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Abstract

In this work we want to demonstrate how linear prediction can be used to improve the Chebyshev
expansion of spectral functions. The Chebyshev moments of a spectral function can be calculated
recursively, using a matrix product state (MPS) approach. They can then be extrapolated with linear
prediction, which leads to a drastic increase in precision of the reconstructed spectral function. We
are going to look into two recently developed linear prediction setups and apply them to different
systems. We will analyze the quality of the obtained results and discuss the influence of the system
parameters on the error of the reconstruction. To make this work as self contained as possible we
will first give an introduction into the underlying physical concepts. Also we will have a short look at
the most important numerical principles that are applied in the framework of this thesis. The linear
prediction methods will be tested on an artificial test function and on the Single Impurity Anderson
Model (SIAM).



Chapter 1

Introduction

The SIAM is an example of a quantum impurity system. Such systems are characterized by a small
subsystem (the impurity) with very few degrees of freedom, coupled to a bath of an infinite amount of
degrees of freedom. As an example, we can imagine a magnetic atom residing in a nonmagnetic metal.
The infinite bath thus contains the conduction electrons of the host metal.
Systems of this kind represent an interesting branch of modern solid state physics and can be used
to describe a large amount of physical phenomena [1–3]. Because of the complexity of these models
a purely analytical treatment is out of question in most cases. Also the strong interactions in these
systems -e.g. the coulomb interaction of two electrons on the impurity- prevent a successful description
based on perturbation theory. Therefore we often have to resort to a numerical treatment.
One of the most established computational methods to treat these quantum impurity models is the
numerical renormalization group (NRG), first introduced by Wilson to treat the Kondo problem [4].
It discretizes the continuous bath of conduction electrons and maps it onto a discrete semi-infinite
chain. The first site of this chain couples to the impurity and the coupling between the chain sites
decreases exponentially. Thus, NRG can resolve the low energy physics of impurity systems with high
accuracy. However, the high precision of this method is restricted to low energy scales; in order to
avoid an exponential growth of the Hilbert space the high energy states of the system are eliminated
in each iteration step.
This implies that the high energy feature of the spectral function can only be poorly resolved.
In order to be able to capture also the high energy physics of these impurity systems, a method with
a uniform energy resolution is in order. This can be achieved by expanding the spectral function
in terms of Chebyhsev polynomials, which has been introduced in the context of kernel polynomial
methods [5]. In 2011 Holzner et al. [6] combined the Chebyshev expansion with matrix-product-state
(MPS) techniques to compute the spectral function at zero temperature. To this end one determines
the ground state of the system using the density-matrix-renormalization group (DMRG) [7, 8], and
then recursively calculates the Chebyhsev moments of the series expansion. The spectral function can
then be reconstructed from the calculated moments. Employing this method, we are able to resolve
the whole spectral width of the spectral function uniformly. However, the calculation of the moments
is numerically costly and can be plagued by finite-size effects for higher expansion orders.
Determining only a limited amount of expansion coefficients yields artificial oscillations, so called Gibb’s
oscillations in the reconstructed spectral function. These oscillations can be removed by employing
damping factors, which comes at the price of ’smearing out’ features of the spectral function itself and
thus decreases spectral resolution [6].
Ganahl et al. [9] proposed to extrapolate the Chebyshev moments of spectral functions by applying
linear prediction, which removes Gibb’s oscillations and increases the precision of the reconstructed
function considerably. Even more recently, Wolf et al. [10] have proposed an adaptation of linear
prediction to further enhance the spectral resolution.
The goal of this thesis is to give an overview over the recently developed linear prediction methods [9,10]
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CHAPTER 1. INTRODUCTION 2

in the context of spectral functions. In Chapter 2 we will first introduce some underlying physical
concepts such as Green’s functions and spectral functions. In Chapter 3 the basic numerical instruments
will be discussed as well as the discretization of the SIAM hamiltonian. Finally we will present the
results for various test- and spectral functions in Chapter 4 and give a conclusion in Chapter 5.



Chapter 2

Physical Prerequisites

This chapter focuses on the quantum mechanical background of the systems treated in this work. We
are first going to introduce the SIAM Hamiltonian, which is a typical impurity model. Secondly we will
have a look at the Green’s function, since it is a very powerful and important tool to solve problems
in solid state physics. This then leads us to the concept of spectral functions, which will be treated in
the last part of this chapter.

2.1 The Single Impurity Anderson Model
The SIAM is a model to describe magnetic impurities in metals. These impurities are ions with a
magnetic moment, occupying lattice sites in the metallic host. Because of their magnetic properties,
these ions can interact with the conduction electrons of the host metal, leading to a vast number of
interesting physical phenomena, such as Kondo correlations.
In order to understand this impurity model, we are first going to study the Hamiltonian and then
describe and explain the terms individually. In second quantization, the Hamiltonian reads:

H = H0 +HU +Hhyb (2.1)

with

H0 =
∑
σ

εdc
†
σdcσd +

∑
σk

εkc
†
σkcσk, (2.2)

HU = Uc†↑dc↑dc
†
↓dc↓d, (2.3)

Hhyb =
∑
σk

(
tkc
†
σkcσd + t∗kc

†
σdcσk

)
. (2.4)

where c† and c are the fermionic creation and annihilation operator, respectively. The physical inter-
pretation of the various constants U ,εd, εk and tk (t∗k) will be discussed later. First, we elaborate on
the creation and annihilation operators in more detail, since they are the key to understanding the
Hamiltonian.
The fermionic creation operator c†ν creates a fermion, in our case an electron, in the quantum state
characterized by the quantum number ν, whereas the annihilation operator cν destroys a particle in
that state. These operators, although not hermitian, fulfil the following anticommutation relations:

{cνi
, c†νj
} = δνi,νj

{c(†)νi
, c(†)νj
} = 0. (2.5)

3



CHAPTER 2. PHYSICAL PREREQUISITES 4

where the brackets represent the anticommutator {A,B} = AB+BA. Using c† and c we can construct
another useful operator, namely the number operator, defined as

nν = c†νcν . (2.6)

When applied to a quantum state this operator counts the number of particles occupying this particular
state. In the fermionic case, this number can be either 0 or 1, since the Pauli Principle prohibits any
occupation number larger than 1. Per definition, the number operator is hermitian and thus an
observable. In the following, we are going to analyze the individual terms of the Hamiltonian in
equation (2.1).
The non-interacting term

H0 =
∑
σ

εdc
†
σdcσd +

∑
σk

εkc
†
σkcσk (2.7)

contains two sums, the first describing the energy of free electrons in the outer shell of the impurity
atom. Since this is often the d-shell the creation and annihilation operators are labeled with the index
d. Comparing this term to equation (2.6) we see that it is nothing else but the sum over the two spin
configurations of the number operator multiplied with the energy εd. Thus, the total (non-interacting)
energy of the impurity is determined by its occupation number and the constant εd
The second sum represents the energy of the electrons in the conduction band. Analogous to the energy
of the d-electrons, it is given by the number operator multiplied with the energy εk of the occupied
state. It turns out that it is generally a good approximation to treat the conduction band as a system
of free electrons [3].
The interaction term of the SIAM

HU = Uc†↑dc↑dc
†
↓dc↓d (2.8)

contains the particle density for spin up as well as spin down electrons. It describes the interaction of
two electrons in the d-shell of the impurity ion due to the Coulomb potential. The constant U is the
strength of the interaction.

Since the d-shell of the impurity ion and the conduction band of the metal are energetically close,
it is possible for electrons to jump from the d-shell to the conduction band and the other way around.
This hybridization of the d-orbital is represented by

Hhyb =
∑
σk

(
tkc
†
σkcσd + t∗kc

†
σdcσk

)
. (2.9)

The expression contains on the one hand the combination c†σkcσd, where we create an electron in the
conduction band with momentum k and at the same time annihilate a d-electron. On the other hand
we can also create an electron in the d-shell and annihilate a conduction electron, which is represented
by the term c†σdcσk. Expressions of this form are called hopping terms, since they mean that an electron
is ’hopping’ from one state to another. The constants tk and t∗k represent the probability for such a
process to occur.

2.1.1 Remark: The Statistical Ensemble
Since we are interested in many-body problems throughout this whole thesis it is important to be
precise on which statistical ensemble we are working in. It is favourable to choose the grand canonical
ensemble when working with quantum particles. This means that neither energy nor particle number
are fixed values, but can only be known in average. In the grand canonical ensemble the expectation
value of an observable A is defined as

〈A〉 = 1
Z

Tr
(
Ae−β(H−µN)

)
, (2.10)
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where Z = Tr(e−β(H−µN)) is the partition function. It is important to note that the time evolution of
operators in this ensemble is dependent on H ′ = H − µN instead of H, which means that the particle
energies are measured respectively to the chemical potential µ. In this whole thesis the operator H
therefore has to be understood as H − µN and the eigenenergies εk as εk − µ, even though we don’t
write this explicitly.

