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Abstract

The objective of this Bachelor thesis is to examine the effect linear and logarithmic discretizations
of continous energybands have on the current through a noninteracting quantum dot. This will
be done by comparing with the exact current results obtained by an analytical treatment of the
considered system.
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Figure 1: Considered system of a quantum dot (QD) between two leads (L1, L2) with the electrical
potential V applied to them.

Introduction
In the following work our main aim is to discover how the kinematic properties of a many body
system are dependent on different discretizations of a continuous energyband. For this purpose,
our model system will be a quantum dot1(QD), coupled to two leads (L1, L2). The kinematic
quantity, we want to probe is the tunneling current through the quantum dot, when we apply an
electrical potential (V ) to the leads (see figure 1).
We consider our system temperature T to be 0(Kelvin). Therefore we can depict our problem in
the energyspace as in figure 2. Our electrons occupy states up to the fermi edge, which is equal to
the chemical potential µ. Here, the left lead’s energy levels are filled till µl, and the right lead’s
levels are filled till µr

2. The single energy level of the quantumdot is denoted by εd. For simplicity
we will assume that there are no interactions between electrons, e.g. no Coloumb interaction. Now
our approach will be the following:
Part I of the work shortly introduces the techniques, which are needed for the treatment of our
model system (compare with Ref.[3]).
In part II, we will derive an analytic formular for the current-electrical potential dependence,
which is possible as we only have one energy level in the quantumdot and as our electrons are
noninteracting (compare with Ref.[2]). The theoretical result will than be used to probe the quality
of the different discretizations used in a numerical simulation.
Part III treats the simulation of our system with two different discretizations and compares the
results one attains in the different cases. The energy bands will be discretized the following two
ways:

• The first discretization is equally choosen on both leads with linear discretization in the
interval [µr, µl] of interest. Large energies outside this interval will be discretized more
crudely, following a logarithmic discretization scheme. We denote this discretization as
”linear”discretization.

• The second discretization is choosen logarithmically relative to the chemical potential of each

1i.e. a quantumsystem, which consists of a small amount of states, electrons can occupy, when ”sitting” in the
quantumdot.

2The electrical potential V of figure 1 hence gets: eV = µl − µr
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lead motivated by the numerical renormalization group (NRG) (see Ref.[1]). As µl 6= µr, the
discretizations are different on both leads. This discretization will be denoted ”logarithmic”
discretization.

Figure 2: System of interest for temperature T=0 in energyspace.

Part I

Many particle systems
As our system of interest is a fermionic many particle system, we give a short review of the Hilbert
space and the Hilbert space basis we are going to work with, the second quantization formalism,
equilibrium Greenfunctions and the Keldysch-formalism, as we want to treat a nonequilibrium
system.

1 Hilbert space and Hilbert space basis

The Hilbert space we are going to describe our N-particle system with is the Hilbert space

H ⊂ H(1) ⊗ · · · ⊗ H(N) (1)

where H(i) is the one particle Hilbert space of the i-th particle. Given fermions, this Hilbert space
describes antisymmetric statekets.

For our orthonormal basis (ONB), we will use the eigenvectors of a hermitian operator with
discrete eigenvalues α1, α2, · · · , e.g. the Hamilton operator.
Then the ONB B has the following form:

B = {|N ;n1n2 · · · 〉} (2)

where N is the total particle number of our system and ni is the number of particles in the
eigenstate according to the eigenvalue αi. As we work with noninteracting fermions, we can
neglect their spin, and therefore only allow:

ni ∈ {0, 1} (3)

according to the Pauli principle.
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2 Second Quantization

As usual the creation (c†r) and annihilation (cr) operators are defined as:

c†r : H(−),N−1 −→ H(−),N

|N ;n1n2 · · ·nr · · · 〉 7−→ (−1)Nrδnr0|N + 1;n1n2 · · ·nr + 1 · · · 〉 (4)

where Nr =
r−1∑
i=1

ni

and cr ≡ (c†r)
†, therefore:

cr|N ;n1n2 · · ·nr · · · 〉 = (−1)Nrδnr1|N − 1;n1n2 · · ·nr − 1 · · · 〉 (5)

The creation operator c†r creates a particle in the eigenstate corresponding to the eigenvalue αr
and the annihilation operator annihilates one.

The occupation operator of the r’th eigenstate n̂r is defined as:

c†rcr = n̂r (6)

By definition, one gets the fundamental anticommutation relations:

{c†k, c
†
l} = {ck, cl} = 0 ∀k, l (7)

{ck, c†l} = δkl ∀k, l (8)

where {·, ·} symbolizes the anticommutator, defined by:

{A,B} = AB +BA (9)

With this relations one can derive the following commutator relations, for the creation and annih-
lation operators:

[ck, c
†
l cm] = δklcm (10)

[c†kck, c
†
l cm] = δklc

†
kcm − δkmc

†
l ck (11)
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where the commutator [·, ·] is defined by:

[A,B] = AB −BA (12)

Next we want to transform operators in the second quantization formalism. As our system is
noninteracting we will only need single particle operators, which have the form:

A =
N∑
n=1

1n−1 ⊗ A(n) ⊗ 1N−n ≡
N∑
n=1

A(n) (13)

with the A(n) only operating on the Hilbert space Hn of a single particle.

Now using a ONB D = {|i〉} of the Hilbert space of one of our particles, we can write the
single particle operator as:

A =
∑

i,k∈{|i〉}

〈i|Aop|k〉c†ick (14)

where Aop is the one-particle operator operating in the Hilbert space of a single particle.

3 Statistical Mechanics

Because we will do equilibrium theory as well, he will have to use statistical mechanics. We briefly
review the facts, which are important for this work.
For a grand canonical ensamble the expectation value of an operator A at t = ∞ can be witten
as:

〈A〉 ≡ eq〈ψ|A|ψ〉eq =
1

Z
Tr {ρA} (15)

where

• ρ = e−β(Ĥ−µN̂) is the density operator

• Z = Tr {ρ} is the partition function

• β = 1
kBT

, where T is the temperature and kB is the Bolzman constant

• Ĥ is the Hamilton operator, describing our system

• µ is the chemical potential of our system

• N̂ is the particle number operator
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One important result one can obtain for n̂i, which is the particle occupation operator of the energy
state, corresponding to energy level Ei:

〈n̂i〉 =
1

eβ(Ei−µ) + 1
≡ f(Ei, µ) (16)

where f is the Fermi function.

4 Greenfunctions

4.1 Equilibrium Greenfunctions

In the following we work in the Heisenberg picture, therefore the Schrödinger equation turns into:

i~Ȧ = [A, Ĥ] (17)

where Ĥ is the Hamilton operator

We define the time-ordered Greenfunktion Gt
AB(t, t′) to be:

Gt
AB(t, t′) = −i〈T{A(t)B(t′)}〉 (18)

where T is the time ordering operator, defined as

T{A(t)B(t′)} = Θ(t− t′)A(t)B(t′)−Θ(t′ − t)B(t′)A(t) (19)

with the Heavyside step function: Θ(x) =

{
1 x > 0
0 x < 0

We further define four other Greenfunctions, the retarded and advanced

Gr
AB(t, t′) = −iΘ(t− t′)〈{A(t), B(t′)}〉 (20)

Ga
AB(t, t′) = iΘ(t′ − t)〈{A(t), B(t′)}〉 (21)

and the greater and lesser Greenfunctions:

G<
AB(t, t′) = i〈B(t′)A(t)〉 (22)

G>
AB(t, t′) = −i〈A(t)B(t′)〉 (23)

In equilibrium, all Greenfunctions have the property:

Gα
AB(t, t′) = Gα

AB(t− t′) (24)

8



where α ∈ {t, r, a, <,>}

The Greenfunctions follow the equations of motion:

i~
d

dt
Gα
AB(t, t′) = ~δ(t− t′)〈{A(0), B(0)}〉+Gα

[A,Ĥ]B
(t, t′) (25)

with α ∈ {t, r, a}
i~
d

dt
Gα
AB(t, t′) = Gα

[A,Ĥ]B
(t, t′) (26)

with α ∈ {<,>}

4.2 Fourier transformation

We will use the following conventions for Fourier transformations between time t and energy E.

t→ E : f(E) =

+∞∫
−∞

dtf(t)e
i
~Et (27)

E → t : f(t) =
1

2π~

+∞∫
−∞

dEf(E)e−
i
~Et (28)

For the delta function, we have the important identities:

δ(E − E ′) =
1

2π~

+∞∫
−∞

dte−
i
~ (E−E′)t (29)

δ(t− t′) =
1

2π~

+∞∫
−∞

dEe
i
~E(t−t′) (30)

4.3 Example

For example, we assume a system of N noninteracting electrons, with discrete energy levels εk. We
compute the retarded, advanced and lesser Greenfunctions for the operators A = ck and B = c†k ,
which will later be needed.

