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1 Introduction

1.1 Aims

The aim of this Bachelor thesis was to write a C++ library that allows the calculation
of Clebsch-Gordan coefficients for the decomposition of an arbitrary coupling of irreducible
representations (irreps) of SU(N) into a direct sum of irreps. A program that computes

these coefficients has recently been developed[1]. However, the code described here uses an
improved algorithm that accelerates the calculation by a factor of order N !. To achieve this,
it exploits a symmetry called Weyl-group symmetry.

1.2 Clebsch-Gordan coefficients

Clebsch-Gordan coefficients are required for the decomposition of a tensor product of represen-
tations of two irreducible representations VS and VS

′
into a sum of irreducible representations.

In physics one usually encounters them in atomic physics, e.g. spin-orbit-interaction or cou-
pling of spins and angular momenta. In this case, the Clebsch-Gordan coefficients for SU(2)
are needed. They are the expansion coefficients for a change from a tensor product basis to
a coupled basis.

|M ′′, α〉 =
∑
M,M ′

CM
′′,α

M,M ′ |M ⊗M
′〉 (1.1)

Here M ′′ is a state of the new basis. It is a linear combination of old states which are given

in the tensor product basis of the irreps M and M ′. The coefficients CM
′′,α

M,M ′ in the sum are
the Clebsch-Gordan coefficients that are to be determined. The index α describes the outer
multiplicity of the state, which does not occur in SU(2), but has to be considered for general
SU(N) and will be explained in detail later.
Systems with higher SU(N) symmetry appear for example in the standard model (SU(3)) or in

quantum impurity[2] models of solid states. Such systems can be simplified significantly using
the Wigner-Eckart theorem. This is where Clebsch-Gordan coefficients are required. They
are essential to exploit the Wigner-Eckart theorem. This theorem says that the Hamiltonian
is block-diagonal and the Clebsch-Gordan coefficients determine which matrix elements do
not vanish. Furthermore, by introducing irreps as new quantum numbers to the states, the
dimension of the Hamiltonian can be reduced. It is necessary to keep only one representative
state of the respective carrier space for each irrep that appears, but the full Hamiltonian can
still be reconstructed from the reduced one. This drastically speeds up numerical calculations,
because the dimension of the Hamiltonian can be reduced significantly. To use the theorem it
is crucial to know the Clebsch-Gordan coefficients explicitly. For higher irrep dimensions and
higher SU(N) the computation of these coefficients becomes very time consuming. Thus, we
propose a new algorithm to decrease computation times. It uses the fact that SU(N)carrier
space states can be classified according to N ! so called Weyl chambers. Those Weyl chambers
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can be mapped onto each other by elements from the Weyl group. Explicit calculation of the
Clebsch-Gordan coefficients is required for only one of those chambers. All other coefficients
can be obtained by very fast symmetry operations.

1.3 Outline

We will start by giving a brief introduction into the mathematical framework of the problem
and fixing notation.Then we provide a short revision of the old algorithm for the calculation
of Clebsch-Gordan coefficients for SU(N) which is still required as a basis for our proposed
algorithm. The main part in chapters 3 and 4 is dedicated to the detailed description of
how the new algorithm works and how it was implemented. The C++ code can be found in
chapter 6.



2 Theoretical background

This chapter is following the line of argument given by Alex et al. in the papers [1] and [3].
We will give a short recapitulation of the definitions that are used. For further details, please
see the references.

2.1 SU(N) group and corresponding Lie algebra

SU(N) is the special unitary group of degree N . It consists of all N×N unitary matrices with
determinant 1 and the operation matrix multiplication and often appears in physics, when the
system has a continuous symmetry. Working with the group SU(N) directly is comparatively
difficult as there is no easy parametrization of the group elements that would suit our purposes.
We work with the corresponding algebra, instead. This Lie algebra, denoted su(N), has the
properties of a vector space and consists of all traceless anti-Hermitian n× n matrices. Since
the group SU(N) is simply connected, many properties of the algebra and the group are
identical; in particular, they have the same Clebsch-Gordan coefficients.
A basis, that is suitable for our purposes, is given by

J (l)
z =

1

2
(El,l − El+1,l+1), (2.1a)

J
(l)
+ = El,l+1, (2.1b)

J
(l)
− = El+1,l (2.1c)

and their commutation relations

Ep,q = [Jp−1− , [Jp−2− , ...[Jq+1
− , Jq−]...]] for p > q, (2.2a)

Ep,q = [Jp+, [J
p+1
+ , ...[Jq−2+ , Jq−1+ ]...]] for p < q. (2.2b)

with the single-entry matrices Em,n = Em,na,b = δmaδnb. That way all traceless anti-Hermitian

matrices are accessible. As one can see, every element of the basis can be found if the J
(l)
± and

J
(l)
z are known. The matrices J

(l)
± will later be understood as raising and lowering operators

and play an important role for the calculation of the Clebsch-Gordan coefficients.

2.2 Irreps, states and weights

2.2.1 Labeling of irreps and states

The task is to decompose a tensor product of two irreducible representations (irreps) of the
SU(N) group. To label the irreps and the basis of their carrier spaces, we use a labeling

scheme proposed by Gelfand and Tsetlin[4],[5]: each irrep from SU(N) is defined via an irrep
weight (i-weight), which is a sequence of N non-increasing integers (with N from SU(N) )
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S = (m1,N ,m2,N . . .mN,N ). (2.3)

If the elements of two i-weights differ only by a constant value, then they describe the same
irrep ( (m1,N ,m2,N . . .mN,N ) =̂ (m1,N + c,m2,N + c . . .mN,N + c), c ∈ Z). This fact is used
to ”normalize” the i-weights by defining mN,N = 0.
A basis of the carrier space of an irrep can be written as so called Gelfand-Tsetlin-patterns
(GT-pattern). These patterns are orthonormal basis states of the carrier space (for two states
described by patterns p and p′: 〈p|p′〉 = δp,p′) and have the following form:

M =


m1,N m2,N . . . mN,N

m1,N−1 . . . mN−1,N−1
. . .

...

m1,2 m2,2

m1,1

 (2.4)

The first row of the pattern is the respective i-weight. In order to be valid a pattern has to
satisfy the betweenness condition:

mk,l ≤ mk,l−1 ≤ mk+1,l (2.5)

which limits the number of allowed pattern per i-weight. The dimension of the carrier space
corresponds to the number of valid patterns. It can be calculated directly via:

dim(S) =
∏

1≤k≤k′≤N

(
1 +

mk,N −mk′,N

k′ − k

)
(2.6)

Pattern weights

Each Gelfand-Tsetlin pattern M , that is a basis state of an irrep, is also assigned a weight
wM = (wM1 , w

M
2 , ..., w

M
N ), that is a sequence of integers. It consists of the difference between

the row sums of the pattern

wMl =
∑l

k=1
mk,l −

∑l−1

k=1
mk,l−1 (2.7)

and is called pattern weight (p-weight). However, a p-weight does not define a basis state
unambiguously, because different weights can have the same p-weight as long as their row
sums are identical, e.g.

w

 2 1 0
1 1

1

 = w

 2 1 0
2 0

1

 = (1, 1, 1) (2.8)

The number of different states that have the same p-weight is called the inner multiplicity of
that p-weight.
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2.2.2 Decomposition of an irrep product

Littlewood Richardson rule

The (hard to proof, though easy to apply) Littlewood-Richardson rule states how to decom-
pose the product of two irreps into a direct sum of irreps. We will not give a proof here, but
explain merely how it works:
Begin by writing down all GT-patterns M of one of the coupled irreps S. Now construct
an auxiliary pattern B from each GT-pattern. Its entries bk,l are bk,l = mk,l −mk,l−1 with
mk,0 ≡ 0. Now, take the i-weight of the other irrep S′ and modify its entries according to the
following rules:

1. Take the i-weight of the other irrep S′: (m′1, . . . ,m
′
N )

2. Add bk,l to m′l for each row k, starting with k = 1 and l = N (ascending k, descending
l)

3. If the i-weight violates the condition that its entries must be non-increasing at any step,
discard the i-weight

4. If all entries of B have been taken care of, the resulting irrep appears in the decompo-
sition of the coupling

Note that an irrep can appear more than once in a decomposition. Therefore, we label the
irreps with an additional index α which we call outer multiplicity.

2.3 Raising and lowering operator

The action of a raising (or lowering) operator J
(l)
± (defined via the single entry matrices) on a

GT-pattern produces a linear combination of the patterns that differ from the original pattern
by exactly ±1 in exactly one entry in row l[6]. The linear combination contains only patterns
that are valid. It can be thought of as addition of

M± =



0 0 . . . 0
0 . . . 0
. . .

...

±1k,l

0 0
0


(2.9)

for every k. (plus sign for raising operator, minus sign for lowering operator). All patterns in
this linear combination have the same i-weight and p-weight. The p-weight differs from the
p-weight of the original pattern only on two positions, since it is constructed by the differences
of the row sums: wMl is raised by 1 and wMl+1 is lowered by 1 for a raising operator and vice
versa for a lowering operator.

J
(l)
± (w1, w2, . . . , wl, wl+1, . . . , wN ) = (w1, w2 . . . , wl ± 1, wl+1 ∓ 1, . . . , wN ) (2.10)

So the raising/lowering operator just modifies two neighboring integers in the p-weight. The
action of a general single entry matrix on the p-weight is
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Em,n(w1, w2, . . . , wm, . . . , wn, . . . , wN ) = (w1, w2 . . . , wm + 1, . . . , wn − 1, . . . , wN ) (2.11)

The coefficients in front of the patterns in the linear combination are given by

〈M −Mk,l|J (l)
− |M〉 =

−
l+1∏
k′=1

(mk′,l+1 −mk,l + k − k′ + 1)
l−1∏
k′=1

(mk′,l−1 −mk,l + k − k′)

l∏
k′=1
k′ 6=k

(mk′,l −mk,l + k − k′ + 1)(mk′,l −mk,l + k − k′)



1
2

(2.12)
for the raising operator and

〈M +Mk,l|J (l)
+ |M〉 =

−
l+1∏
k′=1

(mk′,l+1 −mk,l + k − k′)
l−1∏
k′=1

(mk′,l−1 −mk,l + k − k′ − 1)

l∏
k′=1
k′ 6=k

(mk′,l −mk,l + k − k′)(mk′,l −mk,l + k − k′ − 1)



1
2

(2.13)
for the lowering operator.
Equation (2.14) shows an example of the raising operator acting on a basis state of a SU(3)
irrep with i-weight (2, 1, 0):

J
(2)
+

 2 1 0
1 0

0

 = α

 2 1 0
2 0

0

+ β

 2 1 0
1 1

0

 . (2.14)

The p-weight p = (0, 1, 2) is changed to p′ = (0, 2, 1). β equals zero because the pattern
violates the betweenness condition and is therefore invalid. α can be determined from equation
(2.12).

2.3.1 Weight diagrams

A complete set of p-weights belonging to all states of a certain irrep can be visualized by
representing the p-weights as points in an N − 1-dimensional coordinate system. The p-
weights have to obey the relation ∑

i

wi =
∑
j

mj,N (2.15)

, i.e. the sum over all entries in the p-weight has to be equal to the sum over the entries in
the respective i-weight. Thus, one loses one degree of freedom of the p-weight entries, making
them visualizable in N −1 dimensional space. A possible (non-unique) choice for the position
vector of a p-weight is given by

Wz =

(
1

2
(wM1 − wM2 ),

1

2
(wM2 − wM3 ), . . . ,

1

2
(wMN−1 − wMN )

)
(2.16)
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Figure 2.1: A SU(3) weight diagram with i-weight (2,1,0). Action of the lowering operators
shown as arrows. The circle around the middle dot indicates that two states
belong two this p-weight (Courtesy of Arne Alex)

After assigning each p-weight a vector with this equation, one can think of them as points in
a weight space. Note that each position can be occupied by multiple states, and will be if the
inner multiplicity of the p-weight is larger than 1.