2.2 Green’s -and Spectral Function
2.2.1 The Green’s Function
The theoretical analysis of interacting many-body systems is often based on dynamical correlation
functions or Green’s functions. Analogous to classical electrodynamics, the Green’s function G(r, r′)
of a many-body system can be defined for a particular differential operator D. This function fulfills
the relation:

DG(r, r′) = δ(r− r′). (2.11)

The one-particle retarded Green’s Function GR(r, r′) for many-body systems in position space has the
following form:

GR(rσt, r′σ′t′) ≡ −iθ(t− t′)〈{Ψ(rσ, t),Ψ†(r′σ, t′)}〉, (2.12)

where Ψ(r, t) and Ψ†(r′, t′) are so called quantum field operators, which are essentially spatial creation
and annihilation operators. Analogously to c†ν and cν , Ψ†(r, t) and Ψ(r, t) create, respectively destroy
a fermion at a spatial point r. Of course we can make this definition more general, simply using c†ν
and cν for any set of quantum numbers ν instead of Ψ†(r, t) and Ψ(r, t):

GR(νt, ν′t′) ≡ −iθ(t− t′)〈{cν(t), c†ν′(t′)}〉. (2.13)

The Green’s function is called retarded because it is nonzero only for times t > t′, which guarantees
causality. Note that this expression holds for bosons as well if we change the anticommutator into a
commutator.
In addition to the retarded Green’s function, it is common to introduce two other Green’s functions,
namely G>(νt, ν′t′) (G-greater) and G<(νt, ν′t′) (G-lesser) defined as (again in the fermionic case):

G>(νt, ν′t′) ≡ −i〈cν(t)c†ν′(t′)〉 G<(νt, ν′t′) ≡ i〈c†ν′(t′)cν(t)〉. (2.14)

The retarded Green’s function GR(νt, ν′t′) as defined in (2.12) can be expressed in terms of the greater-
and lesser Green’s functions by

GR(νt, ν′t′) = θ(t− t′)
(
G>(νt, ν′t′)−G<(νt, ν′t′)

)
. (2.15)

The expectation values are taken with respect to the grand canonical ensemble that we have introduced
in 2.1.1. As is shown in Appendix A, the Green’s function of free particles in the frequency domain
reads:

GR0 (σk;ω) = 1
ω − εk + iη

. (2.16)

This makes sense, because the Hamiltonian of free particles is diagonal in c†c (see 2.7). This implies
that the Green’s function must have the same property, which is evident in (2.16). Physically, this
means that a particle with momentum k will always stay in this state, which is consistent with the
assumption that the particles do not interact.
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2.2.2 The Spectral Function
Starting from the Green’s function we can define what we call the spectral function, or spectral density.
It consists of the imaginary part of the retarded Green’s function GR(ν, ω):

A(ν, ω) = − 1
π

ImGR(ν, ω). (2.17)

This function has a few useful properties, which make it particularly interesting to work with and.
Very often solving a model in solid state physics consists in finding exactly this particular function.
It can be shown, that the spectral function A(ν, ω) satisfies∫ +∞

−∞
dω A(ν, ω) = 1, (2.18)

as well as A(ν, ω) ≥ 0. To prove these relations, one needs the Lehmann representation of the Green’s
Functions, which we are not going to introduce here - for a detailed calculation, see [3]. Nevertheless
we can check that they hold for the example of free particles. Using the Green’s function in (2.16), we
find the relation:

A0(σk;ω) = δ(ω − εk). (2.19)

Per definition the Dirac delta is always larger or equal 0 and normalized to 1 and thus A0 respects the
required properties.
The equations (2.18) and A(ν, ω) ≥ 0 suggest that A(ν, ω) can be interpreted as a probability density.
Thus A(ν, ω)dω can be seen as the probability for a particle with quantum number ν to have an energy
lying in [ω,ω + dω].

Zero temperature spectral functions

The general expression for zero-temperature spectral functions can also be derived quite quickly from
the Green’s functions. As we have seen in Appendix A, the greater and lesser Green’s functions can
be interpreted as propagators for holes and electrons respectively [3]. From both these propagators,
we can formally derive an expression for two spectral functions A>(ω) and A<(ω). The physical
interpretation of the respective Green’s functions suggests that A>(ω) stand for the unoccupied and
A<(ω) for the occupied part of the spectrum [9]. We will execute this short calculation for the greater
function G>(ω) only. We begin by writing down the formal expression of the Green’s function in time
domain:

G>(t, t′) = −i 〈0|c(t)c†(t′)|0〉 (2.20)

where |0〉 denotes the energy ground state of the system. We can now explicitly express the time
dependence of the operators, which yields

G>(t, t′) = −i 〈0|c e−i(Ĥ−E0)(t−t′)c†|0〉 (2.21)

with E0 being the ground state energy. Note that in this step we have explicitly used the T = 0
condition. For finite temperatures the system is in general not in an eigenstate of the Hamiltonian,
which is the critical requisit of this calculation.
Performing the Fourier transformation like in Appendix A and extracting the imaginary part yields
the spectral function A>(ω):

A>(ω) = 〈0|c δ(ω − (Ĥ − E0)) c†|0〉 . (2.22)

Analogously, we can compute A<(ω):

A<(ω) = 〈0|c† δ(ω − (Ĥ − E0)) c|0〉 . (2.23)
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The full spectral function A(ω) is then given by the sum of these two functions:

A(ω) = A>(ω) +A<(−ω). (2.24)

In general, the full spectral function is smooth, whereas A>(ω) and A<(−ω) have a step at ω = 0. We
are going to discuss the implications of this property in the next chapter.

2.2.3 The SIAM Spectral Function
Having introduced the SIAM Hamiltonian and the expression for zero temperature spectral function
earlier in this chapter, we can now find an expression for the spectral density of the Anderson model. In
general this is however a very difficult task, since the onsite interaction leads to non-diagonal terms in
the Hamiltonian. What we can do as a first step is to ignore the Coulomb interaction of the electrons
on the impurity by setting U to 0. This limit is known as the resonating level model (RLM). In
this case, using the equation of motion ansatz (see [3]) we can derive an analytical expression for the
spectral function:

A(ω) = − 1
π

Im
(

1
ω − εd + Σ(ω)

)
, (2.25)

with

Σ(ω) = Γ
(
i+ 1

π
ln
(

1− ω
1 + ω

))
. (2.26)

Γ is determined by the hybridization: Γ = πV 2ρ(0) and gives the width of the spectral function.

−0.1 −0.05 0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

ω

π 
Γ 

A
(ω

)

Figure 2.1: The rescaled resonating level model (RLM) spectral function for Γ = 0.005 and εd = 0. In
this limit we ignore the coulomb interaction of the electrons on the impurity atom.

This expression is structurally not far from the spectral function of free fermions (2.19). Instead of a
delta function, which is infinitely narrow and high, we have a peaked curve of finite width Γ, given
by the hybridization (see Figure 2.1). The maximum value of A(ω) is reached for ω = 0 and it’s
value is given by A(0) = (πΓ)−1. For Γ = 0.005 this corresponds to A(0) ≈ 63.662. In the current
literature the spectral function is usually plotted in a rescaled form as πΓA(ω) as is shown in Figure 2.1.
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As mentioned above it is generally not easily possible to find closed analytical expressions for the
spectral densities of complex systems. We therefore have to resort to a numerical treatment. There
are different approaches to finding spectral functions for quantum impurity systems systems, e.g. the
aforementioned NRG or t-DMRG in combination with MPS. The code that I used is based on the
Chebyshev expansion of the spectral function, where the ground state is calculated with MPS. The
concepts of this method will be explained in the next chapter.



Chapter 3

Numerical Preparations

In this chapter I want to focus on the tools needed for the calculation of spectral functions of impurity
models and of the SIAM in particular. It is possible to reconstruct spectral functions numerically by
expanding them in Chebyshev polynomials and determining the ground state with MPS techniques
(CheMPS). Since the latter is far beyond the scope of this work, I want to focus on improving the
Chebyshev expansion by using linear prediction. To be as complete as possible we will first have a look
at the properties of Chebyshev polynomials and the expansion of functions in terms of them. We are
also going to treat the expansion of spectral functions and the needed rescaling of the Hamiltonian. In
the second section we are going to introduce linear prediction in the context of Chebyshev moments
and outline the subtleties of this numerical technique. In the last section of this chapter we are then
going to show how the SIAM Hamiltonian has to be discretized in order to be treatable numerically.

3.1 Chebyshev Expansion
The Chebyshev function of first kind Tn are a set of orthonormal polynomials of degree n. They can
be defined by the recursive relation

Tn(x) = 2xTn−1(x)− Tn−2(x), T0(x) = 1, T1(x) = x, (3.1)

or alternatively by the expression

Tn(x) = cos(n arccosx). (3.2)

Since they form an orthonormal basis in the interval [-1,1] any smooth and continuous function can
be expanded in terms of them:

f(x) = 1
π
√

1− x2

(
µ0 + 2

∞∑
n=1

µnTn(x)
)
. (3.3)

Here µn are the expansion coefficients and the factor (π
√

1− x2)−1 is a weight function, which assures
that the Chebyshev polynomials are actually orthonormal:

〈Tn, Tm〉 =
∫ 1

−1

1
π
√

1− x2
Tn(x)Tm(x) dx = δn,m. (3.4)

Combining (3.3) and (3.4) it follows that the coefficients µn are given by

µn =
∫ 1

−1
Tn(x)f(x) dx. (3.5)

Having introduced the most important features of Chebyshev expansions, we can now discuss their
application for the expansion of the spectral function.