Given Eq. (14), our non-interacting model Hamiltonian can be written as:

Ĥ =
∑
k

εkc
†
kck (31)
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Using (26) for the lesser Greens function

g<k (t, t′) ≡ i〈c†k(t
′)ck(t)〉 (32)

one needs to compute the commutator:

[ck, Ĥ] =
∑
i

εi[ck, c
†
ici]

(10)
= εkck (33)

Therefore we obtain:

i~
d

dt
g<k (t, t′) = εkg

<
k (t, t′) (34)

Hence using Eq. (24):

i~
d

d(t− t′)
g<k (t− t′) = εkg

<
k (t− t′) (35)

Solving the differential equation, we obtain:

g<k (t− t′) = g<k (t = t′) e−
i
~ εk(t−t′) = i〈c†k(0)ck(0)〉 e−

i
~ εk(t−t′) (9)

= i〈n̂k〉 e−
i
~ εk(t−t′) (36)

Therefore our solution is (using (6)):

g<k (t− t′) = i f(εk, µ) e−
i
~ εk(t−t′) (37)

Now compute the advanced and the retarded Greenfunctions:

i~
d

dt
gr,ak (t, t′) = ~δ(t− t′) + εkg

r,a
k (t, t′) (38)

Fourier transforming the equation (t− t′)→ E yields:

E gr,ak (E) = ~ + εk g
r,a
k (E) (39)

Hence,

gr,ak (E) =
~

E − εk ± i0+
(40)

where the usual term ±i0+ with 0+ ∈ R† and 0+ infinitesimal has been added, to suit the initial
conditions. Integrating over residues, yields the Greenfunctions:

gr,ak (t, t′) = ∓iΘ(±t∓ t′)e−
i
~ εk(t−t′) (41)
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Figure 3: Contour C ′

4.4 Nonequilibrium Greenfunctions

We assume that our system is a nonequilibrium at time t > t0 while for t < t0 the system had
been in equilibrium.
Due to the Keyldish formalism evolving our nonequilibrium system out of an equilibrium system
is mathematically equal to an equilibrium theory on special complex contours.

So we define nonequilibrium Greenfunctions, which are not dependent on t and t′ with t, t′ ∈ R,
but on τ 3 and τ ′ ,with τ, τ ′ ∈ C ′ (see figure 3).

The analogue of the time-ordered Greenfunction, called the contour-ordered GreenfunctionGc
AB(t, t′)

has the form:
Gc
AB(t, t′) = −i〈TC′{A(t)B(t′)}〉 (42)

where TC′ is the time ordering operator on the contour C ′.
All other nonequilibrium Greenfunctions can be now defined analogue to the equilibrium ones,
but on the new timecontour.

To compute the nonequilibrium Greenfunctions we use the Langreth theorem. If we start with:

Gc
AB(t, t′) =

∫
C′

dτ Ec(t, τ)F c(τ, t′) (43)

where Ec, F c are some arbitrary contour-ordered Greenfunctions, the Langreth theorem tells us
that we can write:

G<,neq
AB (t, t′) =

+∞∫
−∞

dt̃ [Er(t, t̃)F<(t̃, t′) + E<(t, t̃)F a(t̃, t′)] (44)

3We use greek letters for complex times and arabic letters for real times.
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where G<,neq
AB is the nonequilibrium lesser Greenfunction.

Part II

Current through a quantum dot coupled
to leads: Theoretical approach

5 Assumptions

• Both leads have discrete energy levels εk (k ∈ {kleft, kright}).

• For simplicity we further assume, that the electrons in our leads are noninteracting

• To get a nonequilibrium situation, we assume that µl > µr, where µl is the chemical potential
in the left and µr is the chemical potential in the right lead (see figure 2 for T = 0).

• Our quantumdot has only one energy level εd.

• Electrons of both leads are able to hop back and forth between quantum dot and lead, but
as the leads are already in diagonal representation, there are no hops within the leads.

6 Base and Hamiltonian

The Hamilton operator of our whole system can be written as:

Ĥ = Ĥw.h. + Ĥh (45)

where Ĥw.h. describes the two leads and the quantumdot, but not the hopping between them.
Hence:

Ĥw.h. = Ĥleft + Ĥdot + Ĥright (46)

As the electrons of our system can only be described by the energy level they occupy, the eigen-
values of the operator Ĥw.h. are equivalent to combinations of these energy levels.
Now we span our Hilbert space by the ONB B, which consists of the eigenvectors of Ĥw.h. (ac-
cording to equation (2)):

B = {|N ;nk1 nk2 · · · 〉} (47)

where ki ∈ {kleft, kd, kright}

According to equation (14), Ĥw.h. turns into :

Ĥw.h. =
∑

k∈{kleft}

εkc
†
kck + εdd

†d +
∑

k∈{kright}

εkc
†
kck (48)
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Again using equation (14), we write Ĥh in the second quantization form :

Ĥh =
∑
k1,k2

〈ϕk1|Ĥh., op|ϕk2〉c
†
k1
ck2 (49)

where |ϕki〉 is the single particle state of an electron with energy εki and Ĥh, op is the single particle
hopping operator.

Defining

〈ϕki |Ĥh., op|ϕkd〉 ≡ Vki (50)

and using the assumptions of the last subsection, we get:

Ĥh. =
∑

k∈{kleft,kright}

(
Vkc

†
kd+ V ∗k d

†ck

)
(51)

Hence the total Hamiltonian has the form:

Ĥ =
∑

k∈{kleft,kright}

εkc
†
kck + εdd

†d +
∑

k∈{kleft,kright}

(
Vkc

†
kd+ V ∗k d

†ck

)
(52)

This can also be written in the compact general form:

Ĥ =
∑
k1,k2

Hk1k2c
†
k1
ck2 (53)

7 Current I

We write the current Il, which is the current from the left to the right lead, as:

Il = −e 〈Ṅl〉neq (54)

where Nl =
∑

k∈{kleft}
nk is the particle number operator of the left lead. In our case we can think

of applying the Keyldish formalism in the following way:
At t0 (we choose t0 = −∞) the two leads and the quantum dot are decoupled (⇒ Ĥ = Ĥw.h.) and
seperatly in equilibrium, while at time t, Ĥh is fully activated.

