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1 Introduction

The Spin-Boson Model has attracted lots of attention within condensed matter theory
in recent years. As the simplest type of bosonic quantum impurity models it paved the
way to a deeper understanding of dissipation in quantum systems. Since the publication
of Leggett et al. in 1987 [1], many aspects of the model have been studied including
its quantum phase transition at zero temperature. A key factor for these studies has
been the development of powerful numerical methods, which allowed gaining new insights
into critical behaviour. The most prominent technique is the Numerical Renormalization
Group (NRG), developed in the 1970s by Kenneth Wilson [2]. Originally applied to solve
the Kondo problem [3], NRG nowadays represents the most powerful approach towards
fermionic quantum impurity models.

For over three decades, the application of NRG was restricted to fermionic models.
The underlying reason for this restriction lies in Pauli’s exclusion principle: in fermionic
systems each state can be occupied at most once, whereas in bosonic systems the occupation
of a state can be arbitrary high. This leads to an infinitely large Hilbert space in the
bosonic case that is hard to treat numerically and requires a systematic truncation scheme.
Therefore it took until 2003 to introduce a bosonic NRG scheme for the application to the
Spin-Boson Model [4].

The resulting data for the Spin-Boson Model soon led to much controversy regarding
its quantum phase transition: theoretical considerations based on quantum-to-classical
correspondence (QCC) yielded values for critical exponents that were inconsistent with
the NRG calculations. This resulted in the striking conclusion that QCC would fail for the
Spin-Boson Model [5].

However, the authors of [5] concluded afterwards that in fact the NRG results were
incorrect due to the bosonic state space truncation [6]. At the same time, other methods
like Quantum Monte Carlo [7] and exact diagonalization [8] confirmed the QCC predictions.
In order to fix the bosonic truncation error, a Variational Matrix Product State (VMPS)
approach has been introduced by Guo et al. [9]. Although it is partly based on NRG, it
deals with the truncation problem in a much more systematic way leading to results in
excellent agreement with QCC. Therefore it can be concluded without much doubt that
QCC is valid for the Spin-Boson Model.

In this thesis, the VMPS method is used to study a slightly modified version of the
standard Spin-Boson Model by using an impurity spin 1, in contrast to the standard spin
1/2.

The thesis is organized as follows:

• Chapter 2 gives a short outline about the theory of phase transitions with the focus
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on the features that are relevant for this thesis.

• Chapter 3 reviews the important physical aspects of the Spin-Boson Model.

• Chapter 4 summarizes the numerical methods that are used in this thesis for the
study of the Spin-Boson Model.

• Chapter 5 presents the results for the Spin-1-Boson Model.



2 Phase Transitions

This chapter summarizes the essential features of the physics of phase transitions. We
focus only on aspects that are significant for the study of the Spin-Boson Model.

For a more elaborate discussion on this topic see [10].

2.1 Classical and Quantum Phase Transitions

Phase transitions are a ubiquitous phenomenon in physics. Common examples are the
transition from water to ice at zero degree temperature, the transition from ferromagnetism
to paramagnetism at the Curie temperature or the change between crystalline structures.

Such phenomena can be explained by considering the free energy F = U − TS. Per
definition, a system is in thermal equilibrium when its free energy is minimized. F consists
of two competing terms: the internal energy U that is usually minimized for an ordered
system (e.g. for equally aligned magnetic moments in a ferromagnet) and the second
term with the entropy S, which prefers disorder. By tuning the temperature T over a
critical value Tc (the Curie temperature in the case of ferromagnets), one can therefore
qualitatively change the properties of the system. That kind of behaviour is distinctive for
a phase transition.

Of particular interest are second-order or continuous phase transitions. Here, the free
energy F is continuous in its first derivative and has a discontinuity in its second derivative
at the critical point, in contrast to first-order phase transitions which exhibit a discontinuity
in the first derivative of F .

As an example for a continuous phase transition, consider again the case of ferromagnets:
for T > Tc thermal fluctuations destroy any magnetic order of the system. Hence, the
magnetic moments are completely uncorrelated (see Figure 2.1). Approaching Tc from
above, areas of same magnetization are formed and the correlations become long ranged.
Below the critical point Tc all magnets either point up or down. The system has a finite
magnetization m and the correlation length ξ diverges, which is a distinctive feature of
second-order phase transitions.

For a mathematical description of this behaviour, one introduces the order parameter
m, which measures the degree of order in the system. It is always zero in the disordered
phase (T > Tc) and finite in the ordered phase (T < Tc). In the case of ferromagnets,
the order parameter is the magnetization. For second-order phase transitions, the order
parameter vanishes continuously near the critical point coming from the ordered phase
with m ∝ |T − Tc|β, where β is a critical exponent defined in the next section.
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Figure 2.1: Simplified model of a ferromagnet. In the disordered phase (T > Tc) the magnetic
moments are uncorrelated, whereas in the ordered phase they are fully correlated leading to
magnetization.