9
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Figure 3.1: A few Chebyshev Polynomials in the interval I=[-1,1]. An important feature of these
polynomials is that within I, we have |Tn(x)| ≤ 1 and that the extremal values of Tn are either 1 or -1
for any n.

3.1.1 Expansion of the spectral function
Our goal is to find a method to numerically determine the spectral function of a system. The approach
of CheMPS is to expand the spectral function in Chebyshev polynomials and to recursively determine
the expansion coefficient.
Starting with the expression of the one-particle spectral function in Eqs. (2.22-2.24) at zero temper-
ature, we expand the quantity in terms of the orthonormal Chebyhsev polynomials. Using (3.3) and
(3.5), as well as the properties of the delta function we find

δ(ω −H) = 1
π
√

1− x2

(
1 + 2

∞∑
n=1

Tn(H)Tn(ω)
)
, (3.6)

and thus

A>(ω) = 1
π
√

1− ω2

(
〈0|cc†|0〉+ 2

∞∑
n=1
〈0|c Tn(H)c†|0〉Tn(ω)

)
. (3.7)

Comparing this equation to the general expression of the Chebyshev expansion (3.3), we can identify
the coefficients as µ>0 = 〈0|cc†|0〉 and µ>n = 〈0|c Tn(H)c†|0〉. These coefficients can be calculated
recursively by exploiting relation (3.1). This can be achieved quite efficiently in the MPS framework.
Since a detailed discussion of this numerical approach is beyond the scope of this thesis, we refer to
Ref. [6, 9] for a detailed introduction of CheMPS.
Of course we can calculate the expansion of the negative part of the spectral function A<(ω) analo-
gously.
With A(ω) = A>(ω) +A<(−ω) the full spectral function then reads:

A(ω) = 1
π
√

1− ω2

(
[µ>0 + µ<0 ] + 2

∞∑
n=1

[µ>n Tn(ω) + µ<n Tn(−ω)]
)
. (3.8)
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Using the relation Tn(−ω) = (−1)nTn(ω) we find

A(ω) = 1
π
√

1− ω2

(
µ0 + 2

∞∑
n=1

µnTn(ω)
)
, (3.9)

with µ0 = µ>0 + µ<0 and µn = µ>n + (−1)nµ<n .

The ground state 〈0|cc†|0〉 can be calculated in the MPS framework, and from there we can determine
the expressions for higher n recursively using (3.1). This recursion is however numerically very costly
and thus only a certain number of moments can be calculated until the numerical expense becomes
too high. This implies that the reconstruction of the spectral function will stop at a finite value N :

A(ω) = 1
π
√

1− ω2

(
µ0 + 2

N∑
n=1

µnTn(ω)
)
. (3.10)

Of course this finite expansion order leads to considerable errors in the reconstructed function, which
take the form of artificial oscillations, so called Gibbs oscillations. One method to avoid these oscilla-
tions is to smear them out using broadening kernels. The idea is that a convolution of an oscillating
function with a cleverly chosen peaked function - either Gaussian or Lorentzian - will erase the oscilla-
tions (see Figure 3.2). A more extensive discussion on the broadening kernels can be found in Ref. [6].
The problem with this method is that the interesting features of the spectral function are smeared out
out as well. For this reason the authors of [9] propose to extrapolate the calculated moments by using
a linear prediction algorithm. As we will see, this eliminates Gibbs oscillations and leads to a drastic
increase in accuracy of the reconstructed spectral function.

−1 −0.5 0 0.5 1
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0
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2

3

4

5
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A
(ω
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no kernel
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Figure 3.2: The spectral function of the resonating level model for a chain of 25 sites and Λ = 1.3.
The blue curve is obtained by reconstructing the spectral function with 100 moments and no kernel.
The red curve shows the reconstructed function when a gaussian kernel is employed. Note that in this
plot neither of the functions has been rescaled.
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3.1.2 Rescaling of Ĥ

In the previous section we have seen that the expansion of A(ω) in terms of Chebyshev functions
is indeed a valid approach to find the spectral function. We have to keep in mind however that in
general the support of the spectral function may reach beyond the interval [-1,1]. This implies that
it is generally not possible to expand the spectral function directly, since the Chebyshev polynomials
Tn(x) rapidly diverge for |x| > 1. We thus have to rescale the support of A(ω), i.e. the bandwidth, to
the interval I=[-1,1]. This rescaling goes as follows [9,10]: Let us assume that the spectral function is
nonzero in the interval ω ∈ [-W,W]. Then we are searching for a linear function, mapping this interval
into I, which can be achieved by defining

H̃ = f(H) = H − E0

a
+ b x = ω

a
+ b. (3.11)

If a and b are chosen appropriately, our rescaled energy x ∈ [-1,1]. Now we can express the new spectral
function Ã> in terms of the rescaled energy x as

Ã>(x) = 〈0|c δ(x− H̃) c†|0〉 (3.12)

and the two functions Ã>(x) and A>(ω) are connected by the relation

A>(ω) = 1
a
Ã>

(ω
a

+ b
)
. (3.13)

The factor 1
a follows from the property δ(ax) = 1

aδ(x) of the delta function. During the rest of this work
we will always be working with the rescaled spectral function if not stated elsewise. I will therefore
omit the tilde and replace x by ω, and thus A(ω) is from now on the rescaled spectral function.

3.2 Linear Prediction
Linear prediction is a mathematical method mainly used in statistical signal processing. It can be
traced back as far as 1941 and still finds many applications nowadays [11]. In the context of strongly
correlated quantum systems it was first introduced by Ref. [12] and [13] for zero- and finite-temperature
t-DMRG. Later, in 2014 the authors of [9] proposed to use linear prediction to extrapolate the Cheby-
shev moments of spectral functions calculated with CheMPS. Up until now there are still improvements
to be made to further ameliorate the precision of this numerical method, most recently shown by the
authors of [10].
The concept of linear prediction follows a simple idea: Assuming that we have a set of values, for
example our Chebyshev moments µn (n ∈ [0, N ]), with a certain functional decay, then we can make
the Ansatz:

µk ≈ µ̃k = −
L∑
i=1

aiµk−i (3.14)

for k > N and an, a priori, unknown set of fixed coefficients ai. This formula states that any µk can
be approximated by a linear superposition of the previous L moments. Therefore we can predict the
evolution of values for larger expansion orders if we know their functional decay, which is contained in
the coefficients ai. Predicting µk thus comes down to finding these coefficients.

The Ansatz to determine the values of ai is to minimize the mean square error

F =
T∑

n=T0+1

|µ̃n − µn|2

wn
. (3.15)
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Here wn is a weighing function that we set to 1 and the parameter n runs over the set {T0 + 1, T0 +
2, ..., T}, which is called the fitting, or training interval. Minimizing this function F means that we
want our reconstructed moments to be as close to the corresponding exact moments as possible. As is
shown in Appendix B, the minimization of F leads to the set of linear equations

a = −R−1r, (3.16)

where a contains the coefficients ai, and R and r are defined by

Rij = −
T∑

n=T0+1

µ∗n−iµn−j

wn
and ri = −

T∑
n=T0+1

µ∗n−iµn

wn
. (3.17)

To determine the coefficients ai in (3.13), the matrix R has to be inverted. This can cause problems,
since it is nearly singular. It is therefore necessary to perform the inversion only up to a cutoff δ ≈ 10−6

(pseudo-inverse) instead of calculating the full inverse, as is pointed out in Ref. [9, 10].
We can now write the coefficients into a matrix M :

M =


−a1 −a2 −a3 . . . −aL

1 0 0 . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 0 . . . 1 0

 . (3.18)

M is called the companion matrix. The reason why we introduce it is because numerical inaccuracies
can lead to a divergence of the predicted moments. This occurs when the eigenvalues of M are larger
than 1. In order for the extrapolation to converge, these eigenvalues have to be either eliminated or
rescaled. To do this we first have to diagonalize M :

Λ = T−1MT.

Now we set all eigenvalues λi > 1 to 0, thus defining a new diagonal matrix Λ′, which we can use to
reconstruct the companion matrix:

M ′ = TΛ′T−1.