Now we start computing:

Il
(17)
=

ie

~
〈[Nl, Ĥ]〉neq =

ie

~
∑

k∈{kleft}

〈[c†kck, Ĥ]〉neq (55)
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using (53) yields:

Il =
ie

~
∑
k1,k2

∑
k∈{kleft}

〈[c†kck, Hk1k2c
†
k1
ck2 ]〉neq

(11)
=

ie

~
∑

k∈{kleft}

(
Vk〈c†kd〉neq − V

∗
k 〈d†ck〉neq

)
(56)

Now we define:

G<,neq
k (t, t′) = i〈c†k(t

′)d(t)〉neq (57)

And therefore write (56) as:

Il =
2e

~
∑

k∈{kleft}

Re
{
VkG

<,neq
k (t, t)

}
(58)

First we try to get an expression for the time-ordered Greenfunction Gt
k(t, t

′)4.
The equation of motion (25) for t′ yields:

i~
d

dt′
Gt
k(t, t

′) = −~δ(t− t′)〈{d(0), c†k(0)}〉 − i〈T{d(t)[c†k(t
′), Ĥ]}〉 (59)

Computing the commutator and defining:

Gt
d(t, t

′) = −i〈T{d(t)d†(t′)}〉 (60)

we obtain:

(−i~ d

dt′
− εk)Gt

k(t, t
′) = V ∗k G

t
d(t, t

′) (61)

fourier transforming (61) from (t− t′) to E, we get:

(E − εk)Gt
k(E) = V ∗k G

t
d(E) (62)

comparing with the derivation of (40), we recognize5

Gt
k(E) =

V ∗k
~
Gt
d(E)gαk (E) (63)

4As we can get Gc
k(t, t′) by changing the timeset for the time-ordered Greenfunction Gt

k(t, t′).
5We can use the results of subsection 4.3, as Hw.h. has the same form, as in the there used model Hamiltonian.
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with α = r, a, t6. But now, the left hand side of (63) and Gt
d(E) have an equal number of poles

in the upper and in the lower complex halfplane, as they are both time-ordered Greenfunctions.
Therefore α has to be equal to t, too.

Gt
k(E) =

V ∗k
~
Gt
d(E)gtk(E) (64)

Using the convolution theorem yields:

Gt
k(t, t

′) = −V
∗
k

~

+∞∫
−∞

dt̃ Gt
d(t, t̃)g

t
k(t̃, t

′) (65)

Now we switch to nonquilibrium by changing the integration set from R to C ′

Gc
k(t, t

′) = −V
∗
k

~

∫
C′

dτ̃ Gc
d(t, τ̃)gck(τ̃ , t

′) (66)

Applying the Langreth theorem yields:

G<,neq
k (t, t′) = −V

∗
k

~

+∞∫
−∞

dt̃ [Gr
d(t, t̃)g

<
k (t̃, t′) +G<

d (t, t̃)gak(t̃, t
′)] (67)

or:

G<,neq
k (E) =

V ∗k
~

[Gr
d(E)g<k (E) +G<

d (E)gak(E)] (68)

If we now plug (68) in the fourier transformed equation (58) we obtain:

Il =
2e

~

∞∫
−∞

dE

2π~
∑

k∈{kleft}

|Vk|2

~
Re {Gr

d(E)g<k (E) +G<
d (E)gak(E)} (69)

7.1 Continuum

When we assume the leads to be macroscopic in comparism with the dot, we can apply the con-
tinuum limit in replacing:

6As these Greenfunctions obey the same equation of motion.
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∑
k∈{kleft}

by

∞∫
−∞

dε ρl(ε) (70)

where ρl(ε) is the density of states in the left lead.

Transforming (69) to continuum yields:

Il =
2e

~

∞∫
−∞

dE

2π~

∞∫
−∞

dε ρl(ε)
|Vl(ε)|2

~
Re {Gr

d(E)g<l (E, ε) +G<
d (E)gal (E, ε)} (71)

Now we can obtain g<l (E, ε) and gal (E, ε) by fourier transforming the continuumlimes of our results
in (37) and (41):

g<l (E, ε) = 2π~i f(ε, µl) δ(E − ε) (72)

gal (E, ε) = π~i δ(E − ε) (73)

Plugging (72) and (73) into (71) we get:

Il =
2e

~

∞∫
−∞

dE

2π~

∞∫
−∞

dε ρl(ε)
|Vl(ε)|2

~
2π~Re

{
i(Gr

d(E)f(ε, µl) δ(E − ε) +
1

2
G<
d (E)δ(E − ε))

}
(74)

Integrating over ε, using Re{iz} = −Im{z} and defining the hybridization function for the left
lead Γl(E), with:

Γl(E) = 2πρl(E)|Vl(E)|2 (75)

yields:

Il = −2e

~

∞∫
−∞

dE

2π~
Γl(E)Im

{
Gr
d(E)fl(E) +

1

2
G<
d (E)

}
(76)

where we defined fl(E) ≡ f(E, µl) for simplicity
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7.2 Symmetrization of the current

We can write the current I from left to right in the symmetrized form:

I =
1

2
(Il − Ir) (77)

where Ir is the current from right to left.
By using (76) we attain the symmetrized current:

I = − e
~

∞∫
−∞

dE

2π~
Im

{
Gr
d(E) (fl(E)Γl(E)− fr(E)Γr(E)) +

1

2
G<
d (E) (Γl(E)− Γr(E))

}
(78)

Now, to obtain our final result, we have to compute the equilibrium Greenfunctions Gr
d(E) and

G<
d (E).

7.3 Computation of Gr
d(E)

According to (20), Gr
d(t, t

′) is defined as:

Gr
d(t, t

′) = −iΘ(t− t′)〈{d(t), d†(t′)}〉 (79)

Using the equation of motion in (25) for t′, computing the occuring commutator and fourier
transforming the equation, we achieve:

(E − εd)Gr
d(E) = ~ +

∑
k∈{kleft,kright}

VkG
r
k(E) (80)

Now we need to know Gr
k(E). When we write the fourier transformed equation of motion in

(62) for Gr
k(E), we get:

(E − εk)Gr
k(E) = V ∗k G

r
d(E) (81)

Analogue to the discussion done to get from (62) to (64) we can write (81) as:

Gr
k(E) =

V ∗k
~
Gr
d(E)grk(E) (82)

and obbey:

(E − εd − Σr
d(E))Gr

d(E) = ~ (83)
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where we defined the retarded selfenergy Σr
d(E) as:

Σr
d(E) =

∑
k∈{kleft,kright}

|Vk|2

~
grk(E) (84)

When we then apply the continuum limit to Σr
d(E) we get:

Σr
d(E) =

∞∫
−∞

dε ρl(ε)
|Vl(ε)|2

~
grl (E, ε) +

∞∫
−∞

dε ρr(ε)
|Vr(ε)|2

~
grr(E, ε) (85)

And using:

grl/r(E, ε) = −π~i δ(E − ε) (86)

we attain:

Σr
d(E) = − i

2
(Γl(E) + Γr(E)) ≡ −iΓ(E) (87)

where we again used the definiton of the hybridization function Γl,r given in (75).

Therefore we completly computed Gr
d(E) as:

Gr
d(E) =

~
E − εd + iΓ(E)

(88)

7.4 Computation of G<
d (E)

When we now want to repeat the last subsection for G<
d (E), with the equation of motion for the

lesser Greenfunction (see (26)), we attain:

(E − εd − Σ<
d (E))G<

d (E) = 0 (89)

Because of the zero on the right side we won’t be sucessful following the same way as in the
last subsection. We solve the problem by using the (general) Keyldish-equation for a noninteract-
ing system:

G<(E) =
1

~
Gr(E)Σ<(E)Ga(E) (90)

To get Σ<
d (E), in analogy to (84), we write:

Σ<
d (E) =

∑
k∈{kleft,kright}

|Vk|2

~
g<k (E) (91)
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again doing the continuum limit and using (72) for g<l/r(E) yields:

Σ<
d (E) = i(fl(E)Γl(E) + fr(E)Γr(E)) (92)

To get Ga
d(E) we only have to change the sign of the Selfenergy in (88):

Ga
d(E) =

~
E − εd − iΓ(E)

(93)

So using the Keyldish equation, we attain:

G<
d (E) = i

~(fl(E)Γl(E) + fr(E)Γr(E))

