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Abstract

I simulate the time evolution of a qubit which is exposed to quantum telegraph noise
(QTN) with the time-dependent density matrix renormalization group (t-DMRG). After
studying the decoherence of the qubit, we simulate pulse manipulations on the qubit with
the aim of reducing its overall rate of decoherence. The main part of this work presents
the related topics of Rabi oscillations and the Bloch-Siegert shift which are important to
derive the conditions under which such operations are possible.
First the interaction between the qubit and the QTN is studied analytically by deriving a
quantum master equation (QME) in the Born-Markov approximation. Then based on the
exact results of Ref.[2] for the qubit decoherence, the t-DMRG simulation is calibrated.
Afterwards we extend the QTN model by adding an external periodical driving field which
is intended to perform pulse protocols like spin echo and bang-bang. To properly under-
stand the interaction between the qubit and the driving field, we present Rabi oscillations.
Additionally for strong driving fields, the Bloch-Siegert shift combined with a method of
measurement is studied. Then Rabi oscillations are simulated with t-DMRG under differ-
ent couplings to the QTN to derive conditions needed for properly working π-pulses. In
the end the spin echo and bang-bang protocol, performed with ideal π-Pulses are simulated
to study their efficiency in maintaining coherence of a qubit exposed to QTN.





Chapter 1

Introduction

Quantum two-level systems are very important for quantum physics as they can be used
for modelling parts of multi-level systems, for example atoms or quantum dots [38]. Under
the name of Qubits, they are the main ingredient for quantum computation which opens a
door to a whole range of new possibilities for information processing. Besides the applica-
tion of classical bit operations, qubits allow quantum gate operations, which for instance
can modify the phase and entanglement of qubits [11]. However a very serious problem
is the rapid decoherence of the qubit which is caused by the inevitable interaction with
its environment. The decoherence is equivalent to a loss of information making the qubit
useless for computations. Typical coherence times (T2) during which it is possible to per-
form quantum gate operations on qubits are currently in the order of µs as in Josephson
junction qubits [23]. But for computations consisting of quantum algorithms and quantum
error correction, the coherence time should be much longer than 105τg the minimum gate
operation time which is determined by the qubit’s energy level spacing [20]. A very promis-
ing approach to conserve coherence is called dynamical decoupling which basically aims
to decouple the system of interest from its environment by applying a certain sequence of
controlling pulses. In the last decade several protocols have been proposed, for example
bang-bang control [35, 34], Carr-Purcell-Meiboom-Gill sequence [10, 19], concatenated dy-
namical decoupling [17] and Uhrig dynamical decoupling [32] [37].
The density matrix renormalization group (DMRG) was invented in 1992 by S. White
and is a very accurate and efficient numerical method to calculate ground states of one-
dimensional quantum lattices. With the adaptive time-dependent DMRG (t-DMRG) it
is possible to simulate the dynamics of those systems. We use t-DMRG to simulate the
whole interacting quantum system consisting of a qubit and the environment which is cho-
sen here to be a quantum telegraph noise model (QTNM) [1]. The QTNM consists of a
non-interacting electron reservoir which is tunnel coupled to an impurity. This impurity is
spin-polarized such that only one electron can occupy it. The fluctuation of charge on the
impurity creates the quantum telegraph noise (QTN) acting on the qubit. The t-DMRG
simulation of this system including an external periodical driving field enables to observe
the influence of QTN on the accuracy of pulses in general and the efficiency of noise can-
celling pulse protocols in particular. This thesis will do preparatory work and analytical
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approaches for those simulations.
In the first part we give an analytical solution for the case of a weak coupling between the
qubit and the QTN. Afterwards a strong interaction will be simulated with t-DMRG to
compare results with analytical work done in Ref.[2] and to calibrate the simulation for
further computations.
The second part will be concerned with the effect of an external periodical driving field
thus presenting Rabi oscillations. We study additionally the Bloch-Siegert shift as this
becomes important for strong pulses. Subsequently t-DMRG will be used to study the
effect of the spin echo and bang-bang protocol under QTN for ideal π-pulses. These ideal
pulses are not generated by the driving field but artificially applied to the qubit state, to
enable a seperate observation of pulse and protocol errors.
This thesis will generally follow notations and conventions used in Ref.[6, 7, 28]. But for
convenience this chapter shall give the most important properties in a short overview.