Linear prediction now consists in multiplying µ = (µN , µN−1...µN−L)T with powers of M ′:

µN+k =
L∑
j=1

(M ′k)1j µN−j . (3.19)

For linear prediction to provide precise results is is important that the initial moments show an
exponential decay. For the Chebyshev moments the decay is exponential if the expanded function
is smooth and analytical, as is pointed out in Ref. [9].
We have introduced the parameters L, T and T0 in this section, but how should they be chosen to
optimize the prediction? First of all, there is one condition that has to be fulfilled, namely that
T0 > L, otherwise the definition (3.14) of R and r would allow for negative indices. The choice of L
determines how many known moments are used to predict the new µ. As it turns out L should not
be chosen too large, because one runs the risk of overfitting. We follow the suggestion of Ref. [10] and
use L = min((T − T0)/2, 100). For the choice of T and T0 Ref. [10] proposed T = N and T0 = 3N/4.
We have tried a few different intervals and found that it makes little difference, as long as the interval
is chosen large enough to caption the functional behaviour and the initial data show no sign of finite
size effects. We have therefore settled with the same training interval, i.e. [3N/4, N ].
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3.3 Discretization of the SIAM Hamiltonian
In Chapter 2 we have introduced the Hamiltonian of the SIAM and explained the individual expressions.
The full expression reads

H =
∑
σ

εdc
†
σdcσd + Uc†↑dc↑dc

†
↓dc↓d +

∑
σk

εkc
†
σkcσk +

∑
σk

(
tkc
†
σkcσd +H.c.

)
. (3.20)

where H.c. denotes the hermitian conjugate.
However we can not numerically treat the Hamiltonian in this form, since it contains the infinite sum
over all possible momenta k. Simply truncating the sum at a random value k′ leads to wrong results,
because there is no physical argument why the momenta beyond this value can be ignored. In order to
make the model accessible for numerical calculations, we therefore need to introduce a discretization
of the energy spectrum of the continuous band. Following Wilson’s NRG approach, we choose a
logarithmic discretization with a discretization parameter Λ and map the Hamiltonian onto a chain
geometry. This mapping can be done analytically if we assume a constant hybridization tk = V and
a flat symmetric bath-spectral function ρ(ω) =

∑
k δ(ω − εk) = 1/2 for ω ∈ [−1, 1]. The transformed

Hamiltonian reads:

H =
∑
σ

εdc
†
σdcσd + Uc†↑dc↑dc

†
↓dc↓d + V 2

∑
σ

(
c†σdcσ1 +H.c.

)
+

∞∑
σ,n=1

(
hnc
†
σncσn+1 +H.c.

)
. (3.21)

In this mapping, the infinite bath of conduction electrons engulfing the impurity is transformed into a
discrete chain. The impurity only couples to the first site of this chain and the transition probability
between the sites is determined by the hopping parameters hn, which are given by

hn = (1 + Λ−1)(1− Λ−n−1)Λ−n/2

2
√

(1− Λ−2n−1)(1− Λ−2n−3)
.

The energy of a bath site decreases exponentially with n: En = ±Λ−n.
The term V 2∑

σ

(
c†σdcσ1 +H.c.

)
denotes the coupling of the impurity to the first bath site, and thus

V is a measure for the hybridization strength. Last but not least, we have to cut the chain of bath
sites at a finite value N , which corresponds to a cutoff at low energies EN . Note that the Hamiltonian
has already been rescaled, otherwise the bandwidth D would generally not be 1 and ω = [−D,D].
With this discretization the SIAM is now treatable with numerical methods. One of the most powerful
techniques to treat impurity models is the NRG [2, 4]. It is strongly dependent on the logarithmic
discretization, and Λ is usually chosen > 2, since lower values considerably increase the computational
cost. This implies that we have an excellent resolution around the chemical potential, but a very poor
one for high energies. The choice of large Λ is what makes the NRG a very established method to
examine low energy properties of a system, but also what prevents its applicability to high energies.
CheMPS and MPS based methods in general do not require the discretization to be logarithmic,
because they use a different truncation scheme. Thus a high spectral resolution can be achieved over
the whole energy spectrum, making it useful to analyze higher energy regimes of a model. An extensive
review of MPS methods is given by Ref. [7].



Chapter 4

Numerical Calculations and Results

In this chapter I want to present two different setups of linear prediction for the computation of spectral
functions and compare the respective results. To this end, we will first introduce both setups and test
them on an artificial test function. We will then move on to the RLM spectral function and compare
the accuracy of the results of the two setups. Finally we are going to treat the SIAM spectral function
for nonzero onsite interaction and discuss the results.

4.1 Discussion of the two setups
The idea of extrapolating the Chebyshev moments of spectral functions with linear prediction was first
introduced in 2014 by Ganahl et al. [9]. In their paper the authors argued that it is advantageous
to predict the moments µn = µ>n + (−1)nµ<n of the full spectral function A(ω). Since the latter is
smooth, its moments decay exponentially, which makes linear prediction a precise technique. Thus the
obtained results show a high increase in accuracy compared to the kernel polynomial method, which
up to then was the method of choice to eliminate Gibbs oscillations [6]. The setup of Ganahl et al.
requires the choice of b = 0 for the rescaling of the Hamiltonian.
More recently the authors of Ref. [10] proposed a new linear prediction setup to further increase the
accuracy of the reconstructed spectral function. They argued that a gain in precision by a factor ∼ 6.4
can be achieved if the dominant contribution to A> and A< is shifted to the edge of the interval [-1,1]
respectively, by choosing b ≈ −1 for the rescaling. The idea is that the Chebyshev polynomials Tn(x)
oscillate faster around x ≈ ±1 than around x ≈ 0, which can be observed in Figure 3.1. We can also
see this by determining the positions of the extrema of the n-th polynomial in the interval [-1,1]:

d

dx
cos(n arccosxn) = 0. (4.1)

After a short calculation we find an expression for the location of the extrema:

xn = cos
(
kπ

n

)
for k = 0, 1, ... , n. (4.2)

Calculating some values for a given n reveals that most of these extrema are located at high values
of x. The faster oscillation of the polynomials at the edges of the interval directly implies that the
resolution of a Chebyshev expansion is higher in these areas than around ω = 0. A better resolution
implies that the polynomials capture more information of the spectral function.
However it is not possible to predict the moments of the full spectral function in this setup, since its
support would be shifted outside of [-1,1]. We therefore work with the positive and negative part of
the spectral function seperately, which have a step at ω = 0. Without loss of generality we continue
the discussion of the positive part A>(ω) only.

15
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Figure 4.1: The positive part of the rescaled RLM spectral function with Γ = 0.005. We can shift it
very closely to the edges of the interval [-1,1] to enhance the spectral resolution per expansion order,
but this implies that the moments do not decay exponentially.

The discontinuity of A>(ω) implies that their Chebyshev moments do not decrease exponentially, but
rather show an algebraic decay, which can not be handled by linear prediction.
Nevertheless, the continuity of the spectral function can be restored by defining

A′>(ω) = A>(ω)−A>(0), ∀ ω ≥ b. (4.3)

This corresponds to a vertical adjustment of A>(ω). The moments of A′>(ω) can be determined by
inserting (4.3) into (3.5). We find the expression

µ′>n =
∫ 1

−1
dω Tn(ω)A>(ω)−

∫ 1

−1
dω Tn(ω)A>(0) Θ(ω − b), (4.4)

leading to

µ′>n = µ>n −A>(0)µΘ
n (4.5)

The coefficients µΘ
n are the moments of the step function, given by

µΘ
n =

∫ 1

b

dω arccos(n cosω), (4.6)

which yields µ
Θ
0 = 1− b,

µΘ
n = 1

2

(
cos[(n+1) arccosω]

n+1 − cos[(n−1) arccosω]
n−1

)∣∣∣1
b
, ∀n > 0.

(4.7)

As illustrated below, the moments of the adjusted spectral function A′>(ω) do decrease exponentially.
The original spectral function is recovered by shifting the reconstructed function back up.
A last problem remains to be faced, namely that the value of A>(0) in equation (4.5) is a priori
unknown. It can however be determined recursively: We start with a random value A>0 (0) and with
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equation (4.5) we calculate µ′>n , which are then extrapolated with linear prediction. Using these pre-
dicted moments we can now reconstruct the spectral function A>(ω), which provides us with a new
value for A>(0). This means that with every linear prediction a new A>(0) is determined as well. This
recursion converges monotonically and quickly [10].

In the next section we will show our first results for both these linear prediction setups by apply-
ing them to a test function. We refer to the two setups henceforth as the b = 0 and the b = −1 setup
respectively.

4.2 Results for a Test Function
As a first test of the two linear prediction setups introduced in the previous section we use an artificial
function, because its moments can easily be calculated by numerical integration.
Spectral functions of strongly correlated interacting systems, e.g. the SIAM with U 6= 0, often have
a feature around ω = 0 (e.g. Kondo resonance) and an additional peak for ω 6= 0 (e.g. Hubbard
satellites). To resemble such features in the test function, we choose a sequence of Lorentzian peaks,
given by

L(ω) = η2

(ω + 2)2 + η2 + η2

ω2 + η2 + η2

(ω − 2)2 + η2 , (4.8)

with η = 0.05. The positive part of this function is given by

L>(ω) =
{

0 for ω < 0
η2

ω2+η2 + η2

(ω−2)2+η2 else.
(4.9)

This is a good choice to imitate spectral functions in the sense that the moments of a Lorentzian show
a similar decay to those of the RLM spectral function, i.e. they decay exponentially.
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Figure 4.2: Test function defined in (4.8) and (4.9). The left panel shows the full test function L(ω),
which will be used in the b = 0 setup. In the right panel we see the positive part of the test function
L>(ω). Due to the discontinuity at ω = 0 it can be shifted very closely to ω = −1.