2.4 Weyl group

The Weyl group for SU(N) is isomorphic to the group of permutations. The action of an
element from the Weyl group can be understood as a permutation of the entries in a p-weight.
The weight space of the p-weights can be divided in separate Weyl chambers by Weyl borders:
a Weyl border is defined via a set of p-weights that is not changed if you apply a certain
permutation from the Weyl group to it. So at least two entries have to be equal. P-weights
containing only different integers cannot lie on a Weyl border, because there is no permutation
that leaves the weight invariant. A border forms a hyper plane in the weight space. The
borders belonging to every permutation taken together divide the space of weights in N !
Weyl chambers as there are N ! different permutations in the Weyl group. Note that you
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can also define a Weyl border if no p-weight lies on it. In that case, it just runs between
weights. Each Weyl chamber consists of different p-weights. The elements of the Weyl group
map each p-weight in a Weyl chamber onto another p-weight in a different Weyl chamber.
For our calculation of the Clebsch-Gordan coefficients we focus on one specific chamber, the
so-called dominant Weyl chamber. The remaining coefficients can be obtained via symmetry
operations.
P-weights that fulfill the following condition lie in the dominant Weyl chamber:

w1 ≥ w2 ≥ ... ≥ wn (2.17)

Equation (2.17) is the definition of the dominant Weyl chamber. It can be mapped onto all
other chambers via an application of a permutation what will be exploited later. Note that
you can also define the Weyl chambers as sets of states. We do not distinguish between the
Weyl chamber of p-weights and the Weyl chamber of states, because if one set is known the
other one can be constructed.

2.4.1 Permutations

A permutation is a rearranging of the elements of an ordered set. It can be written as a row
vector that maps every element from its original position to a new one, i.e. (σ(1), σ(2), σ(3)...σ(N)).
σ(j) is the number of the position to which the jth element is shifted. The dimension of a
vector representing a permutation and the cardinality of the reordered set must be the same,
as each element has to be placed somewhere. A way of writing down the application of a
permutation is by a 2×N -matrix with the set in the first row and the permutation in the
second, such that it becomes easily visible where each element is mapped to. The result is
again a row vector with permuted elements. The permutation π = (2, 3, 5, 1, 4) applied to a
weight w = (3, 3, 2, 2, 0) maps for example the 3 from position 1 to position 2, the 3 from
position 2 to position 3, the 2 from position 3 to position 4 and so on:(

weight
permutation

)
= π(w) =

(
3 3 2 2 0
2 3 5 1 4

)
=
(
2 3 3 0 2

)
=
(
result

)
(2.18)

However, if you want to apply a permutation to a state given as GT patterns, it is necessary
to find a representation matrix for the permutation. The shape of this matrix depends on
the SU(N) and the irrep to which the basis state belongs. We will explain how this is done
in the next chapter.
There are two important subsets of permutations regarding p-weights:

1. the stabiliser. It contains all permutations that do not change a given weight: β(w) = w,
for any β from the stabiliser of p-weight w.

2. the connectors. A connector is the lexicographically smallest permutation that maps
one weight onto another. Since there may be more than one permutation that connects
two weights, we choose the smallest one as representative of those permutations. Any
permutation that is not element of the connectors can be written as unique composition
of a permutation of the connectors and the stabiliser: π = κ̃β with a connector κ̃ and
β from the stabiliser.
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A permutation that swaps only the position of two elements and leaves the rest invariant is
called a transposition. When denoting transpositions, we will only write down the elements
that interchange positions, e.g. the transposition (1, 2, 4, 3, 5) will be denoted as (4, 3) (or
equivalently (3, 4)).

2.4.2 Weyl basis

For the application of the Weyl group symmetry, we have to modify the labeling scheme.
The states are now labeled by two labels: a pattern D from the dominant Weyl chamber
and a connector κ, that permutes the pattern to the chamber that it belongs to: |κ,D〉. The
patterns that lie in the dominant Weyl chamber are labeled with the identity permutation
|1, D〉.

2.4.3 Action of raising and lowering operator in the Weyl basis

We know how J (l)± act on a pattern in the GT basis. Now we want to work out how they
act on a state given in the new basis. So we pull the permutation in front of the operator to
evaluate the action of it on a GT state:

J±|κ,D〉 = κJ ′±|1, D〉, J ′± = κ−1J±κ. (2.19)

j′± can be explicitly calculated if the representation matrices of the permutation κ and the J±
are known. J ′± is found to be a matrix that is identical to J± except for permutations of rows
and columns. Thus it too is the representation matrix of a single entry matrix. Applying this
to a state of the dominant Weyl chamber |1, D〉 yields a linear combination of states with
a changed p-weight according to (2.11). In general, these states do not lie in the dominant
Weyl chamber. In order to describe them with our labelling scheme, we have to permute
them back by inserting a connector and its inverse κ′−1κ′.

J
(l)
± |κ,D〉 = κκ′−1

(
κ′κ−1J

(l)
± κ|1, D〉

)
. (2.20)

The weight in brackets lies per construction in the dominant Weyl chamber. κκ′−1 can be
factorized in a connector and a permutation from the stabiliser.





3 Algorithm

The program discussed in this thesis contains newly written code as well as reused code from
the old program[1]. In this chapter, we focus on the parts of the code that are genuinely
new. For parts that have already been used and just underwent minor changes, please see
the description of the old algorithm.

3.1 General outline

In order to calculate the Clebsch-Gordan coefficients for the tensor product decomposition
of two given irreps S and S′, we first determine all irreps {S′′} into which the irrep product
decomposes. Then we follow this scheme for every arising irrep (referred to as S′′ in the
following description):

1. Determine the Clebsch-Gordan coefficients of the highest weight state

2. Use the lowering operator to calculate the Clebsch-Gordan coefficients in the dominant
Weyl chamber

3. Determine for each state in the dominant Weyl chamber which permutations are con-
nectors

4. Map the states of the dominant Weyl chamber and their coefficients to all other chambers
with the connectors

3.2 Irrep product decomposition

The algorithm of the tensor product decomposition is a direct implementation of the Littlewood-
Richardson rule. It had already been used in the old program and was just adapted to the
new code.

3.3 Highest weight state

To calculate the coefficients in the dominant Weyl chamber we start with the highest weight

state of S′′: |1, H ′′, α〉. Every raising operator J
(l)
+ , l = 1 . . . N − 1, applied to it gives zero.

We use this fact by applying these operators to the decomposition equation of the highest
weight state.

J
(l)
+ |1, H ′′, α〉 = J

(l)
+

∑
D,D′

κ,κ′

CH
′′,α

κ,D;κ′,D′ |κ,D〉 ⊗ |κ
′, D′〉 (3.1)
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The left hand side gives zero and the right hand side is evaluated as described in chapter
(2.4.3). The summation on the right hand side can be restricted to coupling of patterns that
obey the relation for the p-weights.

p(H ′′) 6= p(D) + p(D′)→ CH
′′,α

κ,D;κ′,D′ = 0 (3.2)

If the relation is not fulfilled, the Clebsch-Gordan coefficients are zero (this relation is a
generalisation of the well-known SU(2) case, where this relation implies that the sum of spin
z-components of the independent spins has to be equal to the z-component of the spin in the
new system. The condition states that the elementwise addition of the p-weight entries of the
coupled states has to be equal to the p-weight of the highest state). The relation is checked
for every state, i.e. every possible combination of a state in the dominant Weyl chamber with
a permutation. Those states are stored in a list. Then the raising operators are applied.
We obtain a set of irrep product state sums, where each state has a coefficients according
to(2.13), multiplied with Clebsch-Gordan coefficients of the highest weight state. This is a
set of homogeneous linear equations. Each coefficient in front of the states has to vanish
independently from the other ones since the states are linearly independent. That determines
the Clebsch-Gordan coefficients for the decomposition of the highest weight state (together

with the normalisation condition
∑

κ,κ′,D,D′(C
H′′,α
κ,D,κ′,D′)

2 = 1 and up to a sign choice). To solve
the system we determine the nullspace of the matrix. The amount of linearly independent
solutions is equal to the outer multiplicity of S′′[7].

3.4 Calculation the Clebsch-Gordan coefficients in the dominant
Weyl chamber

After we got the Clebsch-Gordan coefficients of the highest weight state, we can calculate the
coefficients of all other states in the dominant Weyl chamber. To explain how this is done, we
first define ’parent states’: a parent state to a state |1, D′′〉 in the dominant Weyl chamber

is a state that generates |1, D′′〉 if a J
(l)
− is applied to it. Since the action of a single entry

matrix on a p-weight is known (cf. (2.11)) and the lowering operator corresponds to such
a matrix (cf. (2.1a)) one only has to check if the subtraction of the states’ p-weights yields
wparent − w|1,D′′〉 = ∆w = (. . . , wl + 1, wl+1 − 1, . . .).

To calculate the coefficients, we iterate over all states in the dominant Weyl chamber[7] .
If a states has not been visited yet, we search all parent states of it. Applying the right
lowering operators to each of them generates a set of linear equations for the Clebsch-Gordan
coefficients of |1, D′′〉 which is solvable assuming that the Clebsch-Gordan coefficients of the
parent states are known. In fact, it can happen that we get an overdetermined system, yet
it has to be consistently solvable. This is done by the method of least squares. In general, it
minimizes ||Ax − b|| for a matrix vector equation Ax = b which gives zero in our case, since
a solution exists. The equations for parent state |κ′′, D′′〉 are found by:

J
(l)
− |κ′′, D′′〉 =

∑
D′′

αD′′ |1, D′′〉 =
∑
D′′

αD′′
∑

κ,D;κ′,D′,

CD
′′

κ,D;κ′,D′ |κ,D ⊗ κ′, D′〉 (3.3)
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with αD′′ from (2.12). You can also expand the parent state first:

J
(l)
− |κ′′, D′′〉 = J

(l)
−

 ∑
κ,D;κ′,D,

Cκ
′′,D′′

κ,D;κ′,D′ |κ,D ⊗ κ
′, D′〉

 =

=
∑

κ,D;κ′,D′

Cκ
′′,D′′

κ,D;κ′,D, ·
∑

κ̃,D̃,κ̃′,D̃′

βκ̃,D̃,κ̃′,D̃′ |κ̃, D̃ ⊗ κ̃
′, D̃′〉

(3.4)

If the Clebsch-Gordan coefficients of the parent states Cκ
′′,D′′

κ,D;κ′,D, are not known (i.e. at least
one parent state has not been visited), then the algorithm calls itself recursively to determine
the Clebsch-Gordan coefficients of the parent states first. That is why it is important to
already know the coefficients of the highest weight state. It is the only parent state to some
other states and serves as anchor for the recursive calculation.
Since only lowering operators are used, it is impossible to create a loop of dependencies what
would make the algorithm break down. Starting from any state, you cannot come back to it
by just using lowering operators (e.g. in SU(2): you cannot come back to a state using only
one of the ladder operators). By iterating over all states we assure that the coefficients of
every state have been calculated.