(E − εd)2 + Γ2(E)
(94)

7.5 Final Result

We can write this equation the following way:

I = − e
~

∞∫
−∞

dE

2π~

(
Im{Gr

d(E)} (fl(E)Γl(E)− fr(E)Γr(E)) +
1

2
Im{G<

d (E)} (Γl(E)− Γr(E))

)
(95)

With (88) we can compute Im{Gr
d(E)}:

Im{Gr
d(E)} = Im

{
~

E − εd + iΓ(E)

}
= −~

2

Γl(E) + Γr(E)

(E − εd)2 + Γ2(E)
(96)

And with (94) we can immediately compute Im{G<
d (E)}:

Im{G<
d (E)} =

~(fl(E)Γl(E) + fr(E)Γr(E))

(E − εd)2 + Γ2(E)
(97)

putting these expressions in (95) we achieve the final result:

I =
e

h

∞∫
−∞

dE
Γl(E)Γr(E)

(E − εd)2 + Γ2(E)
(fl(E)− fr(E)) (98)
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7.6 Discussion of the result for T=0

As our simulation also will be done at Temperature T = 0, we will now discuss our result in this
limit. Because of the Fermi functions becoming stepfunctions in the T = 0 limes, the difference
of Fermi functions fl − fr, emerging in our result, gets:

fl − fr =

{
1 µr < E < µl

0 otherwise
7 (99)

Therefore (98) becomes:

I =
e

h

µl∫
µr

dE
Γl(E)Γr(E)

(E − εd)2 + Γ2(E)
(100)

At this point we need to discuss the hybridization functions Γl,r in (75):

Γl/r(E) = 2πρl/r(E)|Vl/r(E)|2 (101)

Due to the definition of the Vk’s, their squared modulus is a measure for the probability of one
electron to hop from the d-level to the k-level (or vice versa as |Vk|2 = |V ∗k |2 ). When we hence
multiply |Vl/r(E)|2 with the density of states in the left/right lead ρl/r(E), we get the probability
density of electrons moving from the d-level to the left/right lead at energy E and Γl,r being
proportional to that probability-density.

Now we assume that the hybridization functions no longer depend of E, as every lead-electron
should have the same possibility for tunneling no matter which energy the electron has. Further
we assume that the leads are identical,which means:

Γl = Γr = Γ (102)

Now we can write (100) as:

I =
e

h

µl∫
µr

dE Γ
1

(E − εd)2 + Γ2
Γ (103)

Besides of a norming constant, the Lorentzian L(E, εd,Γ) in (103) (compare figure 4):

L(E, εd,Γ) =
1

(E − εd)2 + Γ2
(104)

7In our derivation we assumed that E ∈ ] −∞,∞[, but introducing a lower band edge D, which is equal for
both leads yields the same result
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Figure 4: System and Lorentzian L(E, εd,Γ) plotted in energyspace

describes the possibility density of an electron located at energy level εd to have an energy E,
which follows from the fact, that the electron leaves this level in the characteristic time τ .
Because of that we obtain two new properties of Γ:

• Γ represents the inverse lifetime τ of an electron on the d-level,

Γ =
~
τ

(105)

• Γ represents the FWHM (full width half maximum) of L(E, εd,Γ).

Using this considerations, we can interpret equation (103). We get the whole current, by inte-
grating the propability density of electrons to pass from left to right with energy E. This density
consists of the propability of moving from left to d (Γ), the propability for having energy E in d
( 1

(E−εd)2+Γ2 ) and the propability to get from d to right (Γ).

At the end of this section, we solve (103) for a symmetrized case. We let εd = 0 and

µl = −µr ≡
eV

2
(106)

where V is the electrical potential. Hence (103) turns into:

I =
e

h

eV
2∫

− eV
2

dE
Γ2

E2 + Γ2
(107)

And we derive the expression:

I(V ) =
2eΓ

h
arctan

(
eV

2Γ

)
(108)

Now we can discuss the behavior of the achieved result for the eV � Γ regime:
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As the argument of the arcustangens then gets � 1, we taylor expand I(V ):

I(V ) =
2eΓ

h

(
eV

2Γ

)
=
e2

h
V ≡ G0

2
V (109)

where we defined the conductance quantum

G0 =
2e2

h
(110)

The factor 2 is due to our simplification, that we neglected the spin of our noninteracting electrons.
Respecting the spin, every energy level can be occupied by two electrons and therefore we get two
times our derived current.

7.7 Conductance Quantum

For ballistic transport through a single quantum channel, which is coupled to the electrical poten-
tial V , the current-potential dependency is given by:

I(V ) =
2e2

h
V ≡ G0V (111)

When we consider equation (103) in the eV � Γ regime, we can approximate the integrand by a
constant function. And as the integrand is proportional to the propability to get from left to right
at energy E, it stays normalized. That is why we get a δ-distribution at E = 0 when eV → 0.
This means, that we have only a single channel, the electron can pass and therefore we fullfill the
conditions for ballistic transport.

Part III

Current through a quantum dot coupled
to leads: Simulation
In this part we simulate the current through the quantum dot with gnu octave and then compare
with (108). Our main problem will be, that we assumed the energy levels in the leads to be
continuous. As we can’t simulate continuous energy levels, we will have to discretize the leads.
We will present two different discretizations.

8 Determining I(t)

Refering to (56), we were able to write the current Il as:

Il = −2e

~
∑

k∈{kleft}

Im
{
Vk〈c†kd〉neq

}
(112)

22



with the expectation value 〈·〉neq due to the Keyldish formalism.

Now using a numerical simulation for a noninteracting system, we can solve the Schrödinger
equation for arbitrary times. Therefore we don’t let t0 → −∞, but rather take the initial state
|ψ〉 (at time t0 = 0), which consists of the occupied energy levels at the beginning (figure 2), and
compute the current for the time evolved |ψ(t)〉. Because of that, we now get a time-dependent,
not a steady state current. We also expect the current to show finite size effects, as we will reach
the point, when we have more electrons in the right than in the left lead, which is due to the fact,
that the effective V is no longer constant, but even changes sign with time.

Now we can pass to the Heisenberg picture by:

Il(t) = 〈ψ(t)|Îl |ψ(t)〉 = 〈ψ|e
i
~ ĤtÎle

− i
~ Ĥt|ψ〉 ≡ 〈ψ|Îl(t)|ψ〉 ≡ 〈Îl(t)〉 (113)

Therefore we replace 〈·〉neq in (112) by 〈·〉, as defined in (113) and get:

Il(t) = −2e

~
∑

k∈{kleft}

Im
{
Vk〈c†k(t)d(t)〉

}
(114)

Now compute c†k(t) and d(t) using (17):

i~
d

dt
ci(t) = [ci, Ĥ](t) (115)

where i ∈ {kleft, kright, kd}

Using the matrix representation (see (53)) yields:

i~
d

dt
ci(t) =

∑
j,k∈{kleft,kright,kd}

Hjk[ci, c
†
jck](t)

(10)
=

∑
k∈{kleft,kright,kd}

Hikck(t) (116)

Next we define the vector ~c(t), which is build of the annilation operators in the following way:

~c(t) =



...
ci(t), i ∈ {kleft}

...
ckd(t)

...
ci(t), i ∈ {kright}

...


(117)
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So (116) can be written as a matrix equation:

i~
d

dt
~c(t) = H~c(t) (118)

As Ĥ is timeindependent, H is timeindependent, and therefore the linear differential equation
can be solved by:

~c(t) = e−
i
~Ht~c(0) ≡ U(t)~c(0) (119)

with the unitary matrix U ≡ e−
i
~Ht.