The functions are shown in the two panels of Figure 4.2 respectively. Note that in this case we have
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not yet rescaled ω to [-1,1].
An explicit example of how to rescale such functions correctly is given in Appendix C. We choose a
rescaling constant a = 100 to rescaled the test function.

4.2.1 Linear Prediction for the Full Test Function - The b = 0 Setup
We want to test the b = 0 linear prediction algorithm by applying it to the Chebyshev moments of the
full test function and compare the result to the calculated moments.
We find the Chebyshev moments of the full test function by using numerical integration. Figure 4.3
shows the curve of the calculated moments of the full spectral function (green), as well curves obtained
with linear prediction (blue and purple).
The moments in the left panel are predicted from 2000 initial moments. For this high amount of initial
moments the prediction leads to almost perfect results.
The right panel shows that if we reduce the number of initial moments the predicted curve differs
considerably from the precise one. This can be understood by the fact that the training interval
shrinks with the number of initial moments. For 1000 initial moments the training interval contains
250 moments in my setup. This does not seem to be enough to capture the precise functional decay
of the moments and thus leads to errors.

0 1000 2000 3000 4000 5000
10

−3

10
−2

10
−1

10
0

n

C
he

by
sh

ev
 M

om
en

ts
 µ

n

 

 
precise moments
predicted moments

0 1000 2000 3000 4000 5000
10

−3

10
−2

10
−1

10
0

n

C
he

by
sh

ev
 M

om
en

ts
 µ

n

 

 
precise moments
predicted moments

Figure 4.3: Both panels show the exactly calculated as well as the predicted Chebyshev moments of
the full test function. Left Panel: The blue curve was obtained by applying linear prediction to 2000
initial moments. They are in good agreement with the green curve, which represents the calculated
moments. Right Panel: The moments obtained when using linear prediction on 1000 initial moments
(purple curve). For high expansion orders it deviates considerably from the exact moments.

We can use the extrapolated moments in order to reconstruct the test function. To this end we
have predicted the moments up to a convergence of ∼ 10−5, which in this case correspond to 20 000
moments. The resulting reconstructed function for the case of 2000 initial moments is plotted in the
left panel of Figure 4.4.
The error of the reconstruction is shown in the right panel. The blue curve is obtained by using 2000
initial moments, while purple shows the error if we start the prediction with 1000 known moments. In
both cases the moments were extrapolated until they converged to ∼ 10−5. As expected the error is
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much higher for a smaller number of initial moments.
Linear prediction thus provides accurate results for the test function in the old setup if we start with
enough explicitly computed moments. In the next section we will introduce the b = −1 linear prediction
setup, i.e. the prediction of the positive spectral function proposed by Wolf et al. in Ref. [10].
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Figure 4.4: Left Panel: The reconstructed as well as the exact test function. The predicted function
was reconstructed from an initial number of 2000 moments, that were extrapolated to 20 000. The
two curves are in good agreement. Right Panel: The error of the reconstructed function for different
numbers of initial moments. In both cases the moments were extrapolated until they converged to
∼ 10−5. The precision of the method increases with the number of initial moments.

4.2.2 Linear Prediction for the Positive Test Function - The b = −1 Setup
In the b = −1 linear prediction setup the test function is shifted to the edge of the interval [-1,1]. To
employ this setup we work with the positive part of the function (see Figure 4.1). Because of the higher
resolution of the Chebyshev polynomials around ω = ±1, the Chebyshev expansion can extract more
information from the function for a fixed expansion order. We therefore expect the moments of the test
function to decay faster in this setup. The left panel of Figure 4.5 shows the exact moments obtained
by numerical integration in different setups. The blue curve again shows the Chebyshev moments of
the full test function. The red curve is obtained from the positive test function by setting b = −0.995
for the rescaling but without shifting the the function vertically. In this case the step of the function
is not removed which leads to an algebraic decay of the moments. Finally the black curve shows the
moments in the new setup: The positive part of the test function was rescaled with b = −0.995 and
shifted vertically in order to remove the discontinuity.
As expected, the moments in the b = −1 setup show a much faster decay than the moments of the
full spectral function. However, around n = 3500 the black curve begins to flatten, deviating from the
initial exponential devolution. As we will see this feature of the curve can not be captured by linear
prediction. Nevertheless we expect precise results, since the moments have already dropped under
10−4 at that point. In the b = 0 setup, this value is only reached for expansion orders around 20 000.
Note again that this plot only contains moments that have been calculated directly with numerical
integration.
We can apply the b = −1 linear prediction setup to the moments of the b = −0.995 unshifted test
function (red curve). The result is shown in the right panel of Figure 4.5, where we have plotted the
predicted moments which were obtained with 1000 initial moments (black curve). For n < 3000 the
decay is almost identical to the precise moments in the left panel. Only when the precise curve begins
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Figure 4.5: Left Panel: The moments of the test function in different setups. The blue curve again
represents the moments of the full test function. The red curve shows the moments of the positive test
function in the b = −1 setup. However in this case the function has not been shifted vertically and
thus still contains a discontinuity. Therefore the decay of these moments is only algebraic. The black
curve contains the moments of the positive, shifted spectral function in the b = −1 setup. They decay
very swiftly to ∼ 10−4 until they deviate from the initial exponential decay.
Right Panel: Application of the b = −1 linear prediction to the moments of the positive test function
(red curve). By starting with 1000 initial moments, we obtain the black curve which coincides very well
with the precise moments in the right panel. Of course, we see that the deviation from the exponential
decay around 3500 can not be reproduced, which is expected.

to flatten, do the predicted moments deviate considerably. Since the moments have dropped under
10−4 at this point we do not expect a large error.
Using the predicted moments we can reconstruct the test function and evaluate the error. In Figure
4.6 (left panel) we have plotted the initial as well as the reconstructed test function. In this setup the
reconstruction shows only small errors, even though we only used 1000 initial moments. This shows
the advantage of the new method: Since the moments of the shifted function decay much faster than
in the b = 0 setup we need fewer moments to start with.
This fact is reflected in the right panel, where we have plotted the error of the reconstructed function
for the b = 0 and the b = −1 setup respectively. Both curves were obtained by using 1000 initial
moments. They show a large gain in precision for the new method.
As a last comparison between the two setups we have plotted the error of the reconstruction as a
function of the number of initial moments, shown in Figure 4.7. In both cases, the error decreases as
the number of initial moments N goes up. However, we observe a faster decrease in the case of the
b = −1 setup, especially for small N .

From this example we can conclude that the b = −1 setup proposed by Wolf et al. does increase the
precision of the reconstructed function. However, we want to stress that this rise in accuracy is only
reached under certain conditions. By varying the parameters of the system, e.g. the width of the curve
or the rescaling parameter a we found that the b = −1 method does not always provide better results.
One should be aware that the b = −1 method requires a high value for the rescaling parameter a,
because it needs all the contributions to the positive function to be shifted close to ω = −1. If a is



CHAPTER 4. NUMERICAL CALCULATIONS AND RESULTS 21

−1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

ω

L>
(ω

)

 

 
predicted test function
exact test function

0 1 2 3 4

10
−4

10
−3

10
−2

10
−1

10
0

ω

m
ax

 | 
L(

ω
)−

L re
c(ω

)|

 

 
full setup, N=1000
b=−0.995, N=1000

Figure 4.6: Left Panel: Plot of the exact and the reconstructed test function. We applied linear
prediction on 1000 initial moments in this case. Right Panel: Comparison of the error of the
reconstructed test function for the two setups. In both setups we used 1000 initial moments to start
with. The b = −1 setup shows a maximum error of ∼ 10−2, which is considerably lower than for the
b = 0 method (∼ 5× 10−1)
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Figure 4.7: Error of the reconstructed test function for a = 100. In this case the b = −1 setup provides
preciser results for any number of initial moments.

chosen too small, the high energy peak of the expanded function can not be shifted close enough to
the edge of [-1,1] to fully profit from the increased resolution of the new method.
On the other hand a not only rescales the support of the function but also its width. This implies
that for high values of the rescaling parameter the peaks of the function become narrower, and thus
the Chebyshev moments display a slower decay.
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An example of how the rescaling parameter can influence the error of the reconstructed function for
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Figure 4.8: Error of the reconstructed test function with width η = 0.02 and for a rescaling parameter
a = 20. In this case the prediction of the full spectral function provides better results, showing that
the gain in precision of the new setup is not always guaranteed.

the respective setups is shown in Figure 4.8. Here we used the same test function as before, but with
a width of η = 0.02. The rescaling was done with a = 20. For this choice of parameters, the error of
the b = 0 setup is lower throughout the whole interval of initial moments, dropping swiftly to 10−4

for only N = 500 moments. Therefore, the gain in precision of the new setup can not be regarded as
absolute, but depends on the chosen parameters.
In the next section we will have a look at some results for the resonating level model spectral function
and compare the two setups for this case.

4.3 Results for the Resonating Level Model
As a first application of linear prediction to physical systems, we consider the reconstruction of the
RLM spectral function. This model is well suited as a benchmark for the two setups, since it has an
analytical solution. Before presenting the results, we first want to discuss the role of finite size effects,
since we found that they can pose major difficulties for the calculation of Chebyshev moments with
CheMPS.