1.1 Time Evolution of Closed Quantum Systems

1.1.1 Schrödinger Picture

For a time-dependent Hamiltonian of a closed system, the time evolution of an initial state
|Ψ0〉 is determined by the Schrödinger equation

i
d

dt
|Ψ(t)〉 = H(t) |Ψ(t)〉

|Ψ(t)〉 = U(t, t0) |Ψ0〉 = T e
−i

∫ t
t0

H(t′)dt′ |Ψ0〉 .
(1.1)

Here the convention ~ = 1 is used which is convenient as it simplifies calculations and
implies that energy and angular frequency have the same units. If the Hamiltonian is
time-independent, the unitary time-evolution operator U(t, t0) simplifies to

U(t, t0) = e−iH(t−t0) |Ψ0〉 . (1.2)

In analogy the time evolution of the density matrix

ρ0 =
∑

i

wi |Ψi(t0)〉 〈Ψi(t0)|

ρ(t) =
∑

i

wi |Ψi(t)〉 〈Ψi(t)| = U(t, t0)ρ0U
†(t, t0)

(1.3)

can be expressed as

d

dt
ρ(t) = −i[H(t), ρ(t)], (1.4)

which is called the Liouville-von Neumann equation.
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1.1.2 Heisenberg Picture

In the Heisenberg picture the time dependence is moved from the states to the operators.
Thus

|ΨH〉 = |Ψ0〉 ,
ρH = ρ0,

AH(t) = U †(t, t0)A(t0)U(t, t0),

⇒ d

dt
AH(t) = i[H,AH(t)] +

∂

∂t
AH(t),

(1.5)

with the same definition of the time-evolution operator U(t, t0) as in the Schrödinger pic-
ture.

1.1.3 Interaction Picture

For a Hamiltonian with an interaction term HI(t) of the form

H(t) = H0 +HI(t), (1.6)

a change from the Schrödinger to the interaction picture can be made to separate time
dependence of H0 from the states to the operators. The interaction picture states |ΨI(t)〉
and operators Ã(t) can be derived from the Schrödinger picture quantities |Ψ(t)〉 and A

|ΨI(t)〉 = U
†
0(t, t0) |Ψ(t)〉 , (1.7)

Ã(t) = U
†
0(t, t0)AU0(t, t0), (1.8)

U0(t, t0) = e−iH0(t−t0). (1.9)

Thus the Schrödinger equation and its solution modifies to

i
d

dt
|ΨI(t)〉 = HI(t) |ΨI(t)〉 , (1.10)

|ΨI(t)〉 = UI(t, t0) |ΨI(t0)〉 = T e
−i

∫ t
t0

HI(t
′)dt′ |ΨI(t0)〉 . (1.11)

For the interaction picture density matrix ρ̃(t) following relations can be derived

ρ̃(t) = U
†
0 (t, t0)ρ(t)U0(t, t0) = UI(t, t0)ρ(t0)U

†
I (t, t0), (1.12)

d

dt
ρ̃(t) = −i[H̃I(t), ρ̃(t)], (1.13)

d

dt
ρ(t) = −i[H0, ρ(t)] + U0(t, t0)

(
d

dt
ρ̃(t)

)

U
†
0(t, t0). (1.14)
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1.2 Description of the System of Qubit and Bath

The main part of this thesis will concentrate on the time evolution of one example of
dissipative quantum impurity systems: a qubit embedded in a noisy environment. We will
use a quantum master equation to study time evolution of the system. For a Hamiltonian
describing the whole model of qubit and an external bath

H(t) = HS +HB +HI(t), (1.15)

the states of its Hilbert space are generally a combination of system eigenstates |si〉 and
bath states |Bi〉

|Ψ〉 =
∑

i

ci |si〉 |Bi〉 , (1.16)

with |Bi〉 =
∑

l al,i |bl〉 being a superposition of bath eigenstates. From the density matrix
ρ(t) = |Ψ(t)〉 〈Ψ(t)| of the whole system, the reduced density matrix of the qubit ρS can
be calculated with the partial trace over bath states

ρS = trB{ρ} =
∑

l

〈bl| ρ |bl〉 , (1.17)

which leads to its time evolution

ρS(t) = trB{ρ(t)},
d

dt
ρS(t) = −itrB{[H(t), ρ(t)]}.