Example: SU(2) irreps

To understand the principle, let us look at a coupling of SU(2) irreps. They are labelled
|j,m〉 like spins in quantum mechanics for easier understanding: we take one particle with
spin j = 1 and z component l, |1, l〉, and one with spin j′ = 1

2 and z-component m′ , |12 ,m
‘〉.

For easier understanding we use standard quantum mechanics notation here which is related
to GT pattern via: (

2j 0
j −m

)
= |j,m〉 (3.5)

The highest weight state is: |1, 1〉 ⊗ |12 ,
1
2〉 = |32 ,

3
2〉.We need not solve a system of linear

equations here, since only one state fulfills the condition (3.2): the z-components of the two
spins have to add up to 3

2 and only |1, 1〉 ⊗ |12 ,
1
2〉 has that property. We apply the lowering

operator to both sides taking the this property of the operator into account:

J±|s,m〉
√

(s±m+ 1)(s∓m)|s,m± 1〉 (3.6)

The lowering operator acts on a tensor product like

J− = J
(1)
− ⊗ 1+ 1⊗ J (2)

− (3.7)

It follows that

J−

(
|1, 1〉 ⊗ |1

2
,
1

2
〉
)

=
√

2 · |1, 0〉 ⊗ |1
2
,
1

2
〉+ |1, 1〉 ⊗ 1 · |1

2
,−1

2
〉

=
√

3 · |3
2
,
1

2
〉 = J−|

3

2
,
3

2
〉.

(3.8)

Therefore

|3
2
,
1

2
〉 =

√
2

3
· |1, 0〉 ⊗ |1

2
,
1

2
〉+

√
1

3
|1, 1〉 ⊗ |1

2
,−1

2
〉. (3.9)
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The Clebsch-Gordan coefficients can now easily be read off. Applying the lowering operator
again yields:

J−

(√
2

3
· |1, 0〉 ⊗ |1

2
,
1

2
〉+

√
1

3
|1, 1〉 ⊗ |1

2
,−1

2
〉

)
=

2√
3
· |1,−1〉 ⊗ |1

2
,
1

2
〉+

√
2

3
· |1, 0〉 ⊗ |1

2
,−1

2
〉+

√
2

3
· |1, 0〉 ⊗ |1

2
,−1

2
〉 =

2 · |3
2
,−1

2
〉 = J−

(
|3
2
,
1

2
〉
) (3.10)

It follows that

|3
2
,−1

2
〉 =

√
1

3
· |1,−1〉 ⊗ |1

2
,
1

2
〉+

√
2

3
· |1, 0〉 ⊗ |1

2
,−1

2
〉. (3.11)

The last application yields:

J−

(√
1

3
· |1,−1〉 ⊗ |1

2
,
1

2
〉+

√
2

3
· |1, 0〉 ⊗ |1

2
,−1

2
〉

)
=√

1

3
· |1,−1〉 ⊗ |1

2
,−1

2
〉+

2√
3
· |1,−1〉 ⊗ |1

2
,−1

2
〉 =

=
√

3 · |3
2
,−3

2
〉 = J−

(
|3
2
,−1

2
〉
) (3.12)

and

|3
2
,−3

2
〉 = |1,−1〉 ⊗ |1

2
,−1

2
〉 (3.13)

This scheme can be generalized to higher dimensions. To exploit the Weyl group symmetry it
just would have been necessary to calculate the dominant Weyl chamber. It consists here of
|32 ,

3
2〉 and |32 ,

1
2〉. Let us change to the |κ,D〉 basis. The states in the dominant Weyl chamber

are |1, 32〉 and |1, 12〉. The other two states are |(1, 2), 32〉 and |(1, 2), 12〉. There are only 2! = 2
permutations in SU(2), the identity and the transposition τ = (1, 2). After we have gotten the
Clebsch-Gordan coefficients in the dominant Weyl chamber we can apply the factorization of
τ into a connector (itself) and an element of the stabiliser (the identity). Using the formalism
described below we obtain the result that we have to multiply the Clebsch-Gordan coefficients
with the matrix elements of the representation matrix of the stabiliser. Since this is unity
we multiply every coefficient with 1. The coefficients of |1, 32〉 and |τ, 32〉 respective of |1, 12〉
and |τ, 12〉 are now known to be identical without any further calculation like in the example
above. Thus we have reduced our calculations by a factor of N ! (= 2 here).

3.5 Finding the remaining Clebsch-Gordan coefficients via
permutations

Having calculated all Clebsch-Gordan coefficients in the dominant Weyl chamber we can now
exploit the action of the Weyl group, i.e. permuting the p-weights to find all other coefficients

very fast. For arbitrary |κ′′, D′′〉, we apply κ′′ to |1, D′′〉 =
∑

κ,D;κ′,D′ C
1,D′′

κ,D;κ′,D′ |κ,D⊗κ
′, D, 〉.
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κ′′

 ∑
κ,D;κ′,D′

C1,D′′

κ,D;κ′,D′ |κ,D ⊗ κ
′, D, 〉

 =
∑

κ,D;κ′,D′

C1,D′′

κ,D;κ′,D′(κ
′′κ⊗ κ′′κ′)|1, D ⊗ 1, D′〉

(3.14)
Then decompose κ′′κ and κ′′κ′ into a connector and a stabiliser:

κ′′κ = κ̃β , κ′′κ′ = κ̃′β′ (3.15)

Now (3.14) can be written as:

κ′′|1, D′′〉 =
∑

κ,D;κ′,D′

C1,D′′

κ,D;κ′,D′(κ̃⊗ κ̃′) · (β ⊗ β
′)|1, D ⊗ 1, D′〉 (3.16)

And since β, β′ are from the stabiliser we can say with certainty that they will not change
the state. We calculate explicit representation matrices for them and the equation becomes:

κ′′|1, D′′〉 =
∑

κ,D;κ′,D′

C1,D′′

κ,D;κ′,D′

∑
D̃,D̃′

Uβ
D̃,D

Uβ
′

D̃′,D′
|κ̃, D̃ ⊗ κ̃′, D̃′〉 (3.17)

The Clebsch-Gordan coefficient Cκ
′′,D′′

κ̃,D̃;κ̃,D̃′
is then:

Cκ
′′,D′′

κ̃,D̃;κ̃,D̃′
=

∑
κ,D;κ′,D′

C1,D′′

κ,D;κ′,D′

∑
D̃,D̃′

Uβ
D̃,D

Uβ
′

D̃′,D′
(3.18)

As one can see only knowledge of the Clebsch-Gordan coefficients in the dominant Weyl
chamber and the representation matrices of the stabiliser permutation is required to calculate
every Clebsch-Gordan coefficient for a given irrep S′′.

Figure 3.1: Schematic illustration of the application of κ′′ to |κ,D〉. κ maps a dominant state
to a state outside of the dominant Weyl chamber, κ′ maps it to yet another one.
They are decomposed into κ̃ that links the dominant state directly to the new one
and β that does not change the weight. (Courtesy of Arne Alex)





4 Routines

This chapter describes the program routines that have been newly developed from scratch.

4.1 Finding the representation matrix of a permutation

To calculate the representation matrix of a permutation it is useful to decompose the permu-
tation into transpositions first, because finding the representation matrix of a transposition
is comparatively easy. The representation matrix of the permutation is then obtained via
multiplication of the transposition matrices.

4.1.1 Decomposing permutations

To find a representation matrix of a transposition it is necessary to calculate several ex-
ponentials of matrices (see below). Therefore, we decompose every permutation only into
transpositions of the form (1, n). In general this makes the decomposition contain more
transpositions than necessary, but should speed up the calculation since we only need to per-
form d (computationally intensive) calculations of representation matrices instead of d2−d

2 ,
where d is the dimension of the representation matrix.
In the implementation of the decomposition a given permutation is converted to the identity
step by step, where every step is a transposition. The program starts with the element at the
last position N . It checks if this element is already the correct one. If it is not, the algorithm
finds the position x of the element that belongs to the last position in the identity, and swaps
its entry with position number one. So, the first transposition is (1, x) . Next, it swaps the
first position with the last, making the next transposition (1, N). Now the the element on
position N is correct. Then it continues with the next position N−1. So the maximal number
of transposition is less than 2N .

Example

Decomposition of π = (2, 3, 1, 5, 4): there is a 4 at the last position, where a 5 is supposed to be.
So the 5 is swapped from position 4 to position 1 and then position 1 is swapped with position
5. The permutation is now π′ = (4, 3, 1, 2, 5). The transpositions τ1 = (1, 4) and τ2 = (1, 5)
were split off. At position 4 is a 2. Therefore, it is swapped with position 1. At position 3
is 1, so position 2, where the 3 is, is swapped with position 1 and afterwards position 1 with
position 3. So the permutation can be decomposed into five transpositions τi (i = 1 . . . 5).
Their order has to be respected (i.e. they do not commute): (1, 4)◦ (1, 5)◦ (1, 4)◦ (1, 2)◦ (1, 3).

4.1.2 Representation matrix

A representation matrix of a transposition τ = (m,n) can be written as:
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Rep(τ) = eiπE
m,m

eE
n,m

e−E
m,n

eE
n,m

(4.1)

with the single-entry matrices Em,n ( Em,na,b = δmaδnb) of the Lie algebra. To show this, we
examine the matrix elements: (

eiπE
m,m

eE
n,m

e−E
m,n

eE
n,m)

j,k
(4.2)

We look at the individual exponentials first. By Taylor expansion, we find

(
eiπE

m,m)
j,p

= δj,pδj,m − 2δj,pδj,m (4.3a)(
eE

n,m)
p,q

= δp,q + δp,nδq,m (4.3b)(
e−E

m,n)
q,r

= δq,r − δp,mδr,n (4.3c)(
eE

n,m)
r,k

= δr,k + δr,nδk,m. (4.3d)

Substituting these equations into (4.2) yields

∑
p

∑
q

∑
r

(δj,p − 2δj,pδj,m) (δp,q + δp,nδq,m) (δq,r − δp,mδr,n) (δr,k + δr,nδk,m) =

δj,k − δj,mδk,m − δj,nδk,n + δj,mδk,n + δj,nδk,m

(4.4)

This is exactly the form of a transposition matrix for a transposition (m,n).
Now, let us use equation (4.1) to calculate the representation matrices of transpositions in
the group. Remember, that

J
(l)
+ = El,l+1 (4.5)

J
(l)
− = El+1,l (4.6)

So, with the representation matrices of the raising and lowering operators and the commu-
tator relations stated in equation (2.2a) and (2.2b), we can construct any E1,n representation
(with n 6= 1). The raising and lowering operators are obtained by evaluating the action of
the respective operator on all patters that form the basis of the irrep carrier space. The
coefficients that arise for valid patterns are explicitly calculated via (2.13) and (2.12) and
stored in a matrix.
Having a representation of the E1,n, we can exponentiate them. Ep,q is nilpotent for p 6= q.
So it is not possible to exponentiate by diagonalization. To get the exponentials of those
matrices, we use Taylor expansion instead. The expansion breaks down fairly quickly as an
N-dimensional upper-trigonal matrix with zeros on its diagonal is of maximal nilpotency rank
N (i.e. AN = 0, for a nilpotent matrix A of rank N). The last three exponentials of (4.1)
are calculated that way. To avoid an introduction of complex numbers, the action of the first
matrix is implemented differently: the representation matrix of E1,1 is diagonal with the m1,1

of each pattern on the diagonal[6]. Since those entries are integers, the multiplication with iπ
can only yield an odd or even number times iπ. Therefore, exponentiation of this matrix gives
a diagonal matrix with only 1 and -1 as entries. The program changes explicitly the signs of
the rows in the product of the second three matrices where there is a -1 on the diagonal.
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Example:

If you want to find e.g. the representation matrix of a transposition (1, 3) for the irrep with
i-weight (2, 1, 0), you have to determine E1,3:

E1,3 = [J1
+, J

2
+] =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−
√

3
2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0√
1
2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0

0 0
√

3
2 0 −

√
1
2 0 0 0


(4.7)

in conclusion, we can compute a representation matrix of an arbitrary permutation. There-
fore we decompose it into transpositions of form (1, n) , calculate the representation matrices
of every transposition of that form and multiply the matrices with respect to the order of the
decomposition.