Considering the above mentioned examples, one would expect phase transitions to occur
only for finite temperature T > 0. However, there exists another interesting class of phase
transitions, so called quantum phase transitions, which have been intensively studied in
the last decades [11][10][12]. Occuring at at T = 0, the source driving these transitions can
not be thermal fluctuations. Instead, quantum fluctuations resulting from Heisenberg’s
uncertainty principle are responsible for this type of transition. The tunable parame-
ter controlling the transition must be non-thermal and could for example be a coupling
strength. Although these transitions only appear at T = 0, they strongly influence the
finite temperature phase diagram of certain materials. Hence, quantum phase transitions
open up a new field of research with applications ranging from the study of qubits [13] to
superconducting materials [14].

2.2 Critical Exponents

The behaviour of a system at criticality can be quantified by its critical exponents that
describe the characteristic scaling of physical observables close to the critical point. In the
last section, we have already encountered one example of a critical exponent, namely the
order parameter exponent β. For magnetic systems, the common critical exponents are
summarized in Table 2.1.

Physical Observable Exponent Definition Conditions
specific heat α C ∝ |t|−α t→ 0, B = 0

order parameter β m ∝ |t|β t→ 0−, B = 0
susceptibility γ χ ∝ |t|−γ t→ 0, B = 0
magnetic field δ B ∝ |m|δ sgn(m) t = 0, B → 0

correlation length ν ξ ∝ |t|−ν t→ 0, B = 0
correlation function η G(r) ∝ |r|−d+2−η t = 0, B = 0

correlation time z τc ∝ ξz t→ 0, B = 0

Table 2.1: Common critical exponents for magnetic (Ising-like) models with an external magnetic
field B. t is the dimensionless distance from criticality, t = T−Tc

Tc
. G(r) is the correlation function

of two spins with distance r and τc is the correlation time. Adapted from [12].
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As we elaborate on in the next section, critical exponents have a high degree of univer-
sality, i.e. they can take the same values for a whole class of systems, independent of their
microscopic details.

2.3 Mean-Field Theories

Mean-field theories are a very important concept in order to study phase transitions. The
idea is to replace the many-body interaction terms in the Hamiltonian by a one-body inter-
action. In this approximation, the partition function can often be calculated analytically
and the critical exponents can be extracted. The such obtained critical exponents are
found to be universal for all classical systems and take the values listed in Table 2.2.

Exponent Value
α 0
β 1/2
γ 1
δ 3
ν 1/2
η 0

Table 2.2: Values for the critical exponents of classical systems in the mean-field approximation.
Adapted from [12].

However, mean-field theories have severe limitations, since they do not take fluctuations
of the physical quantities into account. As these fluctuations play a crucial role in the
vicinity of the critical point, the mean-field predictions for critical exponents are only valid
if their effect can be neglected. As fluctuations increase with lower space dimensions [15],
this gives rise to the definition of critical dimensions:

• Above the upper critical dimension d+
c , fluctuations become negligible and the critical

exponents take mean-field values.

• Between the upper critical dimension d+
c and the lower critical dimension d−c , fluc-

tuations become important. The system still undergoes a phase transition, but the
mean-field approach fails to deliver valid critical exponents. Here, more sophisticated
methods have to be considered like renormalization group techniques [16]. A further
discussion of these methods is out of scope of this thesis.

• Below the lower critical dimension d−c , fluctuations completely destroy the ordered
phase and no phase transition occurs.
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2.4 Quantum-to-Classical Correspondence

A powerful concept to study quantum phase transitions is the quantum-to-classical corre-
spondence. With this method, quantum systems in d dimensions can be mapped to classical
systems in d + z dimensions, where z is the dynamic critical exponent. Formally, this is
done by identifying the density operator e−Ĥ/kBT in the partition function Z = Tr e−Ĥ/kBT

as a time evolution operator in imaginary time. At zero temperature, this imaginary time
direction acts similar to z additional spatial dimensions [12]. This technique will be used
later in the context of the Spin-Boson Model to relate its quantum phase transition to the
classical transition of a 1D Ising chain with long-ranged interactions.

A more detailed examination of this method can be found in [11].



3 The Spin-Boson Model

The Spin-Boson Model was popularized by Leggett et al. in 1987 in the context of dissi-
pative quantum systems [1] and, since then, has been applied in various contexts [17][18].
In recent years, the focus of interest has been most notably shifted to its widely discussed
quantum phase transition at zero temperature [4][5][6][9].