(1.18)

Furthermore the trace over an observable O with the density ρB of a thermal equilibrium
state of the bath is the thermal expectation value

trB{OρB} = 〈O〉ρB . (1.19)

The coherence of the qubit can be measured by the visibility D

|D(t)| = 2 |ρS,↑↓(t)| , (1.20)

where ρS,↑↓(t) is the off-diagonal entry of the hermitian reduced density matrix ρS. This
means that for vanishing off-diagonal entries visibility and coherence decreases, which also
means that the qubit is in a mixed state.
In combination with the bloch vector representation the visibility can be also depicted in
another way. With the general definition of a bloch vector ~a = (ax, ay, az) for an arbitrary
2-dimensional density matrix ρ

ρ =
1

2

(
1 + az (ax − iay) e

iδt

(ax + iay) e
−iδt 1− az

)

, (1.21)
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the visibility becomes

|D(t)| = 2 |ρS,↑↓(t)| = 2 · 1
2

√

a2x + a2y, (1.22)

which is the length of the bloch vector projected onto the x − y plane. In this definition
the factor e±iδt is included as it is sometimes used in the literature to change to an external
rotating frame, however it does not influence the relation for the visibility.
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Chapter 2

Quantum Telegraph Noise Model

2.1 Hamiltonian

The model used to calibrate the t-DMRG implementation is a charge qubit coupled to a
quantum telegraph noise (QTN) which is discussed in Ref.[1]. The quantum telegraph noise
is described by a impurity level tunnel coupled to a non-interacting electron reservoir. The
qubit is coupled to the fluctuating charge Q = d†d of the impurity. The normal-ordered
Hamiltonian of the entire system is

H =
∆

2
σz +

1

2
~v · ~σ · d†d+ ǫdd

†d+
∑

k

(

tkc
†
kd+ t∗kd

†ck

)

+
∑

k

ǫkc
†
kck. (2.1)

Here c
†
k creates an electron of energy ǫk in the bath and d† creates an electron on the

impurity level of energy ǫd. With the tunneling amplitude tk between the impurity and a
bath level of energy ǫk the tunneling rate γ can be written as:

γ = 2π
∑

k

‖tk‖2 δ(ǫk − ǫd). (2.2)

The tunneling rate is also the spectral broadening of the impurity level. Since the fluctua-
tion rate of the charge of the impurity as well as the coupling strength ~v between impurity
and qubit are changing noise characteristics, the strength of the noise can be expressed
with ~v

γ
.

2.2 The Master Equation

We analyze the time evolution of the qubit exposed to QTN by deriving a Markovian
quantum master equation. The steps performed here follow in general Ref.[4], Ref.[6,
Ch.3.3.1] and they are also presented in Ch.A.1.1. The Hamiltonian of Eq.2.1 will be split
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localized
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Figure 2.1: Schematic picture of the quantum telegraph noise model from Ref.[1].

into H0 and the interaction Hamiltonian HI

H0 =
∆

2
σz + ǫdd

†d+
∑

k

(

tkc
†
kd+ t∗kd

†ck

)

+
∑

k

ǫkc
†
kck,

HI =
1

2
~v · ~σ · d†d = A⊗ B.

(2.3)

After applying the projection operator method, the dynamics of the qubit ρ̇S(t) can be
expressed with its interaction picture density matrix ˙̃ρS(t)

ρ̇S(t) = −i[H0, ρS(t)] + U0(t) ˙̃ρS(t)U
†
0(t),

˙̃ρS(t) = −α2

∫ ∞

0

ds trB

[

H̃I(t),
[

H̃I(t− s), ρ̃S(t)⊗ ρB

]]

.
(2.4)

For the second relation two important approximations were made. The Born approximation
assumes a weak coupling between bath and qubit such that the influence of the qubit on
the bath being in a thermal equilibrium state is very small leading to the time evolution
ρ(t) ≈ ρS(t)⊗ ρB of the entire system. Additionally the Markov approximation presumes
that the system has no memory. This is a good approximation when excitations of the
bath decay very fast compared to the intrinsic time evolution of the qubit.
We decompose the interaction Hamiltonian with eigenoperators Π of HS = ∆

2
σz

Π

(
∆

2

)

= |1〉 〈1| ,

Π

(

−∆

2

)

= |0〉 〈0| ,
(2.5)
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to simplify the calculation of H̃I .

A(∆) = Π

(

−∆

2

)

AΠ

(
∆

2

)

=
1

2
(vx − ivy)σ

−,

A(−∆) = Π

(
∆

2

)

AΠ

(

−∆

2

)

=
1

2
(vx + ivy)σ

+,

A(0) = Π

(

−∆

2

)

AΠ

(

−∆

2

)

+Π

(
∆

2

)

AΠ

(
∆

2

)

=
1

2
vzσz .