Now daggering both sides, we get a similar equation for ~c †(t):

~c †(t) = ~c †(0)e
i
~Ht = ~c †(0)U †(t) (120)

where ~c †(t) is defined as:

~c †(t) =
(
· · · c†i (t), i ∈ {kleft} · · · c†kd · · · c†i (t), i ∈ {kright} · · ·

)
(121)

Using these results, the expression for the current (114) turns into:

Il(t) = −2e

~
∑

k∈{kleft}

∑
i,j∈{kleft,kright,kd}

Im
{
VkU

†
ik(t)Udj(t)〈c

†
icj〉
}

(122)

where we denoted c†i (0) ≡ c†i and cj(0) ≡ cj

Now

〈c†icj〉 = 〈ψ|c†icj|ψ〉 = δij〈n̂i〉 (123)

The last equality follows from the fact, that |ψ〉 =
∏

i′∈{kstart}
c†i′ |0〉 and from the fundamental anti-

commutation relations of annilation and creation operators (compare (7),(8)).

Because of that, the current formula (122) turns into:

Il(t) = −2e

~
∑

k∈{kleft}

∑
i∈{kstart}

Im
{
VkUdi(t)U

†
ik(t)

}
(124)

Symmetrizing the current as in (77) yields:

I(t) = − e
~

∑
i∈{kstart}

 ∑
k∈{kleft}

Im
{
VkUdi(t)U

†
ik(t)

}
−

∑
k∈{kright}

Im
{
VkUdi(t)U

†
ik(t)

} (125)
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The initial electrical potential V appears in the set, the first sum runs over.
We can now write this equation in matrix product form:

I(t) = − e
~
Im
{
~Ud(t)Ũ

†(t)~Vall

}
(126)

where

• ~Ud = (Udi i ∈ {kstart}) ∈ C1×|{kstart}|,

• Ũ † =
(
U †ik|i ∈ {kstart}, k ∈ {kleft, kright}

)
∈ C|{kstart}|×(|{kleft}|+|{kright}|)

• and ~Vall =

(
Vk k ∈ {kleft}
−Vk k ∈ {kright}

)
∈ C(|{kleft}|+|{kright}|)×1

The minus sign is due to the sign between the inner sums in (125).

8.1 Cleaning up with dimensions

Up to this point, we had been working with the natural constants ~ and e. As we now want to
simulate our system, we set:

~ = 1 , e = 1 (127)

With the following effects:

• Setting ~ = 1 means, choosing a time scale relevant for quantum mechanics, when absorbing
the ~ in t (e−

i
~Ht → e−iHt).

• Setting e = 1 effects two quantities:

– We measure the electrical potential in units of energy.

– We measure the current not in charge per time, but in electrons per time.

Therefore the theoretical result (see (108)) turns into:

I(V ) =
Γ

π
arctan

(
V

2Γ

)
(128)

And the equation used for the simulation (see (126)) turns into:

I(t) = −Im
{
~Ud(t)Ũ

†(t)~Vall

}
(129)
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9 Linear discretization

At this point, we will have to consider the form of the matrix H, which is directly related to the
Hamilton operator Ĥ via (53).
Our model Hamilton operator is (see (52)):

Ĥ =
∑

k∈{kleft,kright}

εkc
†
kck + εdd

†d +
∑

k∈{kleft,kright}

(
Vkc

†
kd+ V ∗k d

†ck

)
(130)

or written in the matrixnotation:

Ĥ = ~c †H~c (131)

where ~c, ~c † are defined in (117) and (121).

According to our orientation of the entries of ~c, we fixed the form of our H-matrix,

H =



. . .
...

εk, k ∈ {kleft} Vk, k ∈ {kleft}
. . .

...
· · · V ∗k , k ∈ {kleft} · · · εd · · · V ∗k , k ∈ {kright} · · ·

...
. . .

Vk, k ∈ {kright} εk, k ∈ {kright}
...

. . .


∈ RM×M

(132)
where all empty entries are equal to zero.
or in block representation:

H =

Hl
~Vl 0

~V †l εd ~V †r
0 ~Vr Hr

 (133)

where Hl/r = diag({εk|k ∈ {kleft/kright}) ∈ RN×N ,

~Vl,r =


...

Vk, k ∈ {kleft/right}
...

 ∈ RN×1

and ~V †l,r =
(
· · · V ∗k , k ∈ {kleft/right} · · ·

)
∈ R1×N .

According to (132), we get the following correspondence between the number N of energy levels
of one lead, and the dimension M of the H-matrix:

M = 2N + 1 (134)
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Figure 5: Linear discretization

for (left, right, d-level), respectivly

Now we want to choose the energy levels in a way, that keeps us close to the continuum case,
in which we developed (128).

We do several steps:

• Again we choose εd = 0 and µl = −µr = V
2

.

• For the linear discretization we want the two leads to have equal structure. Therefore we
choose our εk’s to be equal on both sides and with the following symmetry

Hl =

ε1 . . .

εN

 and Hr =

εN . . .

ε1

 (135)

where ε1 is the lowest energyvalue, εN = −ε1 the highest one.

• We choose εk ∈ [−1; 1] (bandwidth D = 2).

• As we are limited in the number of our energy levels to describe the full bandwidth and
also want the most of our levels to be in the ”interesting” interval [−V

2
; V

2
], we choose a

logarithmic discretezation for large energies, and a linear one within the window of the
voltage bias (see Fig.5). The fact that the bandwidth in the theoretical approach had been
∞ is taken into account, when we choose the bandwidth D to be much larger then V . Hence
we get our first bound:

V � D (136)

As the single particle energy levels of each lead are choosen symmetric with respect to
E = 0, we discuss e.g. the negative energy levels of the left lead. According to figure 6, we
can write the εlowk ’s as:

εlowk =

{
−Λ−k+1 k ∈ {1, · · · , a}
−Λ−a+1 + δk k ∈ {a+ 1, · · · , n}

(137)
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Figure 6: Discretization of the negative levels of the left lead

where the upper line corresponds to region (I) in figure 6, the lower line to region (II), and

– a is the number of exponential decaying levels in one lead above or below zero.

– n is the number of energy levels below or above zero in one lead.

– N = 2n+ 1 , where the +1 referes to the εk = 0 energy level, as we want to choose the
levels in the leads symmetrical around it.

– The uniform level spacing δ = Λ−a+1

n+1−a is constructed the way that 0− εlown = εlown − εlown−1

(see Fig.5)

Now using the symmetry of the energy levels in one lead with respect to zero and (137), one
gets the following energy levels:

εk =


εlowk k ∈ {1, · · · , n}
0 k = n+ 1

−εlowN+1−k k ∈ {n+ 2, · · · , N}
(138)

The εk constructed this way are illustrated in figure 7. The kink in the semilogarithmic
plot is due to our special discretization. But this is no problem, since most happens in
the linear discretized region. Furthermore we will also choose a constant the hybridization
function Γ, which makes the simulation somewhat more insensitive to the exact details of
the discretization.

9.1 Obtaining Vk

To use (126), we need to know the Vk’s. As defined in (75), we have:

Γl(E) = 2πρl(E)|Vl(E)|2 (139)

and as defined in (102):

Γ =
Γl + Γr

2
(140)
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Figure 7: εk’s in normal and semilogarithmic plot

where we have chosen Γ to be constant again (see derivation of (108)).

Now we choose ρl = ρr ≡ ρ and Vl = Vr ≡ V as we want to have equal leads and go back
to discrete k-values. Hence (139) turns into:

Γ = 2πρk|Vk|2 (141)

Choose Vk ∈ R†, we get an expression for the Vk’s:

Vk =

√
Γ

2πρk
(142)

To compute Vk, we need the density of states ρk. In the discrete case we construct ρk in the fol-
lowing way. We set ρ(εk) ' ρk ≡ 1

δk
(see figure 8), where δk specifies the average distance of level

k to its nearest neighbor levels. This means, that we count one state per δk-interval. Choosing
suitable boundary conditions, we obtain:

ρk =


1

ε2−ε1 k = 1
2

εk+1−εk−1
k ∈ {2, · · · , N − 1}

1
εN−εN−1

k = N

(143)

9.2 Strategy of simulating I(t)

Now let’s summarize the steps of the simulation:
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Figure 8: Constructing ρk

• First we have to build up our H-matrix, which has the dimension: H ∈ RM×M

Here we can also choose a and Λ, when constructing the εk’s, and Γ, when constructing the
Vk’s.