4.3.1 Finite-size effects
As the name suggests, finite-size effects arise due to the fact that we approximate an infinite system
-the conduction electrons- by a chain of finite length. Recalling the section about the discretization
of the Hamiltonian we know that the defining parameter of this approximation is the discretization
parameter Λ. Two different finite size effects can emerge due to the discretization:

1. Choosing Λ too small compared to the length of the chain of bath sites can lead to reflections at
the end of the chain. To fully understand this effect we would have to explain the method that
is used to calculate the Chebyshev moments using MPS, which would go far beyond the scope
of this work. We have to be content with the notion that, for the calculation of the moments,
we send a signal through the chain of bath sites. This signal is damped by Λ and thus becomes
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smaller as it is propagating through the chain. If Λ is not large enough however, the signal
has not been damped sufficiently when it reached the end of the bath chain. In this case the
reflections of the signal at the end of the chain can not be ignored and interfere with the incoming
signal. This causes fluctuation in the calculated Chebyshev moments, which can not be handled
by linear prediction.

2. For large Λ, finite-size effects manifest themselves because the δ-peaks of the discrete bath spectral
function are resolved at the edge of the bandwidth. To understand this effect we have to recall
what we did when we discretized the Hamiltonian.
We assumed a flat bath- spectral density ρ(ω) =

∑
k δ(ω − εk), which is transformed to ρ(ω) =∑

n δ(ω −En), with En = ±Λ−n by the discretization. For large Λ this means that the first few
delta peaks are quite far apart. If we reach high expansion orders the Chebyshev expansion will
therefore inevitably start to resolve these individual delta peaks, which leads to deviations in the
smoothly decaying moments.
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Figure 4.9: The moments of the positive spectral function of the RLM for different Λ. The chain
length is set to 51 sites. The plot shows the two aforementioned finite size effects.

The presence of either of these two effects makes linear prediction hardly applicable. How they manifest
themselves in the calculated Chebyshev moments is shown in Figure 4.9. The three curves represent
the moments of a chain with 51 sites for different choices of the discretization parameter Λ.
The green curve consists of the moments for Λ = 1.15. It shows the expected exponential decay, mean-
ing that it contains no finite size effects. The blue curve (Λ = 1.1) shows what happens if Λ is chosen
too small for the chain. At first it decays exponentially, but for large n the moments start to rise again,
showing an oscillatory pattern. Since this effect is caused by reflections at the end of the chain it can
be avoided by simply choosing the chain to be longer. Indeed for Λ = 1.1 and a chain of 151 sites the
moments do not show any sign of these oscillations and can be extrapolated with linear prediction.
For the red curve we chose Λ = 1.5. We see that for low expansion orders the decay of the moments is
exponential as well. This can be explained by the fact that for small n the resolution of the Chebyshev
functions is not yet high enough to capture the delta peaks of the bath spectral density. For larger n
however the trend of the curve deviates strongly from an exponential decay, as we can see in the figure.
This effect can not be compensated for by adapting the chain length or any other parameter. A large
value for Λ implies that the energy of the bath sites diminishes rapidly, meaning that the last sites
of the chain are of negligible energy. Adding more sites in this case hardly changes the bandwidth at all.
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We also want to mention that the decay of the Chebyshev moments is influenced by the discretiz-
tion parameter Λ. The latter determines the bandwidth W of the system and thus the rescaling that
has to be used for CheMPS. In the case of a small Λ (Λ→ 1) the bandwidth is larger than for large Λ,
which means that we have to rescale a larger interval to [-1,1]. Thus for small Λ the moments decay
slower. Of course it is favourable to work with long chains and small discretization parameters, since
we want to describe a system in the thermodynamical limes. However we will see in the next section
that linear prediction favours a faster decay of the moments and is thus more precise for small systems.
Also the numerical cost of CheMPS grows quickly for larger systems.

4.3.2 The b = 0 Setup
The b = 0 setup is tested on the full RLM spectral function. We chose a system of 151 bath sites with
the discretization parameter Λ = 1.1. The width of the spectral function is chosen to be Γ = 0.005.
The moments of the full spectral function are plotted in Figure 4.10. It is important to note that in
these plots the x-axis scales logarithmically.
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Figure 4.10: Left Panel: Moments of the RLM for a system with 151 bath sites and a discretization
parameter Λ = 1.1. The green curve represents the Chebyshev moments calculated with CheMPS. The
moments obtained with linear prediction make up the blue curve. The two vertical black lines mark
the interval where calculated and predicted moments are plotted simultaneously. Right Panel: Zoom
into the boxed section of the left panel. Between the two black lines we can compare the CheMPS and
the predicted moments. They are in good agreement.

The green curve shows 900 moments obtained with CheMPS. We used the first 500 of them to predict
2000 moments, which make up the blue curve. In the interval 500 ≤ n ≤ 900 marked by the vertical
black lines the CheMPS and predicted moments are displayed showing little to no discrepancy. The
boxed section of the left panel is shown in Figure the right panel.
The decay of the moments is exponential, which is why linear prediction gives quite accurate results.
However, we can observe in the right panel that the predicted moments do not coincide perfectly with
the others. Similar to the case of the test function, 500 moments are not enough to capture the func-
tional decay of the moments. We therefore expect a visible error of the reconstructed spectral function.
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Figure 4.11: Left Panel: Plot of the reconstructed spectral function and comparison to the exact
curve. To show the extreme improvement of linear prediction compared to the polynomial kernel
method I have also plotted the spectral function obtained with 500 moments and a Lorentz kernel
(black curve). Right Panel: The error of the RLM spectral function for a system of 151 sites and a
discretization parameter Λ = 1.1. The spectral density was reconstructed with 500 initial moments.

In order to reconstruct the spectral function we extrapolate the Chebyshev moments until they con-
verged to ∼ 10−5, which corresponds to about 50 000 moments. We have plotted the reconstructed
spectral density in Figure 4.11 (left panel), together with the exact curve and a curve obtained with a
Lorentz kernel. All the curves have been rescaled with πΓ. The predicted and exact function coincide
quite well in this case, although we observe a notable discrepancy around the maximum.
The error of the rescaled function is plotted in the right panel. As expected its maximum lies around
the peak of the spectral function itself. If we compare the value of the error to the results obtained
by the authors of Ref. [9] we realize that our error is quite high. As we mentioned in the previous
section, the decay of the moments is strongly influenced by the rescaling parameter a. In our code this
rescaling is always identical to the bandwidth W , which in this case is W = 41.9649. Comparing this
to the value a = 5 chosen in Ref. [9] we understand the difference in accuracy.
To illustrate how the accuracy of the reconstruction can be improved by choosing different CheMPS
parameters, we calculated the moments of a systen with 25 sites and a Λ = 1.7. The bandwidth of
this system is W = 7.5599, and thus we expect the moments to decay faster. Since the discretization
parameter is quite large we have to be wary to avoid finite-size effects, which would occur for large
expansion orders. For this reason we calculated only a mere 100 moments.
The left panel of Figure 4.12 shows the moments of this system. The blue curve is obtained by applying
linear prediction to the 100 initial moments, represented by the green circles. Comparing this plot to
Figure 4.10 we can see that the moments decay much faster. This is also reflected in the error of the
reconstructed spectral function, plotted in the right panel. Although we have only used 100 initial
moments as opposed to the 500 in the previous example, the reconstruction is more precise in this
case.
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Figure 4.12: Left Panel: Moments of the RLM for a system of 25 sits and Λ = 1.7. This plot shows
that the moments decay much faster for higher values of Λ in this setup, leading to an increase in
precision of the reconstructed spectral function. Right Panel: Error of the reconstructed spectral
function for a system of 25 sites and Λ = 1.7. I started with 100 initial moments and extrapolated
them until they converged to 10−5. Although I used fewer initial moments than for the plot in Figure
4.18 the error is smaller.

4.3.3 The b = −1 Setup
In this section we apply the b = −1 linear prediction setup to the RLM. In this case we only treat the
positive part of the spectral function. In order to compare the results to the b = 0 setup, we used the
same system, i.e. a chain with 151 sites and a discretization parameter Λ = 1.1. We calculated the
first 500 moments of the system with CheMPS and used the new linear prediction to extrapolate the
moments to higher orders.
Figure 4.13 shows the first 500 calculated as well as the predicted moments. Unlike in the b = 0
setup the predicted and the initial moments do not coincide, since the new linear prediction shifts the
moments in order to remove the discontinuity in the spectral function. The blue curve, which consists
of the predicted moments displays a fast exponential decay for n > 300.
The reconstructed spectral function is shown in the left panel of Figure 4.14. Similar to the b = 0
setup the error, plotted in the right panel has its maximum around the peak of the spectral function,
which is expected. It is surprising however that in this particular case the b = −1 setup leads to higher
errors than the b = 0 method. Ref. [10] mentions that linear prediction consistently overestimates the
spectral function. A combination of linear prediction and the kernel polynomial method could there-
fore lead to more precise results. There is a large amount of different parameters which are involved
in the calculation of the moments and the linear prediction itself. This makes it difficult to determine
the source of this discrepancy.
We showed in the previous section that there are systems where the b = 0 setup leads to smaller errors,
which has been confirmed by the calculation in the RLM.