(2.6)

According to Eq.A.22 the interaction picture Hamiltonian is then

H̃I(t) =
(
e−i∆tA(∆) + ei∆tA(−∆) + A(0)

)
⊗ B̃(t). (2.7)

This expression can be inserted in Eq.2.4 and simplified to

d

dt
ρ̃S(t) =

∑

ω,ω′

ei(ω
′−ω)tΓ(ω)

(
A(ω)ρ̃S(t)A

†(ω′)−A†(ω′)A(ω)ρ̃S(t)
)
+ h.c,

with Γ(ω) =

∫ ∞

0

ds eiωs 〈B̃†(t)B̃(t− s)〉ρB ,

and ω ∈ {−∆, 0,∆}.

(2.8)

A further simplification needs a secular approximation which ignores exponentials with
non-vanishing exponents. This is only applicable if the time scale about which the qubit
evolves τS ∼ 1

∆
is large compared to its relaxation time τR together with overall faster

decaying bath correlation functions τB = 1
γ
. Therefore the following part is only reasonable

for at least ∆ < γ, a condition already needed for the Markov approximation. Under this
approximation, terms with ω′ 6= ω can be neglected

d

dt
ρ̃S(t) =

∑

ω

Γ(ω)
(
A(ω)ρ̃S(t)A

†(ω)− A†(ω)A(ω)ρ̃S(t)
)
+ h.c. . (2.9)

By splitting Γ(ω) into real and imaginary parts

Γ(ω) =
1

2
γ(ω) + iS(ω), (2.10)

γ(ω) =

∫ ∞

−∞

ds eiωs 〈B̃†(t)B̃(t− s)〉ρB , (2.11)

Eq.2.9 can be brought to Lindblad form

d

dt
ρ̃S(t) =

∑

ω

γ(ω)L[A(ω)]ρ̃S(t)−
∑

ω

iS(ω)
[
A†(ω)A(ω), ρ̃S(t)

]
, (2.12)

where the Lindblad superoperator acting on a density matrix was used:

L[A]ρ = AρA† − 1

2

{
A†A, ρ

}
. (2.13)
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Figure 2.2: The functions γ(ω) (left) and S(ω) (right) for γ = 0.1, ǫd = 0 and T
γ

=

0.065, 0.085, 0.1, 0.12 (blue, red, orange, green).

It is important to note that γ(ω) 6= γ, but the notation was used for a better agreement
with the literature. At this point the one-sided Fourier transform Γ(ω) of the correlation
function, γ(ω) and S(ω) still have to be calculated explicitly to obtain a relation between
the properties of the QTN and the time evolution of the qubit. This is done in detail in
Ch.A.1.3 and a numerical evaluation of γ(ω) and S(ω) is shown in Fig.2.2. Both functions
exhibit no remarkable symmetry in general. If we expand the sums in Eq.2.12 we can
identify different terms

d

dt
ρ̃S(t) = γ(0)

v2z
4
L[σz ]ρ̃S(t)
︸ ︷︷ ︸

dephasing

+
v2x + v2y

4

(
γ(−∆) L[σ+]ρ̃S(t)

︸ ︷︷ ︸

incoherent pumping

+γ(∆)L[σ−]ρ̃S(t)
︸ ︷︷ ︸

decay

)

− i [HLS, ρ̃S(t)] ,

HLS = (S(∆) |1〉 〈1|+ S(−∆) |0〉 〈0|)
v2x + v2y

4
.

(2.14)

As indicated above, the terms are known to be responsible for decoherence by pure de-
phasing, incoherent pumping and decay. The last term with HLS is known as the Lamb
shift giving a contribution to the energy level spacing of the qubit. Both functions γ(ω)
and S(ω) depend on the temperature T = 1

β
, the energy level of the impurity ǫd and on

the tunneling rate γ. As described in the next section 2.3.1, these parameters will be fixed
for further calculations meaning that γ(0), γ(±∆) and S(±∆) can be treated as constants.

Thus the rates Γ↑ = γ(−∆)
v2x+v2y

4
, Γ↓ = γ(∆)

v2x+v2y
4

and the dephasing rate Γϕ = γ(0)v
2
z

4

only depend on the specific coupling to the noise. This derivation shows that the quantum
master equation can be generally written in terms of

ρ̇S(t) = −i[H0 +HLS, ρS(t)] + Γ↑L[σ
+]ρS(t) + Γ↓L[σ

−]ρS(t) + ΓϕL[σz ]ρS(t). (2.15)

It has to be kept in mind that this equation was derived for ∆ < γ as well as a weak coupling
between bath and qubit and is not valid anymore for stronger couplings, especially for those
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which are examined in the next section exhibiting special properties of QTN.