• Using the H-matrix, we can compute the unitary matrix U with

U(t) = e−iHt = S e−iEt S† (144)

where HS = SE diagonalizes the Hamiltonian

• Now, using (126) we can compute the current for different times, dependent on the electrical
potential V .

9.3 Suggestive units

We can write our quantities in suggestive units.

For our time t we will consider two physical time scales:

• For short times we write t in units of τ = 1
Γ
. This scale will be used, when we want to resolve

processes like the transient behaviour of our current.

• For larger times we resolve the effects of discretization (finite size effects). Therefore we will
choose the time unit T ,which is the time, the system needs to show revival effects. As T is
proportional to the number of energy levels our discretized system posseses, we have

T =
2π

δ
(145)

Because of that we obtain the second bound for two of our variables (the first one has been (136)),
as one cannot see the long time behaviour, when T � τ . This means:

T � τ ↔ Γ� δ (146)
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Figure 9: I(t) for V = 5.33e− 04(= 120δ)

Then we write the electrical potential V in units of Γ, which is independent of the discretization,
resulting in a dimensionless quantity.

10 Results (linear discretization)

10.1 I(t)-plots

The following results of time-dependent current I(t) are based on the programs ”H1matrix.m”,
”current1.m” and ”tI1plot.m” (see appendix).
In figure 8 we used M = 803, a = 80, Λ = 1.1 and Γ = 0.01, (this implies δ = 4.438e − 06).
Discussing the left plot, we can see, that the current shows the deliberate bouncing behavior.
In between, the current nearly adopts constant values. As we want to examine the steady state
current from left to right (to be able to compare with (128)), we will take an average value of the
first interval (see right plot), and use this value for the I(V )-plot.

10.2 I(V )-plots

The following uses program ”IVplot.m” to attain a I(V )-plot for our quantum dot coupled to the
two leads.
To get the average steady state current 〈Is〉 for particular electrical potential V , we take the av-
erage value of 40 datapoints located in the middle of our first interval in figure 8 (t/T < 1).
Now we want to compare our result with equation (128), which had been:

I(V ) =
Γ

π
arctan

(
V

2Γ

)
(147)
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Figure 10: 〈Is〉(V )-plot for Γ = 1e− 03

Figure 11: Absolute error of linear discretization for Γ = 0.01 and Γ = 5e− 03

In Fig.10, we can see the 〈Is〉(V )-plot for Γ = 1e − 03 illustrated with the exact theoretical
result (solid green line). As there cant be seen any difference with the naked eye, we compute the
relative error of the mean current values ((〈Is〉 − Iexact)/Iexact) for different values of the electrical
potential V , where Iexact is the theoretical result. In figure 11, we can see plots of the relative
error for varying V (linked by red solid lines) with the error bars, one obtains when averaging
the I(t)-plots (also normed with Iexact). We recognize that the relative error stays quite small for
both values of Γ and larger V/Γ-values. That the relative error attains its biggest values for small
V/Γ-values is due to the fact, that Iexact gets really small while the absolute error stays nearly
constant. One also recognizes that the perfect case (Iexact − 〈Is〉 = 0) lies in the error interval
for all computed values of V and both Γ’s. By testing the match to the theoretical result, we
also tested the absolute error in the conductance quantum behavior (for small V/Γ), discussed in
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Figure 12: Pure logarithmic discretization relative to the chemical potential of each lead.

subsection 7.7. Because of the excellent agreement of the numerical data, obtained with linear
discretization, to the theoretical result, we will use this discretization as a measure for the quality
of the next discretization.

11 Logarithmic discretization

Now we want to use pure logarithmic discretization relative to our chemical potential. As µl 6= µr,
the energy levels are no longer symmetrical in both leads, which is an important difference to the
linear discretization. The discretization is visualised in figure 12. In the following we again choose
εd = 0 and µl/r = ±U

2
.

One suspects, that this discretization will yield worse results than the first one, as a well resolved
area in the left lead hits a badly resolved area in the right lead in terms of single particle levels
and vice versa. Hence the current should be influenced by the discretization.

In the following we will use M , N , n and Λ as already introduced in section 8. We will also
use the introduced suggestive units for our plots, exept for the unit 2π

δ
for the larger timescale, as

we do not have a constant level spacing in the logarithmic discretization case anymore.

11.1 Obtaining εk

We build our new εk’s in the following way. First we construct the logarithmic discretization
around 0:

ε̃k =


−Λ−k+1 k ∈ {1, · · · , n}
0 k = n+ 1

Λk−N k ∈ {n+ 2, · · · , N}
(148)

Then we translate the ε̃k’s and obtain:

εk = ε̃k +
U

2
k ∈ {kleft} εk = ε̃k −

U

2
k ∈ {kright} (149)
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11.2 Obtaining Vk

We have built the Vk’s with equation (142), which only depend on the ρk’s , besides of Γ, which
we still choose to be constant. With equation (143), where the construction of the ρk’s is written
down, we see that the εk’s only appear in terms as εk+1− εk, and hence the ρk’s (and also the Vk’s)
can be constructed by using the ε̃k’s.

12 Results (logarithmic discretization)

12.1 I(t)-plots

For the following results, we will still use M = 803 and Λ = 1.1 throughout.
Again we want to study two different regimes. The first is the longtime behaviour, which corre-
sponds to the I(t)-plots of the linear discretization, which had been in units of 2π

δ
. In this time

regime, one can resolve discretization effects. One can see the long time behavior in the left plots
of the figures 13, 14 and 15, where the solid green line is the theoretical result obtained with Eq.
(128). One can again see reflexion effects, as the current becomes negative. We also recognize,
that the plots for larger values of Γ differ from the plot for Γ = 1e − 03, as they show more
noise. What we also want to mention is, that the time T upon which the current turns negative,
is approximatly the same for our different plots, T ' 2e05. However, the plots are significantly
more blurred as compared to the case of linear discretization.
The second regime we want to study is the short time behavior of the logarithmic discretization.
For this porpose, let’s look at the right plots of the figures 13, 14 and 15. Here we can see the
transient behavior of our system and the theoretical value again. The plots show a similar be-
havior for all values of Γ and we also see, that the mean current values lie below the theoretically
expected value.
As the longtime behavior of our logarithmic discretization does not behave as nicely as in the lin-
ear case, we choose the average interval, which we will use to attain 〈Is〉 in the short-time regime
as follows:

Γt ∈ [5; 7] (150)
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Figure 13: Long and short time regime for Γ = 0.01 and V = 6e − 04. The theoretical steady
state current is indicated by the green horizontal line.

Figure 14: Long and short time plot for Γ = 5e− 03 (same as figure 13 otherwise)

12.2 I(V )-plots

We construct the I(V )- plots with the averaged values of our I(t)-plots again, now using the in-
terval [5; 7]. In Fig.16 one can see the 〈Is〉(V )-plot for Γ = 1e− 03. In comparism with figure 10,
one can see the devation of the numerical data to the theoretical result (solid green line) with the
naked eye. Hence the relative error attains larger values as in the linear discretized case, which
can be seen in Fig.17.
Here we again plotted the relative error (linked with a solid red line) with the errorbars, obtained
in the averaging prozess (normed by Iexact). We recognize, that the relative error and the er-
rorintervals approximatly stay constant. When we compare this plot with Fig. 11, we see that
the relative error is up to approximatly 200 times larger than the error obtained using the linear
discretization. As the relative error stays constant and Iexact grows linear for small values of V ,
we attain the best match for small V -values, as the absolute error gets minimal, which can also
be seen in Fig.16. One also recognizes that the perfect case (Iexact − 〈Is〉 = 0), still stays in the
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Figure 15: Long and short time regime for Γ = 1e− 03 (same as figure 13 otherwise)

Figure 16: 〈Is〉(V )-plot for Γ = 1e− 03

errorintervals for all computed values of V . Because of that it is also justified to use the logarith-
mic discretization for the considered values of V . Especially in the conductance quantum regime
we obtain excellent results for the logarithmic discretization (for Λ = 1.1), too.