Our conclusion to these calculations is that both linear prediction setups lead to a drastic increase in
precision compared to the kernel polynomial method. For the considered system of 151 bath sites and
Λ = 1.1 both methods provide accurate spectral functions, with errors around ∼ (10−2 − 10−1). Sur-
prisingly the b = 0 linear prediction method seems to provide more accurate results in the considered



CHAPTER 4. NUMERICAL CALCULATIONS AND RESULTS 27

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

n

C
he

by
sh

ev
 M

om
en

ts
 µ

n

 

 
predicted moments µ

n
pred

calculated moments µ
n

Figure 4.13: The moments of the positive RLM spectral function. The system consists of a chain of
151 sites with a discretization Λ = 1.1. The green curve shows the calculated moments. The b = −1
linear prediction shifts these moments in order to remove the step in the spectral function, which yields
the blue curve.
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Figure 4.14: Left Panel: The reconstructed as well as the exact RLM spectral function for a system
of 151 bath sites and Λ = 1.1. Right Panel: The error of the RLM spectral predicted function in the
b = −1 setup. The error is roughly two times larger than for the b = 0 setup.

RLM system.
In the next section we are going to have a short look at the results for the interacting SIAM.
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4.4 Results for the SIAM
Up until this point we have only considered non-interacting systems. In this case the energy of the
electrons on the impurity atom is simply given by the fermi energy, which we have set to zero. For
this reason we observe the peak of the RLM spectral density around ω = 0.
In the case of finite onsite interaction U 6= 0 the electrons on the impurity do feel one another’s presence
due to the coulomb interaction. This has an impact on the energy of the electrons, and thus on the
form of the spectral function. We therefore expect to find features for energies ω ∼ U/2 in the spectral
density. These peaks at finite energies are called Hubbard satellites. In addition to these peaks the
spectral function always has a feature at ω = 0 (Kondo resonance), the height of which is determined
by the hybridization Γ. For any SIAM spectral function the relation πΓA(0) = 1 is fulfilled, which
provides us with a good method to test the quality of our numerical results.
All the presented spectral densities in this chapter correspond to a system with 125 sites, Λ = 1.1 and
a flat bath spectral density.
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Figure 4.15: Left Panel: The SIAM spectral function for Γ = 0.5 and an onsite interaction U/Γ = 4.
The most obvious difference between the two setups is the small peak that is only shown by the b = −1
curve. The origin of this feature may be physical or a numerical inaccuracy. Due to a lack of time,
we unfortunately could not make further investigations. The curve of the b = 0 setup was obtained
from 500 initial moments. For the b = −1 setup we started with 150 initial moments. Right Panel:
The SIAM spectral function for Γ = 0.5 and an onsite interaction U/Γ = 8. This plot shows the very
prominent Hubbard satellite at high energies. Here it is evident that the b = −1 setup provides more
precise results, with the central peak being narrower and the Hubbard satellite higher. The b = −1
result was obtained by extrapolating 200, the b = 0 result for 500 initial moments.

The left panel of Figure 4.15 displays the spectral function of a system with Γ = 0.5 and an onsite
interaction U/Γ = 4. The red curve was obtained by applying the b = 0 setup, whereas the blue curve
is the result of the b = −1 method. First of all we note that for both setups the sum rule πΓA(0) = 1
is satisfied. Both curves show roughly the same features, except for the small peak displayed by the
b = −1 function around ω = 1. Wether it is obtained due to numerical inaccuracies or has a physical
origin is unclear. Unfortunately, due to time pressure we could not further investigate this feature.
In the right panel of Figure 4.15 the spectral function is plotted for Γ = 0.5 and U/Γ = 8. In both
setups the Hubbard satellite is very pronounced and clearly visible. The b = −1 setup provides better



CHAPTER 4. NUMERICAL CALCULATIONS AND RESULTS 29

results for this system, which is proved by the height of the Hubbard satellite, as well as the fact that
the Kondo resonance is narrower. Also for this system the sum rule is satisfied quite well.
A comparison of both panels shows that the position, as well as the height and width of the Hubbard
satellite is dependent on the ratio U/Γ. As the onsite energy grows larger the peak moves to higher
energies. We also have to take into account fact that of the bath density of states, which only reaches
to ω = −1 has an effect on the shape of the peak.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ω

π 
Γ 

A
(ω

)

 

 

0 0.01 0.02
0.8

0.9

1

1.1 U/Γ=2
U/Γ=4
U/Γ=8

Figure 4.16: SIAM spectral functions for Γ = 0.05 and three different interaction strength. The three
curves were obtained by starting with 500 initial moments and predicting them in the b = −1 setup.

Figure 4.16 shows a spectral function of a system with Γ = 0.05 and different interaction strengths.
In all the cases the interaction is small compared to the maximum bath energy. This has a visible
effect on the shape of the spectral function. The Hubbard satellites are less pronounced and the Kondo
resonance sharper for this set of parameters. Although the sum rule is roughly satisfied in this case as
well, we note that for large U/Γ the height of the peak decreases. This is due to the fact that the central
peak becomes very sharp; thus the Chebyshev moments decay slower and linear prediction becomes
less precise. For even larger onsite interactions we therefore expect linear prediction to provide higher
errors. All the spectral functions in Figure 4.16 were calculated in the b = −1 setup.
We conclude that linear prediction provides accurate results for the interacting SIAM. For all the
plotted spectral functions the sum rule holds quite well. In general we can confirm with these results
that the b = −1 setup does lead to preciser results for SIAM spectral functions, compared to the b = 0
method. If the small peak at ω = 1 for the Γ = 0.5, U/Γ = 4 spectral function is of physical origin,
this is a strong argument for the b = −1 setup.



Chapter 5

Conclusion

We started by giving a short summary of the numerical methods that are currently used to calculate
spectral functions of impurity models. The need for an alternative to NRG was motivated by the its
low resolution for high energy scales.

As an introduction to the physical properties of quantum impurity systems, the SIAM Hamilto-
nian was presented and explained in great detail in Chapter 2. We then moved on to the treatment
of Green’s- and spectral functions, which play key roles in the analysis of models in condensed mat-
ter physics. As an example of zero-temperature spectral functions we introduced the RLM spectral
function, which we later used as a benchmark for linear prediction.

In Chapter 3 we treated the numerical methods that are necessary to calculate spectral functions
with CheMPS. We started by introducing the Chebyshev polynomials of first kind and discussing their
properties. Since they only form an orthonormal basis in the interval [-1,1], we had to rescale the
Hamiltonian to this interval. We then moved on to the concept of linear prediction and the ideal
choice of parameters. Finally, we showed how to discretize the SIAM Hamiltonian in order to make it
treatable with numerical methods.

Chapter 4 contained the practical part of the work. We started by explaining the idea of linear
prediction in the context of CheMPS and introduced the b = 0 and b = −1 setup respectively. We
started the calculations by applying the two linear prediction setups to a test function. The first result
showed that the number of initial moments is a crucial factor for the precision of the reconstructed
function. For the function that we considered the b = −1 setup leads to more accurate results for any
number of initial moments. Nevertheless, there are cases where the b = 0 method seems to be more
reliable. In general, this example taught us that CheMPS in combination with linear prediction is very
dependent on the system parameters. We can get a wide range of accuracies, depending on how well
we choose the initial parameters. We have also seen that CheMPS is quite susceptible to finite-size
effects. In fact, there is only a small margin for the discretization parameter where the method leads
to reliable results. As we have seen, for large Λ only a limited amount of moments can be computed
until we start to resolve the δ-peaks of the bath spectral function. For small Λ we have to work with
long chains to avoid reflections at the end of the chain. This again increases the computational effort.
Last but not least, we have found that the results for finite a onsite interaction U 6= 0 were very
promising, especially for the b = −1 setup. For all the treated interacting systems we obtained a
higher accuracy for less initial moments. Thus, we can conclude that, if carefully implemented, linear
prediction increases the precision of CheMPS-computed spectral functions enormously. The resolution
could be enhanced even further by combining linear prediction with the kernel polynomial method to
compensate for the systematic overestimation of the height of the central peak. This makes CheMPS
a viable option to calculate zero-temperature spectral functions of quantum impurity models.
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Appendix A

Green’s Function of Free Particles

To show how the rather abstract concepts we have introduced in Chapter 2, i.e. the Hamiltonian in
second quantization and the various Green’s functions, are used in a concrete case let us calculate
the Green’s function of free particles. Remembering the expression we have already used for the
Hamiltonian of the SIAM, we can write down the energy of free fermions:

H0 =
∑
σk

εkc
†
σkcσk. (A.1)

Since this Hamiltonian is diagonal in c†σkcσk so will be the Green’s functions, so we can formally
write down G>0 (σk; t, t′) and G<0 (σk; t, t′):

G>0 (σk; t, t′) = −i〈cσk(t)c†σk(t′)〉 G<0 (σk; t, t′) = i〈c†σk(t′)cσk(t)〉. (A.2)

