB] = cost(B,data,fm,id,'lr',train(:,1));
42 if cstore{1,id} < costold %only update if cost is lowered
43 B = B + alpha*delB;
44 else
45 cstore{1,id} = costold;
46 end
47

48 %% svd and truncation
49 B = permute(B,[1,3,2,4,5]);% size(B) = [D1,d,D4,d,l]
50 B = reshape(B, [D1*d,D4*d*l]);
51 if isempty(DB) %no DB input, no truncation
52 [A,S,R]=svd(B,'econ');
53 ds = size(S,1);
54

55 R = R';
56 S = S/trace(S*S);
57 if id == 2 % putting svd spectrum into cell for later plotting
58 spec{1,2*itS−1} = diag(S);
59 elseif id == 100
60 spec{2,2*itS−1} = diag(S);
61 end
62 %reshape to final form
63 A = reshape(A,[D1,d,ds]); %D1,d = o − ds
64 A = permute(A,[1,3,2]); % −> (|d)
65 R = S*R; %[ds,D4*d*l]
66 R = reshape(R,[ds,D4,d,l]);
67

68 else %truncation
69 [A,S,R]=svd(B,'econ');
70 R = R';
71 ds = size(S,1);
72 S = S/trace(S*S);
73

74 if id == 2 % putting svd spectrum into cell for later plotting
75 spec{1,2*itS−1} = diag(S);
76 elseif id == 100
77 spec{2,2*itS−1} = diag(S);
78 end
79

80 if ds <=DB %no truncation
81 %reshape to final form
82 A = reshape(A,[D1,d,ds]); %D1,d = o − ds
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83 A = permute(A,[1,3,2]); % −> (|d)
84 R = S*R; %[ds,D4*d*l]
85 R = reshape(R,[ds,D4,d,l]);
86

87 else %truncation
88 A = A(:,1:DB); %[D1*d,DB]
89 S = S(1:DB,1:DB);
90 R = R(1:DB,:);
91 %reshape to final form
92 A = reshape(A,[D1,d,DB]); %D1,d = o − DB
93 A = permute(A,[1,3,2]); % −> (|d)
94 R = S*R; %[DB,D4*d*l]
95 R = reshape(R,[DB,D4,d,l]);
96 end
97 end
98

99 case 'rl'
100 M = mps{id};
101 N = mps{id−1}; % N |l M
102 [~,D2,d,l]= size(M); % D3 − o − D4 D1 −o − D2
103 [D3,~,~]= size(N); % |d |d
104 B = contract(N,3,2,M,4,1); % size(B) = [D3,d,D2,d,l]
105 B = permute(B, [1,3,2,4,5]); %[D3,D2,d,d,l]
106

107 %% update here
108 costold = cstore{1,id};
109 [cstore{1,id}, delB] = cost(B,data,fm,id,'rl',train(:,1));
110 if cstore{1,id} < costold %only update if cost is lowered locally
111 B = B + alpha*delB;
112 else
113 cstore{1,id} = costold;
114 end
115

116 %% svd and truncation
117 B = permute(B, [1,3,5,2,4]); %[D3,d,l,D2,d]
118 B = reshape(B, [D3*d*l,D2*d]);
119 if isempty(DB) %no DB input, no truncation
120 [R,S,A]=svd(B,'econ');
121 A = A';
122 S = S/trace(S*S);
123 if id == 2 % putting svd spectrum into cell for later plotting
124 spec{1,2*itS} = diag(S);
125 elseif id == 100
126 spec{2,2*itS} = diag(S);
127 end
128 DB = size(S,1);
129 %reshape to final form
130 A = reshape(A,[DB,D2,d]);
131 R = R*S;
132 R = reshape(R,[D3,d,l,DB]);
133 R = permute(R,[1,4,2,3]);
134

135 else %truncation
136 [R,S,A]=svd(B,'econ');
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137 A = A';
138

139 ds = size(S,1);
140 S = S/trace(S*S);
141

142 if id == 2 % putting svd spectrum into cell for later plotting
143 spec{1,2*itS} = diag(S);
144 elseif id == 100
145 spec{2,2*itS} = diag(S);
146 end
147