This chapter gives an outline about the static properties of the Spin-Boson Model as
well as its quantum critical behaviour.

3.1 The Hamiltonian

The Spin-Boson Model is a simple example of an open quantum system. It describes a
two-state system that is coupled to a bath consisting of non-interacting bosons. This leads
to the Hamiltonian of the form

Ĥ = −∆
σ̂x
2

+ ε
σ̂z
2

+
∑
i

ωiâ
†
i âi +

σ̂z
2

∑
i

λi(âi + â†i ). (3.1)

The Hamiltonian of any quantum impurity model, like the Spin-Boson Model, consists of
three parts: The impurity, which usually has a small number of degrees of freedom, the
environment or bath, which can be of bosonic or fermionic nature, and the interaction be-
tween impurity and bath. For the Spin-Boson Model, this partition results in the following
terms:

ĤTSS = −∆ σ̂x
2

+ ε σ̂z
2

describes the two-state system; a spin 1/2 impurity, which can be
tuned via the tunnelling constant ∆ and an additional bias ε. Here σ̂z and σ̂x represent
the standard Pauli matrices and the reduced Planck constant is set to ~ = 1 throughout
the whole thesis.

Ĥbath =
∑

i ωiâ
†
i âi represents a non-charged environment, which is characterized by non-

interacting harmonic oscillators with frequencies ωi. The corresponding occupation num-
bers are given by the operator n̂i = â†i âi, where â†i and âi denote the bosonic creation and
annihilation operators.

Ĥint = σ̂z
2

∑
i λi(âi + â†i ) characterizes the interaction between spin and environment: the

z-component of the spin couples linearly to each oscillator mode i with λi specifying the
coupling strength.
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The effect of the bath can be fully described by the spectral function

J(ω) = π
∑
i

λ2
i δ(ω − ωi), (3.2)

which can be interpreted as the bosonic density of states weighted with the coupling
strength.

As one is interested in the low energy spectrum of the system, it is convenient to choose
a power law form of J(ω). The standard parametrization is given by

J(ω) = 2παω1−s
c ωs, 0 < ω < ωc, (3.3)

with an upper cutoff frequency ωc. The dimensionless parameter α describes the coupling
strength between the impurity and the bosons, the bath exponent s characterizes the
distribution of the bath modes.

One distinguishes three different regions for the bath exponent: the super-ohmic case
(s > 1), the ohmic case (s = 1) and the sub-omic case (s < 1), each leading to qualitatively
different properties of the model (see next section).

ω

J(ω)

ωc

s<1s>1s=1

Figure 3.1: Spectral functions for super-ohmic (s > 1), ohmic (s = 1) and sub-ohmic (s < 1)
dissipation.

3.2 Critical Behaviour

Setting the bias ε to zero, the ground state properties at T = 0 are determined only by the
tunnelling between the σ̂z-eigenstates given by ∆ and the coupling strength to the bosonic
bath given by α. This results in two ground state phases that can be distinguished by
the order parameter, which in this case is given by the magnetization 〈σ̂z〉 of the impurity
spin:
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1. The delocalized phase: the tunnelling between the σ̂z-eigenstates outweighs the coupling
in z-direction leading to a weak-coupling phase. The ground state consists of a superpo-
sition of |↑〉 and |↓〉 at the impurity leading to a vanishing magnetization in coupling
direction, i.e. the ground state expectation value 〈σ̂z〉 = 0.

2. The localized phase: in this strong coupling phase, the spin is localized in the direction
of the bath coupling. This leads to a two-fold degenerate ground state with finite magne-
tization, 〈σ̂z〉 6= 0.

At zero temperature, a quantum phase transition can occur between the localized and the
delocalized phase, which is controlled by the coupling parameter α. The character of the
transition depends on the bath exponent s. The following cases can be distinguished:

• In the super-ohmic case (s > 1) no phase transition occurs: The spin is always
delocalized and 〈σ̂z〉 = 0. This can be attributed to the bosonic density of states,
which contains only few low energy modes for s > 1 leading to a spin-bath interaction
that is insufficient to localize the spin.

• In the ohmic case (s = 1), both localized and delocalized phase are present and
the system undergoes a Kosterlitz-Thouless transition, characterized by an exponen-
tially diverging correlation length for the critical coupling αc, which depends on the
tunnelling parameter ∆ and reaches the value αc = 1 in the limit of small ∆ [4].

• Considering a sub-ohmic bath spectrum (s < 1), the Spin-Boson Model features a
second-order quantum phase transition between the localized phase for α > αc and
the delocalized phase for α < αc. This regime has been widely discussed in recent
years and will be further examined below.