4.2 Connectors

Permutations of the weight can be divided into different classes. A permutation class contains
every permutation that has the same effect when applied to a p-weight (so the members of
the classes depend strongly on the p-weight). For uniqueness, it is necessary to pick a single,
distinct representative of each class. So if you have an arbitrary permutation and a p-weight,
you need to determine its class and find the respective representative. The representative we
chose here is the numerically smallest member of the class, e.g. from the set of permutations
{(2, 1, 3), (2, 3, 1)} it would be (2, 1, 3) since 213 < 231. We call such representatives connec-
tors.
To find a connector, the permutation is applied to the weight. Then the numerically smallest
permutation with the same effect is constructed. Therefore, it is checked at which positions
in the permuted weight the first identical elements of the original weight appear. Those posi-
tions appended in the ’smallest’ possible order form the first part of the connector. Then this
procedure is repeated for all entries in the weight that differ in value in descending order.
Let’s take the weight w = (3, 3, 2, 2, 0) and the permutation π = (2, 3, 5, 1, 4) as an example.
The permutation applied to the weight gives π(w) = (2, 3, 3, 0, 2) as a permuted weight. Now
we are looking for the numerically lowest permutation that does the same. Since the first
entries of the dominant weight is the highest value, we focus first on the value 3. It appears
on position 2 and 3, so position 1 has to be mapped to 2 and position 2 has to be mapped
to 3, giving ρ = (2, 3, π3, π4, π5) as intermediate result for the connector. We continue with
the next smaller element of the original weight: 2. The first 2 now appears at position 1, so
π3 = 1. The second 2 appears at 5, so π4 = 5 leaving π5 = 4. It follows that ρ = (2, 3, 1, 5, 4)
is the representative of the class, to which the permutation π belongs (for the given weight
w).
Any permutation that belongs neither to the connectors nor to the stabiliser can be split up
into two permutations of which one is a connector and the other one is from the stabiliser.
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The set of connectors depends on the p-weight. The trivial examples are: the set of connec-
tors of a weight with mutually differing entries is the set of all permutations of the elements,
whereas the set contains only the identity for a p-weight whose entries are all equal.
For the calculation of the Clebsch-Gordan coefficients it is necessary to identify all connec-
tors that map a given p-weight to all other Weyl chambers. The algorithm for an arbitrary
p-weight works as follows: first, the p-weight is sorted such that its entries are in ascending
order. This is the lexicographically smallest (or just: ’smallest’) possible p-weight. Then,
this p-weight is compared with the original p-weight. The smallest permutation that converts
the original weight to the smallest p-weight is determined. It is not stored directly, instead
we use an indexing scheme(see below) and store its index in a vector. Then the smallest
p-weight is increased, i.e. its entries are sorted in order of the next larger p-weight. Now, the
smallest permutation for that conversion is determined again and its index is stored in the
vector. This is done for every different permutation of the p-weight entries; the total number
of connectors per weight is given by the multinomial coefficients

N !∏γ
i=0Ni!

(4.8)

where N is the irrep dimension, Ni is the number of p-weight entries with value i and γ the
weight’s largest entry.

Finding the back connector

By applying the raising operator conjugated with permutation κ, J
′(l)
+ = κ−1J

(l)
+ κ, to a

state we generally leave the dominant Weyl chamber. To describe the arising state with our
labelling scheme, we have to permute it back into the dominant Weyl chamber. To find the
necessary connector, we use the fact that J ′l+ is also a single entry matrix. The conjugation of

Ep,q is easy to evaluate, since κ−1Ep,qκ = Eκ
−1(p),κ−1(q) and its action onto a weight is well

known (cf. (2.11) ). So, after evaluating this relation the generated weight is permuted back
to the form of a dominant Weyl chamber weight. The permutation that does this is the back
connector.

4.3 Indexing permutations

For convenience, we store permutations not as a whole, but tag them with an index. The
indexing scheme labels the permutations with an integer in lexicographically ascending order:
the identity is labelled as first permutation with index Ind(1) = 0, while the permutation
πN,max = (N,N − 1, . . . , 2, 1) has index Ind(πN,max) = N !− 1. To determine the index of a a
permutation π with N elements, we interpret the row vector π = (π1, π2, . . . , πN ) describing
the permutation as a number. The number system in which it is given is somewhat special
as the basis of each consecutive digit contains one number less than the basis of the number
prior to it. The size of the basis decreases because a picked number cannot be chosen again,
reducing the available numbers by one after each digit. Additionally, when determining
the actual numerical value of a permutation entry, it is important to check which smaller
numbers have already been picked. The amount of these numbers has to be subtracted from
the considered entry (when you regard a number given in a basis B = {1, 4, 6, 7}, 4 is the
third smallest element and stands for the value 4 − 3 = 1, where 3 is the cardinality of the
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set of missing numbers M = {0, 2, 3}. Note, that one must also take care of 0 as smallest
element).
To index a given permutation we take the first element from the permutation and multiply
it with N − 1, where N is the number of elements of the permutation. Then we add the next
element subtracting the amount of numerically smaller elements that have already been used,
because these elements are not part of the basis anymore. Then we multiply with N − 2,
which corresponds to the decreased size of basis etc. until we reach the last element, which
always stands for zero as you can regard it as given in a basis of size 1.

Example

First, let us look at the translation of an octal number into a decimal one to get a better
understanding of the basis issue. The octal number 153248 is translated into a decimal one
like this:

1 ·N4 + 5 ·N3 + 3 ·N2 + 2 ·N + 4 = (((1 ·N + 5) ·N + 3) ·N + 2) ·N + 4
N=8
= 686810 (4.9)

In this translation, the number gets multiplied with N = 8 at each step, because the octal
basis does not shrink. Each picked number is again available after usage. Now, let us look at
the permutation (2, 4, 1, 3, 0) with N = 5. Its index is determined via

Ind [(2, 4, 1, 3, 0)] =

(((2 · (N − 1) + (4− 1)) · (N − 2) + 1) · (N − 3) + (3− 2)) · (N − 4) + 0
N=5
= 69

(4.10)

We start with the first entry, multiply it with the size of the base N − 1 = 4, then add the
next element 4 minus the number of elements smaller than 4 that have already been taken.
In this case 4 − 1 = 3, since 2 has already been removed from the basis. Then we multiply
with N − 2 = 3, the size of the new basis, and so on.

4.4 Finding all states in the dominant Weyl chamber

At some stages in the calculations we have to iterate over all states that lie in the dominant
Weyl chamber. Thus, it is necessary to know which states do. This task is split up into
two steps: First, we determine all possible p-weights in the chamber. Then, we construct all
states for every p-weight.
The p-weights in the dominant Weyl chamber have to obey two relations: their entries must
not be ascending and the sum over their entries is fixed. The highest weight state’s p-weight
is identical to the i-weight of the irrep. We start with this weight and process it by adding
1 to the last entry wn and subtracting 1 from wn−1. This leaves the entry sum invariant. If
the generated weight obeys the conditions it is stored. Otherwise, the prior step is reversed
and we proceed with wn−1 and wn−2. If w2 and w1 are reached and no valid weight has
been generated, the spacing between the manipulated entries is increased, i.e. it is checked if
incrementing of wn and decrementing of wn−2 up to incrementing w3 and decrementing w1

yield a valid weight. If they do, we start with spacing 1 again. If they do not, the spacing is
increased until w1 gets lowered and wn raised. Once that returns an invalid weight, we have
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determined all weights in the dominant Weyl chamber. As an example let us examine the
irrep with i-weight i = (4, 2, 1):
We start with w2 − 1 and w3 + 1 and gain (4, 1, 2) which does not fulfill the conditions. It is
reset and we continue with w1 − 1 and w2 + 1. That yields (3, 3, 1) which is valid and hence
lies in the dominant Weyl chamber. Now, we start at the beginning with w2 − 1 and w3 + 1
and obtain the next valid weight (3, 2, 2). Applying again w2−1 and w3 +1, we get an invalid
one, (3, 1, 3). After resetting and applying w1 − 1 and w2 + 1 we again get an invalid one
(2, 3, 2). Since we arrived at w1 we increase the spacing by one. The next step then is w1− 1
and w3 + 1 which also results in an invalid weight. Since, the spacing is maximal for a three
element p-weight, we cannot go on. The p-weight that lie in the dominant Weyl chamber of
the irrep (4, 2, 1) are: (4, 2, 1), (3, 3, 1) and (3, 2, 2).
Having found all p-weights we now want to construct all states belonging to them. To do
this, we calculate the row sums of the state pattern first. They are uniquely defined via
(2.7). Then the pattern that has the maximal entries (starting from the left hand side) is
constructed by merely inserting the largest possible values as entries with respect to the row
sums and the betweenness condition. Using this as an anchor we construct the other patterns
by varying the rows of the pattern in the same way we varied the p-weights in the calculation
above, since the rows have to obey the same relations: the entries must not ascend and the
row sum is fixed. We start with the second line from bottom (the bottom row is invariant,
since it contains just one entry and its sum is fixed) and replace it with the next possible
sequence of non-ascending numbers with fixed row sum. If a variation yields a pattern that is
valid regarding the betweenness condition, we store it. When no valid pattern can be found,
we proceed with varying the next line above until we reach the first row which must also
not be varied, since it is the i-weight. Let us go back to the example irrep i = (4, 2, 1) and
take w = (3, 2, 2) as p-weight. First we construct the row sum vector from the p-weight (eq.
(2.7)): r = (3, 5, 7). Then the maximal pattern M as described above is:

M =

 4 2 1
4 1

3

 (4.11)

m2,1 is chosen to be 4, the largest number that respects the betweenness condition. m2,2 then
has to be 1, because the row sum of the second row must be 5. m1,1 is 3, since the row sum
of the first row is 3. To find the next pattern we vary the second row and get 4 2 1

3 2
3

 (4.12)

which is a valid pattern. There is no other variation of the second row that respects the
conditions, so we have to start varying the row above it to find new ones. But this one is the
first row with the i-weight in it. We are not allowed to change it. Hence the two resulting
states are the only ones lying in the dominant Weyl chamber with p-weight p = (3, 2, 2) for
the irrep (4, 2, 1). For higher N in SU(N) or larger i-weights there can be significantly more
states in the dominant Weyl chamber.



5 Outlook

Currently, we use a self-written C++ matrix class for our matrix operations with few opera-
tions included from LAPACK. The matrix size increases quadratically with the carrier space
dimensions d of the irreps, because the representation matrices are d × d. For SU(N) with
large N or large indices of the irreps, d grows rapidly and with it the required memory space
(e.g. for the transposition representation matrices) and operation time (e.g. for exponentia-
tion) on the computer. However, the matrices are very sparse, i.e. most of their entries are
0. A further increase in computation speed could be achieved by implementing an optimized
class for matrix handling which takes the properties of the matrices into account.
Concluding, we state that with this new algorithm it is possible to compute Clebsch-Gordan
coefficients even for very large SU(N) (like SU(20)) efficiently. In contrast, the old program
is not capable of handling SU(N) of that order. Hence, the new program should fully meet
the requirements at the chair where the Clebsch-Gordan coefficients are mainly needed for
NRG and DMRG calculations[8][9].
Finally, the publication of a paper that gives a brief overview over the algorithm in a sci-
entific journal is planned and we may also install a web interface for the computation of
Clebsch-Gordan coefficients that uses the new algorithm.