148 if ds <=DB %no truncation
149 %reshape to final form
150 A = reshape(A,[ds,D2,d]); % ds −o= D2*d
151 R = R*S;
152 R = reshape(R,[D3,d,l,ds]);
153 R = permute(R,[1,4,2,3]);
154

155 else %truncation
156 R = R(:,1:DB); %[D1*d,DB]
157 S = S(1:DB,1:DB);
158 A = A(1:DB,:);
159 %reshape to final form
160 A = reshape(A,[DB,D2,d]);
161 R = R*S;
162 R = reshape(R,[D3,d,l,DB]);
163 R = permute(R,[1,4,2,3]);
164 end
165 end
166

167 otherwise
168 error('ERR: ''direction'' should be either ''lr'' or ''rl''.');
169 end

A.2 Cost function

1 function [cost,grad] = cost(B,data,fm,id,direction,label)
2 %<Description>
3 % cost function
4 %<Inputs>
5 % B: [tensor] rank 5 tensor being optimized (D,D,d,d,l)
6 % labels: [cell array]: Ntrain x 1 vector with correct labels
7 % data: [cell array] with left right blocks (Ntrain x #sites)
8 % fm: [cell array]
9 % id: [scalar] index of site being optimized
10 % direction: [string] direction we are going
11

12 %<Outputs>
13 % cost: [scalar]
14 % grad: [tensor] to update B
15 %written by D.Maier(Jun11,2017)
16

17 [Ntrain,N] = size(data);
18 f = cell(Ntrain,1);
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19 del = cell(Ntrain,1);
20 cost = 0;
21 grad = zeros(size(B));
22 [D1,D2,d,~,~] = size(B);
23

24 switch direction
25 case'lr'
26 for i = 1:Ntrain
27 if id == N−1
28 f{i} = B;
29 else
30 f{i} = contract(B,5,2,data{i,id+2},2,1); %contract with

right wing
31 end
32 f{i} = squeeze(f{i}); %squeeze to [D,d,d,l]
33

34 if id ~= 1
35 f{i} = contract(f{i},4,1,data{i,id−1},2,2); %contract with

left wing
36 f{i} = squeeze(f{i}); %squeeze to [d,d,l]
37 end
38 f{i} = contract(f{i},3,1,fm{i,id+1},2,2); %contract next

bottom leg
39 f{i} = squeeze(f{i}); %squeeze to [d,l]
40 f{i} = contract(f{i},2,1,fm{i,id},2,2); %contract last

bottom leg −>[l,1]
41

42 del{i,1} = zeros(10,1);
43

44 del{i,1}(label(i,1)+1,1) = 1; %Kronecker l,L_n +1
to map 0 to 1...

45 del{i} = (f{i} − del{i}); %difference [10,1]
46 cost = cost + 0.5*del{i}'*del{i}; %calculate total

cost
47

48 %% calculate gradient
49 % del[10,1], data{left}[1xD1], data{right}[D2x1] ,fm[1xd]
50

51 if id == 1 %leftmost entry , left bit is 1
52 a = mkron(−del{i},data{i,id+2},fm{i,id+1},fm{i,id}); %[10*D2

,d*d]
53 a = reshape(a,[1,10,D2,d,d]);
54 a = permute(a,[1,3,4,5,2]); %a [1,D,d,d,l]
55 elseif id == N−1 %rightmost entry , right bit is 1
56 a = mkron(−del{i},data{i,id−1},fm{i,id+1},fm{i,id}); %[10,D1

*d*d]
57 a = reshape(a,[10,D1,1,d,d]);
58 a = permute(a,[2,3,4,5,1]);
59 else %all others
60 a = mkron(−del{i},data{i,id+2},data{i,id−1},fm{i,id+1},fm{i,

id}); %[10*D2,D1*d*d]
61 a = reshape(a,[10,D2,D1,d,d]);
62 a = permute(a,[3,2,4,5,1]);
63 end
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64