As described in Chapter 2, a second-order phase transition can be characterized by a set
of critical exponents. In this thesis, we focus on the critical exponents β and δ, which in
the context of the Spin-Boson Model are defined as follows:

〈σ̂z〉 ∝ (α− αc)β, (3.4)

〈σ̂z〉 ∝ ε1/δ at α = αc. (3.5)

According to quantum-to-classical correspondence (QCC), the sub-ohmic Spin-Boson Model
can be mapped on a classical 1D Ising chain with long-range interactions [5]. Thus one
can predict the following behaviour for the critical exponents:

• For s < 1/2 the system is above its critical dimension and one expects the mean-field
values

δ = 3, β = 1/2. (3.6)

• For 1/2 < s < 1 the critical exponents have a non-trivial dependency on the bath
exponent s. A scaling ansatz for the free energy allows to derive so-called hyperscaling
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relations [5]

δ =
1 + s

1− s
, β = ν

1− s
2

, (3.7)

where the correlation length exponent ν is defined by ξ ∝ |α− αc|−ν .

The first numerical results for the sub-ohmic phase transition obtained by the bosonic Nu-
merical Renormalization Group (NRG), however, failed to reproduce these results. Instead
hyperscaling was observed for the whole sub-ohmic regime 0 < s < 1 leading to the conclu-
sion that the QCC failed for the Spin-Boson Model [5]. As discussed in the next chapter,
the NRG method is unable to deal with the bosonic nature of the model and therefore
its results are not reliable. Supported by other methods confirming the QCC predictions
[7] [8], the concept of quantum-to-classical correspondence is now generally considered as
validated for the quantum phase transition of the Spin-Boson Model.

3.3 Spin-1-Boson Model

In this thesis, the interest lies in the Spin-Boson Model with spin 1. The examination of
this modification is worthwhile as its critical behaviour has not been studied numerically
yet, and its treatment will provide useful experience towards more complicated bosonic
quantum impurity models featuring spin 1.
The Hamiltonian of the Spin-1-Boson Model is given by

Ĥ = −∆Ŝx + εŜz +
∑
i

ωiâ
†
i âi + Ŝz

∑
i

λi(âi + â†i ), (3.8)

where the spin 1 matrices are given by (see appendix):

Ŝx =
1√
2

0 1 0
1 0 1
0 1 0

 Ŝy =
i√
2

0 −1 0
1 0 −1
0 1 0

 Ŝz =

1 0 0
0 0 0
0 0 −1

 (3.9)

in the basis where Ŝz is diagonal.
For the Spin-1-Boson Model one expects the same behaviour of the critical exponents as

in the spin 1/2 case, i.e. mean field behaviour for s < 1/2 and hyperscaling for 1/2 < s < 1
[19].



4 Numerical Methods

This chapter reviews the essential numerical methods used to study the Spin-Boson Model.
We apply a combination of Wilson’s Numerical Renormalization Group (NRG) and the
Density Matrix Normalization Group (DMRG) in order to correctly deal with the large
bosonic state spaces of the Spin-Boson Model.

Due to the limited scope of this thesis, only the main ideas will be discussed; for a deeper
insight see [20][21][22][23].

4.1 Discretization and Mapping of the Hamiltonian

Starting point is the Hamiltonian for the Spin-1-Boson Model defined in the previous
chapter

Ĥ = −∆Ŝx + εŜz +
∑
i

ωiâ
†
i âi + Ŝz

∑
i

λi(âi + â†i ) (4.1)

and the spectral function of the bath

J(ω) = 2παω1−s
c ωs. (4.2)

In order to treat the model numerically, a coarse graining has to be applied to the con-
tinuous bath spectrum leading to discretized energy levels. Since our study focuses on
low energy properties of the model, a logarithmic discretization is chosen, as it yields a
finer resolution for small energies than a linear discretization. This results in the following
discrete energy levels [20]:

ω0 = ωc (4.3)

ωn = ωcΛ
−n, n = 1, 2, 3... (4.4)

where Λ > 1 is the logarithmic discretization parameter.

The Hamiltonian can now be written in discretized form [21]

Ĥ = −∆Ŝx + εŜz +
∞∑
n=0

ξnâ
†
nân +

Ŝz√
π

∞∑
n=0

γn(ân + â†n), (4.5)
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ωΛ-1ωc ωcΛ-2ωc
Figure 4.1: Logarithmic discretization of the spectral function (sub-ohmic case).

where

γ2
n =

∫ Λ−n

Λ−(n+1)

J(ω)dω (4.6)

ξn = γ−2
n

∫ Λ−n

Λ−(n+1)

J(ω)ωdω. (4.7)

In this form the impurity still couples to each bath mode and the Hamiltonian is therefore
referred to as ”star”-Hamiltonian [21]. In the next step, the Hamiltonian is mapped to a
semi-infinite chain with only nearest-neighbour interaction, the so-called Wilson chain, via
a unitary transformation [22]