6 Source Code

This chapter presents the code that has been written. It consists of multiple classes:

1. matrix

2. irrep

3. pattern

4. permut

At the beginning of each section there is a brief description of the functions of these classes.

Matrix class (header and source file)

Creates objects weyl::matrix that is capable of standard operations (addition, multiplica-
tion, commutator) and the more advanced matrix operation that are required (exponentiation,
finding the nullspace and least square methods for the equation Ax− b = min).

1 #ifndef WEYL MATRIX H
#define WEYL MATRIX H

// C headers
#include <ca s s e r t>

6

// C++ headers
#include <ostream>
#include <vector>

11 // weyl headers
// none ( d e l e t e t h i s l i n e i f you add some)

namespace weyl {
// guarantees : matrix i s i n i t i a l i z e d with zeros

16 class matrix {
public :

// crea t e matrix i n i t i a l i z e d with zeros
matrix ( int rows , int c o l s ) ;

21 // square matrix
expl ic it matrix ( int dim ) ;

// access e lements
// i = 0 , . . . , rows − 1

26 // j = 0 , . . . , c o l s − 1
double& operator ( ) ( int i , int j ) ;
const double& operator ( ) ( int i , int j ) const ;

// conver t to human−readab l e form
31 operator std : : s t r i n g ( ) const ;

// return shape o f t h i s matrix
int rows ( ) const ;
int c o l s ( ) const ;
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36 int dim ( ) const ;

// matrix a l g eb ra ( does what you expec t i t to do )
matrix operator−() const ;
matrix operator+(const matrix& other ) const ;

41 matrix operator−(const matrix& other ) const ;
matrix operator ∗(double c o e f f ) const ;
matrix operator ∗( const matrix& other ) const ;

// convenience func t i on fo r ab − ba
46 matrix commutator ( const matrix& other ) const ;

// matrix exponent ia l , abor t s s e r i e s a f t e r ’ order ’ terms
matrix exp ( int order = 256) const ;

51 // f ind column vec t o r s x such tha t Ax = 0
// eps determines which s i n gu l a r va lue s are cons idered zero
// re turns a matrix X such tha t A ∗ X == 0
matrix nu l l s pa c e (double eps = 1e−9) const ;

56 // f ind minimum−norm so l u t i on to AX = B
// re turns a matrix X
matrix l e a s t s q ( const matrix& rhs ) const ;

private :
61 std : : vector<double> elem ;

int rows , c o l s ;
} ;

}

66

// i n l i n e code f o l l ow s

inl ine double& weyl : : matrix : : operator ( ) ( int i , int j ) {
return elem [ i ∗ c o l s + j ] ;

71 }

inl ine const double& weyl : : matrix : : operator ( ) ( int i , int j ) const {
return elem [ i ∗ c o l s + j ] ;

}
76

inl ine int weyl : : matrix : : rows ( ) const {
return rows ;

}

81 inl ine int weyl : : matrix : : c o l s ( ) const {
return c o l s ;

}

inl ine int weyl : : matrix : : dim ( ) const {
86 a s s e r t ( rows == c o l s ) ;

return rows ;
}

#endif // WEYL MATRIX H

// t h i s f i l e implements the d e c l a r a t i on s from the f o l l ow i n g f i l e
#include ”matrix . h”

// C headers
5 #include <ca s s e r t>

// C++ headers
#include <sstream>
#include <s t r i ng>

10 #include <vector>
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// weyl headers
// none ( d e l e t e t h i s l i n e i f you add some)

15 // de c l a r a t i on s o f LAPACK rou t ine s

extern ”C” void dgesvd ( const char∗ JOBU,
const char∗ JOBVT,
const int∗ M,

20 const int∗ N,
double∗ A,
const int∗ LDA,
double∗ S ,
double∗ U,

25 const int∗ LDU,
double∗ VT,
const int∗ LDVT,
double∗ WORK,
const int∗ LWORK,

30 int ∗INFO) ;

extern ”C” void dg e l s ( const char∗ TRANS,
const int∗ M,
const int∗ N,

35 const int∗ NRHS,
double∗ A,
const int∗ LDA,
double∗ B,
const int∗ LDB,

40 double∗ WORK,
const int∗ LWORK,
int ∗INFO) ;

// implementation o f weyl : : matrix f o l l ow s
45

weyl : : matrix : : matrix ( int dim) : elem (dim ∗ dim , 0) , rows (dim ) , c o l s (dim) {}

weyl : : matrix : : matrix ( int rows , int c o l s ) : elem ( rows ∗ co l s , 0 ) , rows ( rows ) , c o l s ( c o l s ) {}

50 weyl : : matrix : : operator std : : s t r i n g ( ) const {
std : : o s t r ing s t r eam os ;

for ( int i = 0 ; i < rows ; ++i ) {
os << ( i > 0 ? ” ” : ” [ ” ) ;

55 for ( int j = 0 ; j < c o l s ; ++j ) {
os . width ( 1 2 ) ;
os << (∗ this ) ( i , j ) ;

}
os << ( i + 1 < rows ? ”\n” : ” ] ” ) ;

60 }

return os . s t r ( ) ;
}

65 weyl : : matrix weyl : : matrix : : operator−() const {
matrix r e s u l t ( rows , c o l s ) ;
s td : : vector<double> : : i t e r a t o r r e s u l t i t = r e s u l t . elem . begin ( ) ;

for ( std : : vector<double> : : c o n s t i t e r a t o r i t = elem . begin ( ) ; i t != elem . end ( ) ; ++i t ) {
70 ∗ r e s u l t i t = −∗ i t ;

++r e s u l t i t ;
}

return r e s u l t ;
75 }



34 6. Source Code

weyl : : matrix weyl : : matrix : : operator+(const weyl : : matrix& other ) const {
a s s e r t ( c o l s == other . c o l s ) ;
a s s e r t ( rows == other . rows ) ;

80

matrix r e s u l t ( rows , c o l s ) ;
s td : : vector<double> : : i t e r a t o r r e s u l t i t = r e s u l t . elem . begin ( ) ;

for ( std : : vector<double> : : c o n s t i t e r a t o r i t = elem . begin ( ) , j t = other . elem . begin ( ) ;
85 i t != elem . end ( ) && j t != other . elem . begin ( ) ; ++i t , ++j t ) {

∗ r e s u l t i t = ∗ i t + ∗ j t ;
++r e s u l t i t ;

}

90 return r e s u l t ;
}

weyl : : matrix weyl : : matrix : : operator−(const weyl : : matrix& other ) const {
a s s e r t ( c o l s == other . c o l s ) ;

95 a s s e r t ( rows == other . rows ) ;

weyl : : matrix r e s u l t ( rows , c o l s ) ;
s td : : vector<double> : : i t e r a t o r r e s u l t i t = r e s u l t . elem . begin ( ) ;

100 for ( std : : vector<double> : : c o n s t i t e r a t o r i t = elem . begin ( ) , j t = other . elem . begin ( ) ;
i t != elem . end ( ) ; ++i t , ++j t ) {

∗ r e s u l t i t = ∗ i t − ∗ j t ;
++r e s u l t i t ;

}
105

return r e s u l t ;
}

weyl : : matrix weyl : : matrix : : operator ∗(double c o e f f ) const {
110 matrix r e s u l t ( rows , c o l s ) ;

s td : : vector<double> : : i t e r a t o r r e s u l t i t = r e s u l t . elem . begin ( ) ;

for ( std : : vector<double> : : c o n s t i t e r a t o r i t = elem . begin ( ) ; i t != elem . end ( ) ; ++i t ) {
∗ r e s u l t i t = c o e f f ∗ (∗ i t ) ;

115 ++r e s u l t i t ;
}

return r e s u l t ;
}

120

weyl : : matrix weyl : : matrix : : operator ∗( const weyl : : matrix& other ) const {
a s s e r t ( c o l s == other . rows ) ;

matrix r e s u l t ( rows , other . c o l s ) ;
125

for ( int i = 0 ; i < rows ; ++i ) {
for ( int j = 0 ; j < other . c o l s ; ++j ) {

for ( int k = 0 ; k < c o l s ; ++k) {
r e s u l t ( i , j ) += (∗ this ) ( i , k ) ∗ other (k , j ) ;

130 }
}

}

return r e s u l t ;
135 }

weyl : : matrix weyl : : matrix : : commutator ( const weyl : : matrix& other ) const {
return (∗ this ) ∗ other − other ∗ (∗ this ) ;

}
140

weyl : : matrix weyl : : matrix : : exp ( int order ) const {
a s s e r t ( rows == c o l s ) ;
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matrix r e s u l t ( rows , c o l s ) ;
145 matrix power ( rows , c o l s ) ;

for ( int i = 0 ; i < rows ; ++i ) power ( i , i ) = 1 . 0 ;
for ( int i = 0 ; i < order ; ++i ) {

r e s u l t = r e s u l t + power ;
150 power = (∗ this ) ∗ power ∗ ( 1 . 0 / ( i + 1 ) ) ;

}

return r e s u l t ;
}

155

weyl : : matrix weyl : : matrix : : nu l l s pa c e (double eps ) const {
double dummy;
double∗ A = new double [ rows ∗ c o l s ] ;
double∗ S = new double [ s td : : min ( rows , c o l s ) ] ;

160 double∗ VT = new double [ c o l s ∗ c o l s ] ;
double∗ WORK = &dummy;
int LWORK = −1;
int INFO;

165 // copy t h i s in to A
for ( int i = 0 ; i < rows ; ++i ) {

for ( int j = 0 ; j < c o l s ; ++j ) {
A[ i + j ∗ rows ] = (∗ this ) ( i , j ) ;

}
170 }

// c a l l DGESVD to f ind out s i z e o f WORK
dgesvd ( ”N” ,

”A” ,
175 &rows ,

&co l s ,
A,
&rows ,
S ,

180 NULL,
&rows ,
VT,
&co l s ,
WORK,

185 &LWORK,
&INFO) ;

a s s e r t (INFO == 0 ) ;

LWORK = ∗WORK;
190 WORK = new double [LWORK] ;

// do the SVD
dgesvd ( ”N” ,

”A” ,
195 &rows ,

&co l s ,
A,
&rows ,
S ,

200 NULL,
&rows ,
VT,
&co l s ,
WORK,

205 &LWORK,
&INFO) ;

a s s e r t (INFO == 0 ) ;
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// crea t e r e s u l t from S and VT
210 int d im nul l space = c o l s − std : : min ( rows , c o l s ) ;

for ( int i = std : : min ( rows , c o l s ) − 1 ; i >= 0 && S [ i ] < eps ; −− i ) {
++dim nul l space ;

}

215 matrix r e s u l t ( c o l s , d im nul l space ) ;
for ( int i = 0 ; i < c o l s ; ++i ) {

for ( int j = 0 ; j < d im nul l space ; ++j ) {
r e s u l t ( i , j ) = VT[ c o l s − d im nul l space + j + i ∗ c o l s ] ;

}
220 }

delete [ ] WORK;
delete [ ] VT;
delete [ ] S ;