13 V/Γ > 1 and Λ = 2

In the previous chapters, we tested our two discretizations for V/Γ < 1. In this regime, where
the Iexact(V ) dependence is approximatly linear, we attained excellent match with the theoretical
result for both of our discretizations. Now one supposes, that with V/Γ growing, the logarithmic
discretization will provide worse and worse results. To probe this we set Γ = 5e − 03 and use
M = 4011, a = 2, Λ = 2.5 (this implies δ = 3.996e − 04) for the linear discretization, and again
M = 803 and Λ = 1.1 for the logarithmic one.
For V/Γ = 8 (see Fig. 18), we can still use both of our discretizations, as they attain a good
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Figure 17: Relative error of logarithmic discretization for Γ = 0.01

Figure 18: V/Γ = 8, linear (left) and logarithmic discretization (right) with theoretical result
(solid green line)
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Figure 19: V/Γ = 80, linear (left) and logarithmic discretization (right) with theoretical result
(solid green line)

steady state behavior. On top of that the both discretizations show an excellent match to the
theoretical result (solid green line).
For larger values of V/Γ (see Fig. 19) , we recognize two effects. The first one is, that the transient
behavior is no longer dominated by 1

Γ
, but by 1

V
, as the applied electrical potential shortens the

time, an electron stays in the d-level. The second effect is, that the two discretizations show big
difference. While the linear discretization still behaves nice, the logarithmic one starts to bounce.
Now we introduce another timescale τ̃(V ), which is the time, one electron needs to pass from left
to right when the potential V is applied. For that porpose we use the theoretical result (Eq.(128))
and attain:

τ̃(V ) =
1

Γ
π

arctan
(
V
2Γ

) (151)

In figure 19 the applied potential V = 0.4 and therefore τ̃ ' 2Γ. Now we see that the current
changes sign in a time of the order of τ̃ in the logarithmic discretization case. This is an effect
of discretization, as the current is forced to change sign, when one electron changed from left to
right. It can be declared by the fact, that well resolved areas in one lead hit bad resolved (only
one level) in the other (see Fig.12) for big values of V . But it is still justified to determine 〈Is〉 for
the logarithmic discretization as the current still shows steady state behavior. Hence we can use
the logarithmical discretization even for V/Γ ∼ 100, when Λ = 1.1.

For the numerical renormalization group Λ-values of approximatly 2 are needed (see Ref.[1]).
When we do the I(t)-plot in this regime (M = 803), we attain figure 20, where we used V/Γ ' 1.
When we compare this plot with the right plot of Fig.18, we recognize that we attain much
more noise and we already get reflexions (negative current values) for times smaller than τ̃ (here
τ̃ ' 6Γ). However, one can already attain a 〈Is〉-value close to the theoretical result, when aver-
aging Γt ∈ [2; 6]. The same behavior can be observed for V/Γ� 1.
But for V/Γ ≥ 10 (see Fig.21), the results are no longer satisfying as the I(t)-plot no longer shows
a nice steady state behavior and therefore it is hard to determine an interval for averaging. And
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Figure 20: I(t)-plot for Γ = 5e− 03, V = 6e− 03 and logarithmic discretization with Λ = 2.

Figure 21: I(t)-plot for Γ = 5e− 03 and V = 0.06 (Λ = 2).

even if one takes the interval around the first maximum of this plot, one would get a 〈Is〉-value
larger than Iexact and this is not physical, as the theoretical result was developed in the contin-
uum limit. Besides of that we can again observe the effects of discretization, as the current again
changes time in the order of τ̃ (' 2).

Conclusion
To summarize, we can state, that the linear discretization had been the ”better one” to simulate
a continuous band, referring to the theoretical result. The I(t)-plots showed really nice behavior
for V/Γ ' 1e− 08 up to V/Γ ' 100 for different values of Γ.
On the other hand the I(t)-plots of the logarithmic discretization showed much more noise and the
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treatment had therefore been more complicated. However one can state that this discretization
also showes good results for the Λ = 1.1 case, apart of the absolute error being larger than in the
linear case. For Λ = 2, our plots are even more catchier to handle, as the noise increases further.
In this case we attained reliable results for V/Γ-values up to 1. Entering the regime V/Γ > 10 we
can no longer determine the steady state value, as the I(t)-plot can no longer be approximated
by a constant function in a timeinterval of necessary length (τ̃).
Concluding we state that one can attain excellent results in the regime of small V for linear and
logarithmic discretization (Λ = 1.1 or Λ = 2), while the discrepancy between the ”better” linear
and the ”worse” logarithmic discretization grows for V getting bigger, dependent of the Λ-value
of the logarithmic discretization.

Appendix

A Programs

A.1 Linear discretization

The program H1matrix.m produces the H-matrix for our linear discretization, using the same
names of variables as in section 9 and in the last line the Vall vector of (126).

H1matrix.m:

1 M=803; lambda =1.1;
a=80;

3 gamma=0.005;
N=round ( (M−1)/2) ;

5 n=round ( (N−1)/2) ;
% bu i l d i ng ep s i l on k ’ s

7 f o r m=1:a
ew(m)=−lambda∗∗(−m+1) ;

9 endfor
d e l t a=abs (ew( a ) /(n+1−a ) ) ;

11 ew2=ew ;
f o r m=(a+1) : n

13 ew2(m)=ew2 (m−1)+de l t a ;
endfor

15 ew2=[ew2 0 −ew2(n :−1:1) ] ;
% bu i l d i ng dens i ty o f s t a t e s rho k

17 f o r m=2:(N−1)
rho (m) =2/(ew2(m+1)−ew2(m−1) ) ;

19 endfor
rho (N) =1/(ew2 (N)−ew2(N−1) ) ;

21 rho (1 )=rho (N) ;
% bu i l d i ng V k ’ s

23 f o r m=1:N
V(m)=s q r t (gamma/(2∗ pi ∗ rho (m) ) ) ;

25 endfor
Vdeg=V’ ;

27 % c on s t ru c t i n g H−matrix and V a l l vec to r
H=[ diag ( ew2 ) Vdeg ze ro s (N) ; V 0 V(N:−1:1) ; z e r o s (N) Vdeg (N:−1:1) diag ( ew2 (N:−1:1) ) ] ;

29

V a l l =[Vdeg ;−Vdeg ] ;
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The program current1.m, includes the function ”current1”, which determines the current accord-
ing to equation (129). S, L and Sdeg = S†, are needed, as we construct U(t) according to Eq.(144)
as:

U(t) = e−iHt = Se−iLtS† (152)

where H = SLS† and L is diagonal.

current1.m:

1 f unc t i on I0=current1 ( t , S , L , Sdeg , V al l ,V)

3 M=length (S) ;
N=round ( (M−1)/2) ;

5 n=round ( (N−1)/2) ;
% b u i l t U and Udeg matr i ce s

7 a=exp(− i ∗ t ∗diag (L) ) ;
A=diag ( a ) ;

9 U=S∗A∗Sdeg ;
Udeg=U’ ;

11 % cons t ruc t { k s t a r t }={1 , . . . , l l }u{ l r , . . . ,M}
l l=round (n+1+(V/(2∗ d e l t a ) ) ) ;