Ĥ = −∆Ŝx + εŜz +

√
η0

π
Ŝz(b̂0 + b̂†0) +

∞∑
n=0

εnb̂
†
nb̂n +

∞∑
n=0

tn(b̂†nb̂n+1 + b̂†n+1b̂n), (4.8)

with the impurity at the first chain site. b̂†n and b̂n are the bosonic creation/annihilation
operators for the n-th bosonic site and η0 =

∫
J(ω)dω. The on-site energies εn and hopping

amplitudes tn decay exponentially with n and have to be calculated numerically [21]. In
practice, the semi-infinite chain is approximated by a finite chain of length N .

4.2 NRG Procedure

After transforming the discretized Hamiltonian in the form of 4.8, the model can in prin-
ciple be solved by using Wilson’s Numerical Renormalization Group, which has been suc-
cessfully applied to fermionic systems in various contexts [3][24]. The NRG procedure is
straightforward: One starts with the impurity coupled only to the first bosonic site

Ĥ0 = −∆Ŝx + εŜz +

√
η0

π
Ŝz(b̂0 + b̂†0) + ε0b̂

†
0b̂0 (4.9)
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and then iteratively diagonalizes the Hamiltonian. After obtaining the eigenstates, one
adds the next site, rescales the system and repeats the diagonalization procedure. To
prevent the exponential growth of the Hilbert space, only a fixed number of eigenstates
are kept after each iteration. However, the NRG results obtained in this way disagreed
with the predictions from quantum-to-classical correspondence (QCC). The reasons for
this failure are discussed below.

4.2.1 Shortcomings of Bosonic NRG

The incorrect NRG results can be attributed to two limitations of bosonic NRG, the Hilbert
space truncation and the mass flow error.

• Truncation problem:
In the localized phase, the finite magnetization induces displacements x̂i = 1√

2
(âi+â

†
i )

in the local bosonic state spaces on the Wilson chain. Because of this shift, NRG
fails to accurately represent the local state spaces with a truncated basis set. To
overcome this problem, a basis of shifted oscillators would be required. Attempts to
implement such a basis within the NRG framework failed [21]. However, the VMPS
approach, discussed in the following section, is able to cure the bosonic truncation
issue.

• Mass-flow error:
The mass-flow error is a direct consequence of the iterative character of the NRG
approach. At any iteration step, the system has no information about the rest-chain,
i.e. the low-energy modes of the system. This leads to a erroneous modification of
the parameters of the system, in particular the coupling strength that controls the
quantum phase transition. In consequence, this strongly affects critical exponents
obtained from finite size scaling of observables, which are not topic of this thesis. A
detailed examination of this issue can be found in [25]. Note that very promising
steps have been taken recently to resolve the mass-flow by the usage of an improved
construction of the Wilson chain [26].

4.3 VMPS Approach

In this section, the main ideas of VMPS (Variational Matrix Product State) and its appli-
cation to the Spin-Boson Model will be discussed. VMPS is mathematically equivalent to
the Density Matrix Renormalization Group (DMRG) [27] and can be seen as a more intu-
itive approach. Furthermore, its underlying structure, the matrix product states (MPS),
can be also used as the basis for NRG [28] leading to an interesting connection between
the two methods.
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4.3.1 Matrix Product States

Matrix product states are an elegant way to represent quantum states. A general quantum
state of a 1D system with open boundary conditions

|Ψ〉 =
∑

σ1,...,σN

cσ1,...,σN |σ1, ..., σN〉 (4.10)

can be written in MPS language as

|Ψ〉 =
∑

σ1,...,σN

A[σ1]...A[σN ] |σ1, ..., σN〉 (4.11)

by decomposing the coefficients cσ1,...,σN into a set of matrices A[σi]. Each tensor A[σi]

connects to a state space {|σi〉} of dimension d at site i.

To keep a numerical treatment feasible, the dimension D of A[σi] must be restricted and
a truncation scheme has to be applied. In DMRG, this is accomplished by keeping only
the D states with the highest eigenvalues of the density matrix of the currently considered
sub-space of the system. A criteria for the efficiency of this truncation method is the rate
of decrease of eigenvalues, which is related to the entanglement of the system given by the
von Neumann entropy S.

It is found, that for the ground state the entropy scales as the surface of the subregion
and not as its volume [29], as one would expect for the entropy as an extensive property
in thermodynamics. This ”area law” yields an entanglement of the ground state that
is constant for one dimensional systems and growing with system size for higher dimen-
sions. Therefore, DMRG is very efficient for one dimensional systems, but its usage is very
restricted in the case of higher dimensional systems.