225 delete [ ] A;

return r e s u l t ;
}

230 weyl : : matrix weyl : : matrix : : l e a s t s q ( const weyl : : matrix& rhs ) const {
double dummy;
double∗ A = new double [ rows ∗ c o l s ] ;
double∗ B = new double [ rhs . rows ∗ rhs . c o l s ] ;
double∗ WORK = &dummy;

235 int LWORK = −1;
int INFO;

a s s e r t ( rows == rhs . rows ) ;

240 // make cop ie s o f t h i s and rhs
for ( int i = 0 ; i < rows ; ++i ) {

for ( int j = 0 ; j < c o l s ; ++j ) {
A[ i + j ∗ rows ] = (∗ this ) ( i , j ) ;

}
245 }

for ( int i = 0 ; i < rhs . rows ; ++i ) {
for ( int j = 0 ; j < rhs . c o l s ; ++j ) {

B[ i + j ∗ rhs . rows ] = rhs ( i , j ) ;
250 }

}

// c a l l DGELS to ob ta in proper LWORK
dg e l s ( ”N” ,

255 &rows ,
&co l s ,
&rhs . c o l s ,
A,
&rows ,

260 B,
&rhs . rows ,
WORK,
&LWORK,
&INFO) ;

265 a s s e r t (INFO == 0 ) ;

LWORK = ∗WORK;
WORK = new double [LWORK] ;

270 // r ea l work happens here
dg e l s ( ”N” ,

&rows ,
&co l s ,
&rhs . c o l s ,
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275 A,
&rows ,
B,
&rhs . rows ,
WORK,

280 &LWORK,
&INFO) ;

a s s e r t (INFO == 0 ) ;

// i n i t i a l i z e r e s u l t wi th re turn va lue o f DGELS
285 matrix r e s u l t ( c o l s , rhs . c o l s ) ;

for ( int i = 0 ; i < c o l s ; ++i ) {
for ( int j = 0 ; j < rhs . c o l s ; ++j ) {

r e s u l t ( i , j ) = B[ i + j ∗ rhs . rows ] ;
}

290 }

delete [ ] WORK;
delete [ ] B;
delete [ ] A;

295

return r e s u l t ;
}
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Irrep class (header and source file)

Creates objects weyl::irrep that contain the i-weight and methods to handle it.

#ifndef WEYL IRREP H
2 #define WEYL IRREP H

// C headers
// none ( d e l e t e t h i s l i n e i f you add some)

7 // C++ headers
#include <s t r i ng>
#include <vector>

// weyl headers
12 #include ”matrix . h”

namespace weyl {
template<int N> class i r r e p {
public :

17 // a l l o c a t e enough space , does not c rea t e a v a l i d i r r ep l a b e l
i r r e p ( ) ;

// crea t e i r r ep with g iven index
/∗ e x p l i c i t ∗/ i r r e p ( int index ) ;

22

// access elements , k = 1 , . . . , N
int &operator ( ) ( int k ) ;
const int &operator ( ) ( int k ) const ;

27 // conver t to human−readab l e form
operator std : : s t r i n g ( ) const ;

// re turns the index o f t h i s i r r ep (0 , 1 , 2 , . . . )
int index ( ) const ;

32

// return number o f s t a t e s in t h i s i r r e p
int dimension ( ) const ;

// rep re s en ta t i on matr ices o f r a i s i n g / lower ing opera tors
37 // l = 1 , . . . , N−1

matrix l owe r i ng ope ra to r ( int l ) const ;
matrix r a i s i n g o p e r a t o r ( int l ) const ;

// rep re s en ta t i on matr ices o f s i n g l e−entry matr ices
42 // p , q = 1 , . . . , N

matrix s i n g l e e n t r y ma t r i x ( int p , int q ) const ;

// decompose product o f two i r r e p s
std : : vector<i r r ep> operator ∗( const i r r e p& other ) const ;

47

private :
s td : : vector<int> elem ;

} ;
}

52

// i n l i n e code f o l l ow s

template<int N> inl ine int& weyl : : i r r ep<N> : : operator ( ) ( int k ) {
return elem [ k − 1 ] ;

57 }

template<int N> inl ine const int& weyl : : i r r ep<N> : : operator ( ) ( int k ) const {
return elem [ k − 1 ] ;

}
62

#endif // WEYL IRREP H
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// t h i s f i l e implements the d e c l a r a t i on s from the f o l l ow i n g f i l e
2 #include ” i r r e p . h”

// C headers
// none ( d e l e t e t h i s l i n e i f you add some)

7 // C++ headers
#include <sstream>
#include <s t r i ng>
#include <vector>

12 // weyl headers
#include ” binomial . h”
#include ”matrix . h”
#include ” pattern . h”

17

template<int N> weyl : : i r r ep<N> : : i r r e p ( ) : elem (N) {}

template<int N> weyl : : i r r ep<N> : : i r r e p ( int index ) : elem (N) {
for ( int i = 0 ; index > 0 && i < N; ++i ) {

22 for ( int j = 1 ; weyl : : b inomial (N − i − 1 + j , N − i − 1) <= index ; j <<= 1) {
elem [ i ] = j ;

}

for ( int j = elem [ i ] >> 1 ; j > 0 ; j >>= 1) {
27 i f ( weyl : : b inomial (N − i − 1 + ( elem [ i ] | j ) , N − i − 1) <= index ) {

elem [ i ] |= j ;
}

}

32 index −= weyl : : b inomial (N − i − 1 + elem [ i ]++, N − i − 1 ) ;
}

}

template<int N> weyl : : i r r ep<N> : : operator std : : s t r i n g ( ) const {
37 std : : o s t r ing s t r eam r e s u l t ;

r e s u l t << ” [ ” ;
for ( int i = 0 ; i < N; ++i ) {

i f ( i > 0) r e s u l t << ” , ” ;
42 r e s u l t << elem [ i ] ;

}
r e s u l t << ” ] ” ;

return r e s u l t . s t r ( ) ;
47 }

template<int N> int weyl : : i r r ep<N> : : index ( ) const {
int r e s u l t = 0 ;

52 for ( int i = 0 ; elem [ i ] > elem [N − 1 ] ; ++i ) {
r e s u l t += weyl : : b inomial (N − i − 1 + elem [ i ] − elem [N − 1 ] − 1 , N − i − 1 ) ;

}

return r e s u l t ;
57 }

template<int N> int weyl : : i r r ep<N> : : dimension ( ) const {
long long numerator = 1 , denominator = 1 ;

62 for ( int i = 1 ; i < N; ++i ) {
for ( int j = 0 ; i + j < N; ++j ) {

numerator ∗= elem [ j ] − elem [ i + j ] + i ;
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denominator ∗= i ;
}

67 }

return numerator / denominator ;
}

72 template<int N> weyl : : matrix weyl : : i r r ep<N> : : l owe r i ng ope ra to r ( int l ) const {
int dim = dimension ( ) ;
matrix r e s u l t (dim ) ;
pattern<N> pat (∗ this , 0 ) ;

77 // loop inva r i an t : i == pat t e rn . index ()
for ( int i = 0 ; i < dim ; ++i , ++pat ) {

for ( int k = 1 ; k <= l ; ++k) {
// pa t t e rn s t i l l v a l i d i f we decrease entry ( k , l )?
i f ( ( k >= l | | pat (k , l ) − 1 >= pat (k , l − 1) )

82 && pat (k , l ) − 1 >= pat (k + 1 , l + 1) ) {
−−pat (k , l ) ;
int h = pat . index ( ) ;
++pat (k , l ) ;
r e s u l t (h , i ) = pat . l ow e r i n g c o e f f (k , l ) ;

87 }
}

}

return r e s u l t ;
92 }

template<int N> weyl : : matrix weyl : : i r r ep<N> : : r a i s i n g o p e r a t o r ( int l ) const {
int dim = dimension ( ) ;
matrix r e s u l t (dim ) ;

97 pattern<N> pat (∗ this , 0 ) ;

// loop inva r i an t : i == pat t e rn . index ()
for ( int i = 0 ; i < dim ; ++i , ++pat ) {

for ( int k = 1 ; k <= l ; ++k) {
102 // pa t t e rn s t i l l v a l i d i f we increase entry ( k , l )?

i f ( ( k <= 1 | | pat (k , l ) + 1 <= pat (k − 1 , l − 1) )
&& pat (k , l ) + 1 <= pat (k , l + 1) ) {

++pat (k , l ) ;
int h = pat . index ( ) ;

107 −−pat (k , l ) ;
r e s u l t (h , i ) = pat . r a i s i n g c o e f f (k , l ) ;

}
}

}
112

return r e s u l t ;

}

117 template<int N> weyl : : matrix weyl : : i r r ep<N> : : s i n g l e e n t r y ma t r i x ( int p , int q ) const {
i f (p < q ) {

matrix r e s u l t = r a i s i n g o p e r a t o r (p ) ;
for ( int i = p + 1 ; i < q ; ++i ) r e s u l t = r e s u l t . commutator ( r a i s i n g o p e r a t o r ( i ) ) ;
return r e s u l t ;

122 } else i f (p > q ) {
matrix r e s u l t = lowe r i ng ope ra to r ( q ) ;
for ( int i = q + 1 ; i < p ; ++i ) r e s u l t = lowe r i ng ope ra to r ( i ) . commutator ( r e s u l t ) ;
return r e s u l t ;

}
127

// p == q not implemented
a s s e r t ( fa l se ) ;
return matrix ( 1 ) ;
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}
132

template<int N> std : : vector<weyl : : i r r ep<N> > weyl : : i r r ep<N> : : operator ∗( const weyl : : i r r ep<N>& other ) const {
weyl : : pattern<N> low (∗ this , 0 ) , high (∗ this , 0 ) ;
weyl : : i r r ep<N> t r i a l ( other ) ;
s td : : vector<i r r ep> r e s u l t ;

137 int k = 1 , l = N;

do {
while ( k <= N) {

−− l ;
142 i f ( k <= l ) {

low (k , l ) = std : : max( high (k + N − l , N) , high (k , l + 1) + t r i a l ( l + 1) − t r i a l ( l ) ) ;
high (k , l ) = high (k , l + 1 ) ;
i f ( k > 1 && high (k , l ) > high (k − 1 , l − 1) ) {

high (k , l ) = high (k − 1 , l − 1 ) ;
147 }

i f ( l > 1 && k == l && high (k , l ) > t r i a l ( l − 1) − t r i a l ( l ) ) {
high (k , l ) = t r i a l ( l − 1) − t r i a l ( l ) ;

}
i f ( low (k , l ) > high (k , l ) ) {

152 break ;
}
t r i a l ( l + 1) += high (k , l + 1) − high (k , l ) ;

} else {
t r i a l ( l + 1) += high (k , l + 1 ) ;

157 ++k ;
l = N;

}
}

162 i f ( k > N) {
r e s u l t . push back ( t r i a l ) ;

} else {
++l ;

}
167

while ( k != 1 | | l != N) {
i f ( l == N) {

l = −−k − 1 ;
t r i a l ( l + 1) −= high (k , l + 1 ) ;

172 } else i f ( low (k , l ) < high (k , l ) ) {
−−high (k , l ) ;
++t r i a l ( l + 1 ) ;
break ;

} else {
177 t r i a l ( l + 1) −= high (k , l + 1) − high (k , l ) ;

}
++l ;

}
} while ( k != 1 | | l != N) ;

182

return r e s u l t ;
}

187 // make sure the l i n k e r f i n d s the f o l l ow i n g c l a s s e s
template class weyl : : i r r ep <1>;
template class weyl : : i r r ep <2>;
template class weyl : : i r r ep <3>;
template class weyl : : i r r ep <4>;

192 template class weyl : : i r r ep <5>;
template class weyl : : i r r ep <6>;
template class weyl : : i r r ep <7>;
template class weyl : : i r r ep <8>;
template class weyl : : i r r ep <9>;
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Pattern class (header and source file)

Creates objects weyl::pattern and provides a member function index() to map patterns to
the natural numbers. It has overloaded operators operator++(); and operator--(); to find
the pattern with the next larger or smaller index and can generate the coefficients of raising
and lowering operators stated in (2.13) and (2.12) with lowering coeff and raising coeff.