65 grad = grad + a;
66 end
67

68 case 'rl'
69 for i = 1:Ntrain
70 if id == N
71 f{i} = B;
72 else
73 f{i} = contract(B,5,2,data{i,id+1},2,1); %contract with

right wing
74 end
75 f{i} = squeeze(f{i}); %squeeze to [D,d,d,l]
76 if id ~= 2
77 f{i} = contract(f{i},4,1,data{i,id−2},2,2); %contract with

left wing
78 f{i} = squeeze(f{i}); %squeeze to [d,d,l]
79 end
80 f{i} = contract(f{i},3,1,fm{i,id},2,2); %contract next bottom

leg
81 f{i} = squeeze(f{i}); %squeeze to [d,l]
82 f{i} = contract(f{i},2,1,fm{i,id−1},2,2); %contract last bottom

leg −>[l,1]
83

84 del{i,1} = zeros(1,10);
85 del{i,1}(1,label(i,1)+1) = 1; %Kronecker l,L_n +1 to

map 0 to 1...
86 del{i} = (f{i} − del{i}'); %difference [10,1]
87 cost = cost + 0.5*del{i}'*del{i}; %calculate total cost
88

89 %% calculating gradient
90

91 if id == 2 %leftmost entry , left bit is 1
92 a = mkron(−del{i},data{i,id+1},fm{i,id},fm{i,id−1}); %[10*D2,d*d

]
93 a = reshape(a,[1,10,D2,d,d]);
94 a = permute(a,[1,3,4,5,2]); %a [1,D2,d,d,l]
95 elseif id == N %rightmost entry , right bit is 1
96 a = mkron(−del{i},data{i,id−2},fm{i,id},fm{i,id−1}); %[10,D1*d*d

]
97 a = reshape(a,[10,D1,1,d,d]);
98 a = permute(a,[2,3,4,5,1]);
99 else %all others
100 a = mkron(−del{i},data{i,id+1},data{i,id−2},fm{i,id},fm{i,id−1})

; %[10*D2,D1*d*d]
101 a = reshape(a,[10,D2,D1,d,d]);
102 a = permute(a,[3,2,4,5,1]);
103 end
104

105 grad = grad + a;
106 end
107 otherwise
108 error('ERR: ''direction'' should be either ''lr'' or ''rl''.');
109 end
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A.3 Data block update function

1 function UD = updateData(mps,fm,data,i,j,direction)
2 %<Description>
3 % function that updates data blocks
4 % [left−o−]−o−o−[−o−right]
5 % −> [left]−o−o−[−o−o−right] ('rl') or [left−o−o−]−o−o−[−right] ('lr')
6 %
7 %<Input>
8 % mps: [cell array]
9 % fm : [vector] to contract physical index of mps
10 % data [cell array]
11 % i,j: [scalar] index of the data cell to be updated
12 % direction: [string] direction the block is growing
13 %
14 %<Output>
15 % UD : [cell] updated data cell
16 %
17 %Written by D.Maier(Jun13,2017)
18

19 DC = data{i,j}; % [1,D] or [D,1]
20 % (DC : [cell] data cell to be updated)
21

22

23 switch direction
24 case 'lr'
25 next = contract(fm{i,j+1},2,2,mps{1,j+1},3,3); %[1,D,D]
26 next = permute(next,[2,3,1]); %[D,D]
27 UD = contract(DC,2,2,next,2,1); %[1,D]
28 UD = UD/max(abs(UD(:))); %normalization
29 case 'rl'
30 next = contract(fm{i,j−1},2,2,mps{1,j−1},3,3); %[1,D,D]
31 next = permute(next,[2,3,1]); %[D,D]
32 UD = contract(next,2,2,DC,2,1); %[1,D]
33 UD = UD/max(abs(UD(:))); %normalization
34 otherwise
35 error('ERR: ''direction'' should be either ''lr'' or ''rl''.');
36 end

A.4 Additional functions

Additional functions like contract.m, to contract two tensors, or featuremap2.m, to compute the
feature map (37), were used but are not appended here as they do not contain any important
information for the algorithm and were just used for convenience.
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