A detailed review of matrix product states in connection with DMRG can be found in
[23].

4.3.2 Variational Optimization

The goal of the VMPS approach is to variationally find an approximation for the ground

state of the system, i.e. the state that minimizes the energy E = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 . To achieve

this, one starts with a randomly generated MPS of the form 4.11 and then optimizes the
A matrices

∂

∂Ai
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

= 0 (4.12)

one at a time, beginning with the first bosonic site and working through the Wilson chain
towards the low energy sites (this procedure is called a DMRG sweep). This process is
repeated until convergence is reached, i.e. the approximated ground state energy does not
change any further within the desired precision.
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4.3.3 Capture of the Bosonic Shifts

As already mentioned, the problem with the bosonic displacements in the localized phase
can be treated with a basis of shifted oscillators in the VMPS approach. In [9] this was
accomplished during the optimization process: The displacements 〈x̂k〉 of the current vari-
ational state are used to construct the basis for the next variational state, which is directly
incorporated in the Hamiltonian by using shifted bosonic operators b̃k = b̂k − 1√

2
〈x̂k〉.

In this thesis another method is used. We follow the proposal of [30], where the shift
is calculated analytically. The Hamiltonian (4.8) is written in terms of shifted operators
b̃†i = b̂†i + 1√

2
δi, b̃i = b̂i + 1√

2
δi, resulting in the form

Ĥ = −∆Ŝx + εŜz + 2

√
η0

π
Ŝz(b̃0 + b̃†0)− 2

√
2δ0η0Ŝz

+
∞∑
n=0

εn(b̃†nb̃n −
1√
2
δn(b̃n + b̃†n) +

1

2
δ2
n)

+
∞∑
n=0

tn(b̃†nb̃n+1 + b̃†n+1b̃n −
1√
2
δn+1(b̃n + b̃†n)− 1√

2
δn(b̃n+1 + b̃†n+1) + δnδn+1).

(4.13)

In the optimized basis the bosonic displacements are minimized, hence all terms containing
(b̃n+ b̃†n) in the Hamiltonian must vanish. By replacing Ŝz by its mean value, one can derive
equations for the δn that fulfil this condition (see [30] for details).

For δ0 one obtains a continued fraction

δ0 =
− 2

√
2η0/π 〈Ŝz〉

ε0 −
t20

ε1 −
t21
. . .

(4.14)

and the other δn can be calculated recursively via

δn = −δn−1

t2n−1

εn −
t2n

εn+1 −
t2n+1

. . .

. (4.15)

In this optimized basis the system undergoes one optimization sweep (this is in con-
trast to the method discussed above, where the shifts are recalculated at each sweeping
step). Afterwards, the displacements are recalculated for the next sweep and the process
is iterated until convergence is reached.



5 Results

This chapter presents the results for the Spin-1-Boson Model that are obtained using the
VMPS method. The aim is to create the sub-ohmic phase diagram as well as to determine
the values for the critical exponents β and δ. For all results the following parameters are
used:

Description Parameter Value
chain length N 50

discretization parameter Λ 2
tunnelling amplitude ∆ 0.1

bond dimension D 40
local state space dimension dk 100

OBB dimension dopt 12

Table 5.1: Parameters used for the study of the Spin-1-Boson Model. The bond dimension of the
A tensors is given by D and dk denotes the dimension of the bosonic sites. The local states are
represented in an optimized boson basis (OBB) of dimension dopt, see [9][20] for details.

5.1 Phase Boundary

In order to study the critical properties of the model, it is necessary to find the critical
coupling strength αc for a given set of parameters. The phase boundary is obtained by
using a bisection method: One starts with an interval [α1, α

′
1] large enough to contain the

critical coupling strength with certainty, i.e. the coupling strength α = α1 leads to the
delocalized phase and α = α′1 to the localized phase. Then a VMPS run is performed for
the coupling strength α = 1

2
(α1 + α′1). By checking whether or not this coupling leads to

localization, one can narrow down the interval that contains the critical coupling αc. This
process is iterated until the desired precision is reached (the results in this thesis have a
precision of 10−8).

Essential for this method is a reliable way to determine in which phase the system
is located. In this thesis, this is achieved by examining the occupation numbers of the
bosonic sites. In the delocalized phase, the occupation numbers nk for the k-th bosonic
sites decrease with increasing k, whereas they diverge in the localized phase [21] (see Figure
5.1).
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Figure 5.1: Bosonic occupation numbers for the delocalized phase (a) and the localized phase (b).
The bosonic displacements in the localized phase lead to a divergence of the occupation numbers
towards the end of the chain.