The equations (2.14) can be solved by extracting the time dependency from the operators. In order
to do that, let us explicitly write the time dependency of c†σk and cσk:

c
(†)
σk(t) = eiHtc

(†)
σke
−iHt. (A.3)

Taking the time derivative of this expression and using the operator algebra (2.5) leads us to a differ-
ential equation that can be integrated and yields:

c†σk(t) = eiεktc†σk cσk(t) = e−iεktcσk. (A.4)

Thus, we have found an expression for the time dependency of our operators which we can reinsert
into (2.14). Remembering the expression (2.6) for the number operator we find:

G>0 (σk; t, t′) = −ie−iεk(t−t′)(1− 〈nσk〉) (A.5)

G<0 (σk; t, t′) = ie−iεk(t−t′)〈nσk〉. (A.6)

Combining these two equations and using the relation (2.13) we can now write down an explicit
expression for the retarded Green’s function:

GR(σk; t, t′) = −iθ(t− t′)e−iεk(t−t′). (A.7)

In the time domain, the Green’s function has the form of a plane wave. The energy of the particle is
constant, which makes perfect sense, since there are no interactions involved and the Green’s function
was diagonal in c†c from the start. We can interpret equation (A.5) by identifying that G>0 (σk; t, t′)
needs an empty state and therefore describes the propagation of electrons, whereas (A.6) is proportional
to the to the electron number and consequently G<0 (σk; t, t′) gives the propagation of holes.
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We see that all the propagators we have found in our example only depend on the difference
t − t′ and not on t and t′ individually. This temporal translation invariance implies that it makes
sense to represent the Green’s function in the frequency domain, which can be achieved by Fourier
transformation:

G(ω) =
∫ +∞

−∞
dtei(ω+iη)(t−t′)G(t− t′). (A.8)

The imaginary part η of the frequency is an infinitesimal positiv number, needed to make the integral
convergent. If we insert the expression (A.7) for the retarded Green’s function into (A.8), we find the
simple expression

GR0 (σk;ω) = 1
ω − εk + iη

. (A.9)

A.1 Equation of motion Ansatz
The same result can also be obtained via the equation of motion theory. We find the equation of
motion for the Green’s function in momentum representation by applying i∂t to it:

i∂tG
R
0 (kσt,k′σ′t′) = ∂t (θ(t− t′)) 〈{ckσ(t), c†k′σ′(t′)}〉 − iθ(t− t′)〈{i∂tckσ(t), c†k′σ′(t′)}〉 (A.10)

The first of these two terms can be reduced to δ(t − t′)δkσ,k′σ′ , using the algebra of creation and
annihilation operators (2.5) and the fact that the derivative of the step function is a delta function. The
second term contains the time derivative of an operator, which can be written as i∂cσk(t) = −[H, cσk](t)
using the Hamilton equations of motion. For the free particle case this commutator can be easily
calculated, since the Hamiltonian H0 is diagonal:

−[H, ck](t) = −
∑
σk′′

εk′′ [c†σ′′k′′cσ′′k′′ , ckσ](t) (A.11)

Using the relation [AB,C] = A{B,C} − {C,A}B as well as the equations (2.5) this can be rewritten
as

−[H, ck](t) = −
∑
σ′′k′′

εk′′δσ′′k′′,σkcσ′′k′′ = −εkcσk (A.12)

and inserting this back into (A.10) yields

(i∂t − εk)GR0 (kσt,k′σ′t′) = δ(t− t′)δkσ,k′σ′ (A.13)

At this point it becomes clear why we are calling GR a Green’s Function, since (A.13) has the same
form as (2.11). As is the usual procedure for solving equations of this form, let us consider the Fourier
transform GR(kσ,k′σ′;ω). This Ansatz makes sense because the right side of the equation indicates
that GR only depends on the difference t− t′, and not on t and t′ seperately. Hence we can write the
Fourier transform of GR as:

GR0 (t− t′) =
∫ +∞

−∞

dω

2π e
−i(ω+iη)(t−t′)GR(ω) (A.14)

Inserting (A.11) into (A.12) yields:

GR0 (kσ,k′σ′;ω) = 1
ω − εk + iη

δkσ,k′σ′ (A.15)

η is an infinitesimally small positive number. It is introduced in order to make the Fourier integral
convergent.
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In quantum field theory Green’s functions G(ν, ν′) are also called propagators, because they give the
probability amplitude for a particle to evolve from the state ν to the state ν′. If ν and ν′ are spatial
coordinates, the term ’propagation’ becomes clear.
This physical interpretation of the Green’s function makes sense in our case as well: Since we are
dealing with a system of free, non-interacting particles, the momentum of a single particlee remains
unchanged and hence we have the Kronecker Delta on the right side of (A.13).



Appendix B

Minimizing the mean squared error

The goal of this section is to derive the system of linear equations (3.17), starting with the idea that the
mean squared error needs to be minimal. In order to do this efficiently we are going to use a compact
notation for the mean squared error and explain the connection to the expressions (3.15) at the end.
We start with our previous ansatz, namely that any value in our set of data xi can be expressed as a
linear combination x̃ of the m previous values:

x̃ = −a∗1x1 − a∗2x2 − ...− a∗mxm. (B.1)

The estimated error of this reconstructed value is given by

e = x− x̃ = x+ a∗1x1 + a∗2x2 + ...+ a∗mxm (B.2)

and in our compact notation we express the mean squared error by E[|e|2]. As we will see in the course
of this section, this object E[ ] essentially has the attributes of a scalar product. What is important to
keep in mind is that x is fixed value and that the only variables in these calculation are the coefficients
ai.
So which estimated error e will minimize the mean squared error? If we think geometrically, we can
answer this question without any calculations. Suppose we want to approximate a vector ~s in three
dimensions with a vector ~s′ which is confined to the x-y-plane. The best approximation will be given
by the vector ~s′ that points into the same x-y direction, and at the same time has the same length as
the x-y component of ~s. These two requirements can be combined by stating that the error ~e = ~s− ~s′
has to be orthogonal to ~s′, or 〈~e, ~s′〉 = 0. As we have already mentioned, the mean squared error can
be interpreted as a scalar product, and we can generalize the vectorial case to any type of data. The
result of this generalization is the Orthogonality Principle:

The estimate x̃ results in a minimal mean squared error if and only if the estimation error is or-
thogonal to the m variables xi:

E[ex∗i ] = 0, 1 ≤ i ≤ m. (B.3)

A formal proof of this theorem can be found in [11].
Now that we have found this condition we have to use it to derive an expression for the coefficients
ai. To condense our notation even further, let us define the two vectors a = (a1, a2, ..., am)T and
x = (x1, x2, ..., xm)T , which leads us to the compact expression

e = x+ a†x (B.4)

for the error. The orthogonality condition can now be written as

E[xx†] + a†E[xx†] = 0. (B.5)
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In a way this is already the equation we were looking for, we only have to make the following definitions:

R = E[xx†] and r = E[xx∗]. (B.6)

As can be seen from the definition R is a hermitian m×m Matrix and r is an m dimensional vector.
If we insert these definitions into (B.5), we obtain the equation

Ra = −r, (B.7)

which is the relation we want to find.

Keeping in mind that (B.1) holds for any value of the data set, we find the expressions (3.17) for
R and r.



Appendix C

Rescaling of the Lorentzian

As an example I will show the rescaling explicitly for a general Lorentzian, since it is directly trans-
ferable to any other function. We have

f(ω) = η

(ω − ω0)2 + η2 (C.1)

with supp(f) = [m,n] * [−1, 1]. In order to expand this function in Chebyshev polynomials, we have
to rescale it, using the linear transformation:

ω → x = ω

a
+ b, (C.2)

such that x(m) = −1 and x(n) = 1. Without changing the function f we can generally write

f(ω) = η

a2
(
ω
a + b− ω0

a − b
)2 + η2

, (C.3)

where we have inserted two identities. The Chebyshev moments are then calculated as follows:

µn =
∫ n

m

dω f(ω)T
(ω
a

+ b
)

(C.4)

=
∫ n

m

dω η

a2
(
ω
a + b− ω0

a − b
)2 + η2

T (ω
a

+ b). (C.5)

We can make the substitution x = ω
a + b, with dω = adx:

µn =
∫ 1

−1
dx aη

a2(x− x0)2 + η2T (x) (C.6)

=
∫ 1

−1
dx fresc(x)T (x). (C.7)

In the last line we have introduced the rescaled function

fresc(x) = aη

a2(x− x0)2 + η2 = a f(ω), (C.8)

which thus leads us to the transformation rule (3.13) that we have also found for the spectral func-
tion.
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[13] Thomas Barthel, Ulrich Schollwöck, and Steven R. White. Spectral functions in one-dimensional
quantum systems at finite temperature using the density matrix renormalization group. Phys.
Rev. B, 79:245101, Jun 2009.

39



Statutory Declaration
I hereby declare on oath that I completed this work on my own and that information
which has been taken directly or indirectly from other sources has been noted as such.
Neither this, nor a similar work has been published or presented to an examination
committee.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
place, date

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
signature