#ifndef WEYL PATTERN H
#define WEYL PATTERN H

4 // C headers
// none ( d e l e t e t h i s l i n e i f you add some)

// C++ headers
#include <s t r i ng>

9 #include <vector>

// weyl headers
#include ” i r r e p . h”

14 namespace weyl {
template<int N> class pattern {
public :

// a l l o c a t e enough space , does not produce a v a l i d pa t t e rn
pattern ( ) ;

19

// crea t e pa t t e rn with g iven index in i r r ep
// index = 0 , . . . , i r r e p . dimension()−1
pattern ( const i r r ep<N>& ir r ep , int index ) ;

24 // return index i n s i d e o f the i r r ep
int index ( ) const ;

// access e lements ; l = 1 , . . . , N; k = 1 , . . . , l
int &operator ( ) ( int k , int l ) ;

29 const int &operator ( ) ( int k , int l ) const ;

// conver t to human−readab l e form
operator std : : s t r i n g ( ) const ;

34 // s e t pa t t e rn to the l e x i c o g r a p h i c a l l y next / prev ious one
// return f a l s e i f a l ready at l a s t / f i r s t pa t t e rn
// i f ” f a l s e ” , no longer conta ins a v a l i d pa t t e rn
bool operator++();
bool operator−−();

39

// matrix element o f r a i s i n g / lower ing operator Jˆ{( l )}
// between t h i s + Mˆ{k , l } and t h i s pa t t e rn
double l ow e r i n g c o e f f ( int k , int l ) const ;
double r a i s i n g c o e f f ( int k , int l ) const ;

44

// return weight
std : : vector<int> weight ( ) const ;

private :
49 std : : vector<int> elem ;

} ;
} ;

template<int N> int& weyl : : pattern<N> : : operator ( ) ( int k , int l ) {
54 return elem [ (N ∗ (N + 1) − l ∗ ( l + 1) ) / 2 + k − 1 ] ;

}

template<int N> const int& weyl : : pattern<N> : : operator ( ) ( int k , int l ) const {
return elem [ (N ∗ (N + 1) − l ∗ ( l + 1) ) / 2 + k − 1 ] ;
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59 }

#endif // WEYL PATTERN H

// t h i s f i l e implements the d e c l a r a t i on s from the f o l l ow i n g f i l e
#include ” pattern . h”

4 // C headers
#include <ca s s e r t>
#include <cmath>

// C++ headers
9 #include <algor ithm>

#include <sstream>
#include <s t r i ng>
#include <vector>

14 // weyl headers
#include ” i r r e p . h”

template<int N> weyl : : pattern<N> : : pat te rn ( ) : elem (N ∗ (N + 1) / 2) {}
19

template<int N> weyl : : pattern<N> : : pat te rn ( const weyl : : i r r ep<N>& ir r ep , int index ) : elem (N ∗ (N + 1) / 2) {
for ( int k = 1 ; k <= N; ++k) (∗ this ) ( k , N) = i r r e p (k ) ;

for ( int l = N − 1 ; l >= 1 ; −− l ) {
24 for ( int k = 1 ; k <= l ; ++k) {

(∗ this ) ( k , l ) = (∗ this ) ( index < 0 ? k : k + 1 , l + 1 ) ;
}

}

29 i f ( index < 0) {
while (++index < 0) {

bool b = −−∗this ;
a s s e r t (b ) ;

}
34 } else {

while ( index−− > 0) {
bool b = ++∗this ;
a s s e r t (b ) ;

}
39 }

}

template<int N> int weyl : : pattern<N> : : index ( ) const {
int r e s u l t = 0 ;
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for (typename weyl : : pattern<N> p(∗ this ) ; −−p ; ++r e s u l t ) {}

return r e s u l t ;
}

49

template<int N> weyl : : pattern<N> : : operator std : : s t r i n g ( ) const {
std : : o s t r ing s t r eam r e s u l t ;

r e s u l t << ” [ ” ;
54 for ( int l = N; l >= 1 ; −− l ) {

for ( int k = 1 ; k <= l ; ++k) {
i f ( k > 1) r e s u l t << ” , ” ;
r e s u l t << (∗ this ) ( k , l ) ;

}
59 i f ( l > 1) r e s u l t << ” ; ” ;

}
r e s u l t << ” ] ” ;
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return r e s u l t . s t r ( ) ;
64 }

template<int N> bool weyl : : pattern<N> : : operator++() {
int k = 1 , l = 1 ;

69 while ( l < N && (∗ this ) ( k , l ) == (∗ this ) ( k , l + 1) ) {
i f (−−k == 0) k = ++l ;

}

i f ( l == N) return fa l se ;
74 ++(∗this ) ( k , l ) ;

while ( k != 1 | | l != 1) {
i f (++k > l ) {

k = 1 ;
79 −− l ;

}

(∗ this ) ( k , l ) = (∗ this ) ( k + 1 , l + 1 ) ;
}

84

return true ;
}

template<int N> bool weyl : : pattern<N> : :operator−−() {
89 int k = 1 , l = 1 ;

while ( l < N && (∗ this ) ( k , l ) == (∗ this ) ( k + 1 , l + 1) ) {
i f (−−k == 0) k = ++l ;

}
94

i f ( l == N) return fa l se ;
−−(∗this ) ( k , l ) ;

while ( k != 1 | | l != 1) {
99 i f (++k > l ) {

k = 1 ;
−− l ;

}

104 (∗ this ) ( k , l ) = (∗ this ) ( k , l + 1 ) ;
}

return true ;
}

109

template<int N> double weyl : : pattern<N> : : l ow e r i n g c o e f f ( int k , int l ) const {
double r e s u l t = 1 . 0 ;

for ( int i = 1 ; i <= l + 1 ; ++i ) {
114 r e s u l t ∗= (∗ this ) ( i , l + 1) − (∗ this ) ( k , l ) + k − i + 1 ;

}

for ( int i = 1 ; i <= l − 1 ; ++i ) {
r e s u l t ∗= (∗ this ) ( i , l − 1) − (∗ this ) ( k , l ) + k − i ;

119 }

for ( int i = 1 ; i <= l ; ++i ) {
i f ( i == k) continue ;
r e s u l t /= (∗ this ) ( i , l ) − (∗ this ) ( k , l ) + k − i + 1 ;

124 r e s u l t /= (∗ this ) ( i , l ) − (∗ this ) ( k , l ) + k − i ;
}

return std : : s q r t (− r e s u l t ) ;
}
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129

template<int N> double weyl : : pattern<N> : : r a i s i n g c o e f f ( int k , int l ) const {
double r e s u l t = 1 . 0 ;

for ( int i = 1 ; i <= l + 1 ; ++i ) {
134 r e s u l t ∗= (∗ this ) ( i , l + 1) − (∗ this ) ( k , l ) + k − i ;

}

for ( int i = 1 ; i <= l − 1 ; ++i ) {
r e s u l t ∗= (∗ this ) ( i , l − 1) − (∗ this ) ( k , l ) + k − i − 1 ;

139 }

for ( int i = 1 ; i <= l ; ++i ) {
i f ( i == k) continue ;
r e s u l t /= (∗ this ) ( i , l ) − (∗ this ) ( k , l ) + k − i ;

144 r e s u l t /= (∗ this ) ( i , l ) − (∗ this ) ( k , l ) + k − i − 1 ;
}

return std : : s q r t (− r e s u l t ) ;
}

149

template<int N> std : : vector<int> weyl : : pattern<N> : : weight ( ) const {
std : : vector<int> r e s u l t (N) ;

for ( int prev = 0 , l = 1 ; l <= N; ++l ) {
154 int now = 0 ;

for ( int k = 1 ; k <= l ; ++k) now += (∗ this ) ( k , l ) ;
r e s u l t [ l − 1 ] = now − prev ;
prev = now ;

159 }

return r e s u l t ;
}

164

// make sure the l i n k e r f i n d s the f o l l ow i n g c l a s s e s
template class weyl : : pattern<1>;
template class weyl : : pattern<2>;
template class weyl : : pattern<3>;

169 template class weyl : : pattern<4>;
template class weyl : : pattern<5>;
template class weyl : : pattern<6>;
template class weyl : : pattern<7>;
template class weyl : : pattern<8>;

174 template class weyl : : pattern<9>;
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Permutation class (header and source file)

Creates objects weyl::permut and defines the member functions apply to(std::vector<int>&)

to permute a weight, before(const permut&) and after(const permut&) to connect per-
mutations, inverse() to find the inverse permutation. It can furthermore decompose itself
into transposition of type (1, x) with transpositions() and return a representation matrix
of its class representative with normal form(const std::vector<int>&) dependent of the
i-weight.

1 #ifndef WEYL PERMUT H
#define WEYL PERMUT H

// C headers
// none ( d e l e t e t h i s l i n e i f you add some)

6

// C++ headers
#include <s t r i ng>
#include <vector>

11 // weyl headers
#include ”matrix . h”
#include ” i r r e p . h”

16 namespace weyl {
// s t o r e s a permutation o f the numbers 0 . .N−1
template<int N> class permut {
public :

// a l l o c a t e enough space , does not c rea t e a v a l i d permutation
21 permut ( ) ;

// copy from vec tor
/∗ e x p l i c i t ∗/ permut ( const std : : vector<int>& input ) ;

26 // mapping o f permutat ions to numbers 0 , . . . , N!−1
expl ic it permut ( int index ) ;
int index ( ) const ;

// crea t e a t r an spo s i t i on a <−> b
31 // a == b crea t e s i d e n t i t y

permut ( int a , int b ) ;

// access elements , k = 0 , . . . , N−1
int& operator ( ) ( int k ) ;

36 const int& operator ( ) ( int k ) const ;

// conver t to human−readab l e form
operator std : : s t r i n g ( ) const ;

41 // return inve r s e permutation
permut i nv e r s e ( ) const ;

// compose two permutat ions
// a . b e f o r e ( b )( x ) = b (a( x ))

46 // a . a f t e r ( b )( x ) = a( b ( x ))
permut a f t e r ( const permut& other ) const ;
permut be f o r e ( const permut& other ) const ;

// permutes the e lements in weight
51 // app l y t o works in place , a p p l i e d t o re turns a copy

std : : vector<int> app l i e d t o ( const std : : vector<int>& weight ) const ;
void app ly to ( std : : vector<int>& weight ) const ;

// decomposes in to t r an s po s i t i o n s 0 <−> n
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56 // o r i g i n a l permutation = permut ( r e s u l t [ 0 ] ) . b e f o r e ( permut ( r e s u l t [ 1 ] ) ) . b e f o r e ( . . . )
std : : vector<int> t r a n s p o s i t i o n s ( ) const ;

// return rep re s en ta t i on matrix o f t h i s permutation in g iven i r r ep
matrix repr matr ix ( const i r r ep<N>& i r ) const ;