13 l r=round (M−n+(V/(2∗ d e l t a ) ) ) ;
% cons t ruc t Ud vec to r

15 Ud=[U(N+1 ,1: l l ) U(N+1,N+1) U(N+1, l r :M) ] ;
% constuct U t i l d e matrix

17 U t i l d e =[Udeg ( 1 : l l , 1 :N) Udeg ( 1 : l l , (M−N+1) :M) ; Udeg ( (N+1) , 1 :N) Udeg ( (N+1) , (M−N+1) :M) ;
Udeg ( l r :M, 1 :N) Udeg ( l r :M, (M−N+1) :M) ] ;

19

I0=−imag (Ud∗U t i l d e ∗V a l l ) ;
21 endfunct ion

The program tI1plot.m produces the (t, I(t))-tupels for the I(t)-plot for a certain electrical poten-
tial V .

tI1plot.m

[ S , L]= e i g (H) ;
2 Sdeg=S ’ ;

% g e t t i n g S , L , Sdeg
4 t =−125000;

%s e t time s t a r t i n g value
6 f o r m=1:41

t=t +125000;
8 x (m)=t ;

y (m)=current1 ( t , S , L , Sdeg , V al l , 1 e−05) ;
10

endfor
12 % g i v e s back the x−vec to r conta in ing t imeva lues

% and y−vec to r conta in ing cor re spond ing cur rent va lue s f o r p o t e n t i a l V=1e−05

The program VI1plot.m produces the (V, I(V ))-tupels for the I(V )-plot by averaging the middle
of the first steady state interval (see figure 8).

VI1plot.m:
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1 [ S , L]= e i g (H) ;
M=length (S) ;

3 N=round ( (M−1)/2) ;
n=round ( (N−1)/2) ;

5 Sdeg=S ’ ;
V=0;

7 % s t a r t i n g value f o r the e l e c t r i c a l p o t e n t i a l
f o r l =1:60

9 V=V+2∗d e l t a ;
x ( l )=V;

11

% determine I ( t )−va lue s
13 t =0;

q=0;
15 z=ze ro s (81) ( 1 , : ) ;

f o r m=1:80
17 t=t +18750;

z (m+1)=current1 ( t , S , L , Sdeg ,A, V ,V) ;
19 % f i n d i n g boundar ies o f the f i r s t steady s t a t e i n t e r v a l

i f z (m+1)∗z (m)<0
21 q=m;

e n d i f
23 endfor

% c on s t ru c t i o n o f the average i n t e r v a l
25 Q1=round ( ( q+1)/2−20) ;

Q2=round ( ( q+1)/2+20) ;
27 z=z (Q1 :Q2) ;

y ( l )=mean( z ) ;
29 w( l )=std ( z ) ;

endfor
31 X=[x ’ y ’ w ’ ] ;

% g i v e s back the matrix X, conta in ing the V−values ,
33 % the I (V)−va lue s and the var iance o f the average ing proce s s

A.2 Logarithmic discretization

Due to our logarithmic discretization, our H-matrix will be dependend of the electrical potential
V . Therefore the program H2func.m includes the function ”H2func”, which takes the V -value and
gives back the H = H(V )-matrix and the Vall-vector (see (126)).

H2func.m:

1 f unc t i on [H, V a l l ]=H2func (V)
M=803;

3 N=round ( (M−1)/2) ;
n=round ( (N−1)/2) ;

5 % c on s t ru c t i o n o f e p s i l o n t i l d e k
lambda =1.1;

7 gamma=0.005;
f o r k=1:n

9 ew( k )=−lambda∗∗(−k+1) ;
endfor

11 ew2=[ew 0 −ew(n :−1:1) ] ;
% t r a n s l a t i o n o f e p s i l o n t i l d e k

13 ewl=ew2+(V/2) ;
ewr=ew2−(V/2) ;

15

% cons ruc t i on o f rho k
17 f o r m=2:(N−1)

rho (m) =2/(ew2(m+1)−ew2(m−1) ) ;
19 endfor

rho (N) =1/(ew2 (N)−ew2(N−1) ) ;
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21 rho (1 )=rho (N) ;
% c on s t ru c t i o n o f V k

23 f o r m=1:N
V(m)=s q r t (gamma/(2∗ pi ∗ rho (m) ) ) ;

25 endfor
Vdeg=V’ ;

27 % c on s t ru c t i o n o f H−matrix and V a l l
H=[ diag ( ewl ) Vdeg ze ro s (N) ; V 0 V(N:−1:1) ; z e r o s (N) Vdeg (N:−1:1) diag ( ewr (N:−1:1) ) ] ;

29 V a l l =[Vdeg ; −Vdeg(N:−1:1) ] ;
endfunct ion

The program current2.m is analogue to current1.m, with the difference, that the function ”cur-
rent2” doesn’t depend on V , as the V -dependence is carried by the H-matrix in this discretization.

current2.m:

f unc t i on I0=current2 ( t , S , L , Sdeg , V a l l )
2

M=length (S) ;
4 N=round ( (M−1)/2) ;

n=round ( (N−1)/2) ;
6 % c on s t ru c t i o n o f U( t )

a=exp(− i ∗ t ∗diag (L) ) ;
8 A=diag ( a ) ;

U=S∗A∗Sdeg ;
10 Udeg=U’ ;

% c on s t ru c t i o n o f Ud−vec to r
12 Ud=[U(N+1 ,1:(n+1) ) U(N+1,N+1) U(N+1 ,(M−n) :M) ] ;

% c on s t ru c t i o n o f U t i l d e matrix
14 Udegik=[Udeg ( 1 : ( n+1) , 1 :N) Udeg ( 1 : ( n+1) , (M−N+1) :M) ; Udeg ( (N+1) , 1 :N) Udeg ( (N+1) , (M−N+1) :M) ;

Udeg ( (M−n) :M, 1 :N) Udeg ( (M−n) :M, (M−N+1) :M) ] ;
16 I0=−imag (Ud∗Udegik∗V ) ;

18 endfunct ion

The program tI2plot.m is analogue to tI1plot.m and therefore produces the (t, I(t))-tupels for a
certain electrical potential V , too.

tI2plot.m:

1 V=1e−05;
[H, V a l l ]=H2func (V) ;

3 [ S , L]= e i g (H) ;
Sdeg=S ’ ;

5 t =−3.125;
f o r m=1:321

7 t=t +3.125;
x (m)=t ;

9 y (m)=Stromneu ( t , S , L , Sdeg ,A, V a l l ) ;

11 endfor
% g i v e s back the x−vector , i n c l u d i n g t imevalues ,

13 % and the corre spond ing y−vector , i n c l u d i n g cur rent va lue s .

The program VI2plot.m is analogue to VI1plot.m, with the difference, that we don’t determine
the average-interval for differnet values of Γ, but use Γt ∈ [5; 7] according to equation (150).

VI2plot.m:
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1 V=0;
% s t a r t i n g value f o r the e l e c t r i c a l p o t e n t i a l

3 f o r l =1:60
V=V+2∗d e l t a ;

5 x ( l )=V;
[H, V a l l ]=H2func (V) ;

7 M=length (H) ;
[ S , L]= e i g (H) ;

9 Sdeg=S ’ ;
% determining I ( t ) va lue s o f the averaging−i n t e r v a l

11 t =993.75;
f o r m=1:81

13 t=t +6.25;
z (m)=current2 ( t , S , L , Sdeg , V a l l ) ;

15 endfor
y ( l )=mean( z ) ;

17 w( l )=std ( z ) ;
endfor

19 X=[x ’ y ’ w ’ ] ;
% g i v e s back the matrix X, conta in ing the V−values ,

21 % the I (V)−va lue s and the var iance o f the average ing proce s s
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