With this method, the critical couplings for different values of s can be determined.
The resulting phase diagram and the calculated values are shown in Figure 5.2. One can
observe a critical coupling strength decreasing with smaller values of the bath exponent s.
This behaviour is expected and analog to the spin 1/2 model, since the number of bath
oscillators at low energies that are responsible for the localization of the impurity spin
increases strongly with decreasing s.
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Figure 5.2: Sub-ohmic phase diagram and values for the critical coupling. The critical coupling
strength αc decreases with smaller values of s.
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5.2 Critical Exponents

This section describes how the behaviour of the critical exponents β and δ under variation
of the bath exponent s are examined and presents the results.

As discussed in Chapter 3, one expects a power-law behaviour for the magnetization 〈Ŝz〉
in the vicinity of the critical coupling αc, 〈Ŝz〉 ∝ (α − αc)β with the bias set to ε = 0. By
measuring the magnetization for different values of (α − αc), one would expect a straight
line on a double-logarithmic plot. The value of β can then be extracted from the slope of
this line.
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Figure 5.3: VMPS results for the magnetization | 〈Ŝz〉 | close to the phase boundary (blue dotted
lines) for various values of s. The dashed black lines indicate the power-law fits used to extract
the critical exponent β. The vertical lines illustrate the fitting intervals.

Figure 5.3 displays the numerical results used to extract β for a variety of s-values. In
all panels, we observe a solid power-law scaling over several decades that allows to extract
β with high precision. The approximated fitting error is estimated by varying the fitting
intervals and observing the effect on the value of the critical exponent β.

Note that the range of power-law scaling for s = 0.2 is shorter than for larger values of
s. The reason for this behaviour is that the chain length needed to determine αc within
a desired precision scales with the correlation length exponent ν [20], which is found to
diverge for s→ 0 [4]. The case s = 0.1 is omitted in this thesis, as the scaling range is too
small to produce suitable data for the critical exponents.

Using these results, one can now examine the s-dependence of β. As discussed in
Chapter 3, quantum-to-classical correspondence predicts mean-field values for s < 1/2
and hyperscaling for 1/2 < s < 1. Figure 5.4 shows the resulting values of 1/β against s.
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Figure 5.4: s-dependence of the critical exponent β. The from Figure 5.3 collected VMPS results
for β clearly follow the mean-field prediction 1/β = 2 for s < 1/2 (black dashed line).

As expected [19], β is found to take the mean-field value β = 1/2 for s < 1/2 and shows
an s-dependent behaviour for s > 1/2, indicating hyperscaling. At s = 1/2, the value
of β slightly deviates from its mean-field value. This can be attributed to logarithmic
corrections to mean-field behaviour that occur when the model is at its upper critical
dimension [15].

The critical exponent δ, defined via 〈Ŝz〉 ∝ ε1/δ at the critical coupling α = αc, is
evaluated in a similar fashion. For each value of s, the magnetization is plotted under
variation of ε for α = αc. The VMPS results for δ are illustrated in Figure 5.5.
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Figure 5.5: VMPS results for the magnetization | 〈Ŝz〉 | at the critical point in response to an
external field ε for various values of s (blue dotted lines). Characteristic power-law scaling of
| 〈Ŝz〉 | is used to extract the critical exponent δ via fitting (black dashed line). The vertical lines
indicate the fitting intervals.
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Figure 5.6: s-dependence of the critical exponent δ. The from Figure 5.5 collected VMPS results
for δ clearly follow the mean-field predictions 1/δ = 1/3 for s < 1/2 (black dashed line) and are
in agreement with hyperscaling for s > 1/2 (grey dashed line).

As for the critical exponent β, solid power-law scaling allows to extract δ from the scaling
behaviour of 〈Ŝz〉. Again one can observe a comparatively short range of power-law scaling
for s = 0.2 with the same reason as discussed above.

The behaviour of the critical exponent δ is also consistent with the theoretical predic-
tions, as shown in Figure 5.6. For s < 1/2, mean-field values are obtained with logarithmic
corrections at the upper critical dimension s = 1/2. For s > 1/2, δ shows excellent
agreement with the hyperscaling result δ = 1+s

1−s .
Considering these results for the critical exponents β and δ, one can conclude that the

quantum-to-classical correspondence holds for the Spin-1-Boson Model.



6 Conclusion

In this thesis, we studied the critical behaviour of the Spin-1-Boson Model. In Chapter 2,
we reviewed the essential physical aspects of phase transitions. After a short summary of
the basic features of classical and quantum phase transitions, we motivated the definition
of critical exponents. We proceeded by giving an overview of mean-field theories and
quantum-to-classical correspondence, which both are important concepts for the treatment
of critical behaviour.