61

// return ” r e p r e s en t a t i v e ” o f the c l a s s o f t h i s permutation
// r e s u l t has the same e f f e c t on weight as t h i s , but i s l e x i c o g r a p h i c a l l y sma l l e s t
permut normal form ( const std : : vector<int>& weight ) const ;

66 private :
s td : : vector<int> elem ;

} ;
}

71

// i n l i n e code f o l l ow s

template<int N> int& weyl : : permut<N> : : operator ( ) ( int k ) {
return elem [ k ] ;

76 }

template<int N> const int& weyl : : permut<N> : : operator ( ) ( int k ) const {
return elem [ k ] ;

}
81

#endif // WEYL PERMUT H

// t h i s f i l e implements the d e c l a r a t i on s from the f o l l ow i n g f i l e
#include ”permut . h”

3

// C headers
#include <ca s s e r t>

// C++ headers
8 #include <algor ithm>

#include <sstream>
#include <s t r i ng>
#include <vector>

13 // weyl headers
#include ”matrix . h”
#include ” i r r e p . h”
#include ” pattern . h”

18

template<int N> weyl : : permut<N> : : permut ( ) : elem (N) {}

template<int N> weyl : : permut<N> : : permut ( const std : : vector<int>& input ) : elem ( input ) {
a s s e r t ( static cast<int>( input . s i z e ( ) ) == N) ;

23 }

template<int N> weyl : : permut<N> : : permut ( int index ) : elem (N) {
for ( int i = N − 1 ; i >= 0 ; −− i ) {

elem [ i ] = index % (N − i ) ;
28 index /= N − i ;

for ( int j = i + 1 ; j < N; ++j ) {
i f ( elem [ j ] >= elem [ i ] ) ++elem [ j ] ;

}
}

33 }

template<int N> int weyl : : permut<N> : : index ( ) const {
int r e s u l t = 0 ;

38 for ( int seen = 0 , i = 0 ; i < N − 1 ; seen |= 1 << elem [ i ++]) {
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r e s u l t ∗= N − i ;
r e s u l t += elem [ i ] ;
for ( int j = seen & ((1 << elem [ i ] ) − 1 ) ; j > 0 ; j &= j − 1) {

−−r e s u l t ;
43 }

}

return r e s u l t ;
}

48

template<int N> weyl : : permut<N> : : permut ( int a , int b) : elem (N) {
a s s e r t (0 <= a && a < N) ;
a s s e r t (0 <= b && b < N) ;
for ( int i = 0 ; i < N; ++i ) elem [ i ] = i ;

53 std : : swap ( elem [ a ] , elem [ b ] ) ;
}

template<int N> weyl : : permut<N> : : operator std : : s t r i n g ( ) const {
std : : o s t r ing s t r eam r e s u l t ;

58

r e s u l t << ” ( ” ;
for ( int i = 0 ; i < N; ++i ) {

i f ( i > 0) r e s u l t << ” , ” ;
r e s u l t << elem [ i ] ;

63 }
r e s u l t << ” ) ” ;

return r e s u l t . s t r ( ) ;
}

68

template<int N> weyl : : permut<N> weyl : : permut<N> : : i n v e r s e ( ) const {
permut<N> r e s u l t ;
for ( int i = 0 ; i < N; ++i ) r e s u l t . elem [ elem [ i ] ] = i ;
return r e s u l t ;

73 }

template<int N> weyl : : permut<N> weyl : : permut<N> : : b e f o r e ( const weyl : : permut<N>& other ) const {
permut<N> r e s u l t ;
for ( int i = 0 ; i < N; ++i ) r e s u l t . elem [ i ] = other . elem [ elem [ i ] ] ;

78 return r e s u l t ;
}

template<int N> weyl : : permut<N> weyl : : permut<N> : : a f t e r ( const weyl : : permut<N>& other ) const {
permut<N> r e s u l t ;

83 for ( int i = 0 ; i < N; ++i ) r e s u l t . elem [ i ] = elem [ other . elem [ i ] ] ;
return r e s u l t ;

}

template<int N> std : : vector<int> weyl : : permut<N> : : a pp l i e d t o ( const std : : vector<int>& obj ) const {
88 std : : vector<int> r e s u l t = obj ;

for ( int i = 0 ; i < N; ++i ) r e s u l t [ elem [ i ] ] = obj [ i ] ;
return r e s u l t ;

}

93 template<int N> void weyl : : permut<N> : : app ly to ( std : : vector<int>& obj ) const {
std : : vector<char> done (N, fa l se ) ;

for ( int i = 0 ; i < N; ++i ) {
for ( int j = i ; ! done [ j ] ; ) {

98 done [ j ] = true ;
j = elem [ j ] ;
s td : : swap ( obj [ i ] , obj [ j ] ) ;

}
}

103 }



49

template<int N> std : : vector<int> weyl : : permut<N> : : t r a n s p o s i t i o n s ( ) const {
std : : vector<int> perm( elem ) ;
std : : vector<int> r e s u l t ;

108

for ( int i = perm . s i z e ( ) − 1 ; i > 0 ; −− i ) {
i f ( i != perm [ i ] ) {

for ( int k = i − 1 ; k >= 0 ; −−k ) {
i f (perm [ k ] == i ) {

113 // swap searched entry to po s i t i on 1
i f ( k != 0) {

r e s u l t . push back (k ) ;
perm [ k ] = perm [ 0 ] ;
perm [ 0 ] = i ;

118 }

// then swap f i r s t entry with d e s t i na t i on po s i t i on
r e s u l t . push back ( i ) ;
perm [ 0 ] = perm [ i ] ;

123 perm [ i ] = i ;
}

}
}

}
128

return r e s u l t ;
}

template<int N> weyl : : matrix weyl : : permut<N> : : r epr matr ix ( const weyl : : i r r ep<N>& i r ) const {
133 int dim = i r . dimension ( ) ;

weyl : : matrix r e s u l t (dim , dim ) ;
for ( int i = 0 ; i < N; ++i ) r e s u l t ( i , i ) = 1 . 0 ;

s td : : vector<int> t ranspos = t r a n s p o s i t i o n s ( ) ;
138 for ( std : : vector<int > : : c o n s t i t e r a t o r i t = transpos . begin ( ) ; i t != transpos . end ( ) ; ++i t ) {

weyl : : matrix a = i r . s i n g l e e n t r y ma t r i x (∗ i t + 1 , 1 ) . exp (dim ) ;
weyl : : matrix b = a ∗ (− i r . s i n g l e e n t r y ma t r i x (1 , ∗ i t + 1 ) ) . exp (dim) ∗ a ;

weyl : : pattern<N> pat ( i r , 0 ) ;
143 for ( int i = 0 ; i < dim ; ++i , ++pat ) {

i f ( pat (1 , 1) % 2 != 0) {
for ( int j = 0 ; j < dim ; ++j ) {

b( i , j ) = −b( i , j ) ;
}

148 }
}

r e s u l t = r e s u l t ∗ b ;
}

153

return r e s u l t ;
}

template<int N> weyl : : permut<N> weyl : : permut<N> : : normal form ( const std : : vector<int>& weight ) const {
158 std : : vector<int> new weight = this−>app l i e d t o ( weight ) ;

s td : : vector<char> taken (N, fa l se ) ;
permut r e s u l t ;

for ( int i = 0 ; i < N; ++i ) {
163 for ( int j = 0 ; true ; ++j ) {

i f ( ! taken [ j ] && new weight [ j ] == weight [ i ] ) {
taken [ j ] = true ;
r e s u l t . elem [ i ] = j ;
break ;

168 }
}

}
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return r e s u l t ;
173 }

// make sure the l i n k e r f i n d s the f o l l ow i n g c l a s s e s
template class weyl : : permut<1>;
template class weyl : : permut<2>;

178 template class weyl : : permut<3>;
template class weyl : : permut<4>;
template class weyl : : permut<5>;
template class weyl : : permut<6>;
template class weyl : : permut<7>;

183 template class weyl : : permut<8>;
template class weyl : : permut<9>;

Coefficient class (header and source file)

Implements the algorithm, stores the Clebsch-Gordan coefficients and makes them accessible
for usage.

1 #ifndef WEYL COEFF H
#define WEYL COEFF H

// C headers
// none ( d e l e t e t h i s l i n e i f you add some)

6

// C++ headers
#include <u t i l i t y >
#include <vector>

11 // weyl headers
// none ( d e l e t e t h i s l i n e i f you add some)

namespace weyl {
16 template<int N> class c o e f f {

public :
c o e f f ( const i r r ep<N>& ir r ep ,

const i r r ep<N>& fac to r1 ,
const i r r ep<N>& fa c t o r 2 ) ;

21 } ;

private :
typedef std : : pa ir<int , int> s t a t e i d ;

26 std : : vector<std : : pa ir<s t a t e i d , s t a t e i d> > s i f t p r o d u c t s t a t e s ( ) const ;
} ;

#endif

1 // t h i s f i l e implements the d e c l a r a t i on s from the f o l l ow i n g f i l e
#include ” c o e f f . h”

// C headers
#include <ca s s e r t>

6

// C++ headers
#include <vector>

// weyl headers
11 #include ” i r r e p . h”

#include ” pattern . h”

// implementation f o l l ow s
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16 template<int> weyl : : c o e f f : : c o e f f ( const weyl : : i r r ep<N>& ir r ep ,
const weyl : : i r r ep<N>& fac to r1 ,
const weyl : : i r r ep<N>& fa c t o r 2 ) {

}

21 template<int N> std : : vector<std : : pa ir<s t a t e i d , s t a t e i d> > s i f t p r o d u c t s t a t e s ( const weyl : : i r r ep<N>& fac to r1 ,
const weyl : : i r r ep<N>& fa c t o r 2 ) const {

}

// make sure the l i n k e r f i n d s the f o l l ow i n g c l a s s e s
26 template class weyl : : c o e f f <1>;

template class weyl : : c o e f f <2>;
template class weyl : : c o e f f <3>;
template class weyl : : c o e f f <4>;
template class weyl : : c o e f f <5>;

31 template class weyl : : c o e f f <6>;
template class weyl : : c o e f f <7>;
template class weyl : : c o e f f <8>;
template class weyl : : c o e f f <9>;





Bibliography

[1] A. Alex, M. Kalus, A. Huckleberry, and J. von Delft, “A numerical algorithm for the
explicit calculation of SU(n) and SL(n,C) Clebsch-Gordan coefficients,” J. Math. Phys.,
vol. 52, p. 023507, 2011.

[2] T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch, P.
Mavropoulos, H. Dederichs, F. Mallet, L. Saminadayar, and C. Buerle, “Kondo decoher-
ence: finding the right spin model for iron impurities in gold and silver,” Phys. Rev. Lett.,
vol. 102(5), p. 056802, 2009.

[3] A. Alex, J. von Delft, L. Everding, and P. Littelmann, “Clebsch-gordan coefficients via
weyl symmetry group.”.

[4] I. M. Gelfand and M. L. Tsetlin, Matrix elements for the unitary group. Dokl. Akad. Nauk
SSSR 71, 825 and 1017, 1950.

[5] I.M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and
Lorentz Group. New York: Pergamon, 1963.

[6] A. O. Barut and R. Raczka, Theory of group representations and applications. Warszawa:
PWN-Polish Scientific Publ., 2nd, revised ed., 1986.

[7] A. Alex private communication, 2011.

[8] I. P. McCulloch and M. Gulacsi, “The non-abelian density matrix renormalization group
algorithm,” Europhys. Lett., vol. 57(6), p. 852, 2002.
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