In Chapter 3, we discussed the Spin-Boson Model. After summarizing the basic proper-
ties, we examined the critical properties of the model. There, we focussed on the sub-ohmic
quantum phase transition and made predictions for the dependence of the critical expo-
nents β and δ on the bath exponent s.

In Chapter 4, we gave an outline on the numerical methods that are important for the
Spin-Boson Model. After discretizing the Hamiltonian and mapping it on the Wilson chain,
we reviewed the NRG method and revealed its limitations in the application on bosonic
systems. We resumed by introducing the VMPS method and its ability to overcome the
problems of bosonic NRG.

In Chapter 5, we presented our results for the Spin-1-Boson Model obtained by the
VMPS method. We obtained the sub-ohmic phase diagram, which we found to have the
same qualitative features as for the spin 1/2 case. Subsequently we extracted the critical
exponents β and δ and examined their s-dependence. The results were consistent with the
theoretical predictions and we therefore concluded the validity of the quantum-to-classical
correspondence for the Spin-1-Boson Model.

This thesis proved the capability of the VMPS method to deal with spin-1 impurities. As
an outlook, one could therefore proceed by studying further spin-1 impurity models with
VMPS. An example would be the Spin-Boson Model with two baths. For this system, an
examination of the spin 1/2 case yielded comprehensive results with a rich phase diagram
[9][20]. However, early data for the spin 1 case turned out to be contradictory. As the
VMPS method generally seems to be convenient also for spin 1 impurities, a further study
of this model with VMPS should be worthwhile.



7 Appendix

7.1 Derivation of the Spin-1 Matrices

A general spin state in the z-basis can be written as |S,m〉, where S denotes the total spin
and m the projection on the z-axis. In our case S = 1; therefore we use the notations

|↑〉 = |1, 1〉 , |→〉 = |1, 0〉 , |↓〉 = |1,−1〉 . (7.1)

These states are orthonormal and fulfil the eigenvalue equations (~ = 1)

Ŝz |↑〉 = +1 |↑〉 (7.2)

Ŝz |→〉 = 0 |→〉 (7.3)

Ŝz |↓〉 = −1 |↓〉 . (7.4)

Therefore the matrix representation of Ŝz the z-basis is given by

Ŝz =

 〈↑| Ŝz |↑〉 〈↑| Ŝz |→〉 〈↑| Ŝz |↓〉
〈→| Ŝz |↑〉 〈→| Ŝz |→〉 〈→| Ŝz |↓〉
〈↓| Ŝz |↑〉 〈↓| Ŝz |→〉 〈↓| Ŝz |↓〉

 =

1 0 0
0 0 0
0 0 −1

 . (7.5)

To calculate the matrix representations of Ŝx and Ŝy, one needs the raising and lowering

operators Ŝ+ and Ŝ−, defined via Ŝ± = Ŝx ± iŜy. These fulfil the relation

Ŝ± |S,m〉 =
√
S(S + 1)−m(m± 1) |S,m± 1〉 . (7.6)

For S=1 this yields

Ŝ+ |↑〉 = 0, Ŝ+ |→〉 =
√

2 |↑〉 , Ŝ+ |↓〉 =
√

2 |→〉 (7.7)

Ŝ− |↑〉 =
√

2 |→〉 , Ŝ− |→〉 =
√

2 |↓〉 , Ŝ− |↓〉 = 0, (7.8)

leading to the matrix representations

Ŝ+ =

 〈↑| Ŝ+ |↑〉 〈↑| Ŝ+ |→〉 〈↑| Ŝ+ |↓〉
〈→| Ŝ+ |↑〉 〈→| Ŝ+ |→〉 〈→| Ŝ+ |↓〉
〈↓| Ŝ+ |↑〉 〈↓| Ŝ+ |→〉 〈↓| Ŝ+ |↓〉

 =

0
√

2 0

0 0
√

2
0 0 0

 , (7.9)
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Ŝ− =

 〈↑| Ŝ− |↑〉 〈↑| Ŝ− |→〉 〈↑| Ŝ− |↓〉
〈→| Ŝ− |↑〉 〈→| Ŝ− |→〉 〈→| Ŝ− |↓〉
〈↓| Ŝ− |↑〉 〈↓| Ŝ− |→〉 〈↓| Ŝ− |↓〉

 =

 0 0 0√
2 0 0

0
√

2 0

 . (7.10)

The matrix representations of Ŝx and Ŝy can now be calculated via

Ŝx =
1

2
(Ŝ+ + Ŝ−) (7.11)

Ŝy =
1

2i
(Ŝ+ − Ŝ−) (7.12)

leading to the results

Ŝx =
1√
2

0 1 0
1 0 1
0 1 0

 Ŝy =
i√
2

0 −1 0
1 0 −1
0 1 0

 . (7.13)
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