2.3 DMRG and Model Parameters

As described in Ref.[14, 8] the bath-impurity part of the Hamiltonian will be mapped
onto a Wilson chain which is mathematically a tridiagonalization of the Hamiltonian. The
ground state of the Wilson chain form Hamiltonian can be calculated using infinite and
finite DMRG [29]. Afterwards the time evolution of the starting state can be performed
using t-DMRG.
The quality of the results and their agreement with real systems depend very much on
the particular choice of bath discretization. Additionally a proper selection of model pa-
rameters is important as for certain ranges of values the characteristics of QTN is similar
to Gaussian noise which is not desired. Such parameters are half bandwidth D, impurity
energy level ǫd, qubit energy level spacing ∆ and electron transition rate γ. As reference
the analytical results in Fig.2.3 of Benjamin Abel Ref.[2, ch.7] will be used.

2.3.1 D, ∆, γ and ǫd

The first value to be set is the half bandwidth of the reservoir. We chose D = 1 as the
energy scale of our model. The bath contains spinless fermions and is half filled. In the
starting state at T = 0 the highest occupied bath level is the level of Fermi energy ǫF ≈ 0.
Its value depends in the simulations on the bath discretization and should be ideally zero.
By varying the impurity energy level ǫd with respect to ǫF the fluctuation rate of the QTN
can be adjusted. If we choose ǫd > ǫF the impurity will be more rarely occupied whereas
for ǫd < ǫF it will be more likely to be occupied. Thus the hopping rate in these cases will
be lower than for ǫd ≈ ǫF . Since higher fluctuations lead to stronger decoherence effects,
a good choice is ǫd = 0. The properties of other values are analyzed in Ref.[2, ch.7.4].
According to Ref.[1] the tunneling rate should be smaller than half bandwith γ ≪ D

and it is used in vz
γ

as a measure for the strength of the noise. Hence γ = 0.1 was an
appropriate choice. The qubit level spacing ∆ was set to 0.2, but computations showed
that this parameter does not influence results of free decoherence of the qubit.

2.3.2 Discretization and Bath Length

The fermionic bath can be discretized either linearly or logarithmically each with its own
advantages. We need a high density of states around Fermi energy level because most
transitions will happen there for low temperatures T → 0. At the same time a small
bath length L is desired to have a short computation time. To assess the accuracy of
simulations for different parameter choices, the visibility |D(t)| of the qubit will be used
as a benchmark. As the qubit is initially prepared in an eigenstate of σx and coupled with
vx = 0, vy = 0, vz = 0.3 to the impurity, the t-DMRG results should be similar to the red
curve in Fig.2.3. The reference plot shows a good QTN characteristic with a zero crossing
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at γt ≈ 1.6 and a non-vanishing visibility for long times γt = 10.
The linear discretization divides the bath into equidistant discrete energy levels

ǫ0 = 0, ǫk = (2k − 1) · D
L
, with k ∈

{

−L

2
, . . . ,

L

2

}

. (2.16)

To get accurate results this type needs a very high number of sites L, see Fig.2.4. While
for γt > 3, |D(t)| is already very good for L = 100, the zero crossing is not even reached for
L = 2000 and converges very slowly. As mentioned in Ref.[2] the first zero crossing depends
on temperature T , coupling vz and on the difference between ǫd and ǫF . As ǫd = 0,T = 0
and vz = 0.3, this gives rise to the conjecture that ǫd 6= ǫF 6= 0 which is an effect of the
particular implementation of the linear discretization.
The logarithmic discretization

ǫ0 = 0, ǫ±1 = ±D

(
1− 1

Λ

ln Λ
+ 1− z

)

, (2.17)

ǫ±k = ±D
1− 1

Λ

ln Λ
Λ2−k−z, with k ∈

{

2, . . . ,
L

2

}

, (2.18)

is defined through its parameter Λ. By increasing Λ the resolution around ǫF is enhanced
and less important high energy levels are removed. Thus the first zero crossing in Fig.2.5
converges much faster than in the linear case. While even at small bath lengths results are
very accurate for γt < 3, oscillatory errors occur for longer times. These strong artificial
oscillations of the visibility are a consequence of the removal of higher energy levels, as in the
time scope of γt > 3 these energy levels become important. A method to compensate this
error is to introduce the additional level shift parameter z and to average over calculations
for different values of z ∈]0, 1]. As shown in Fig.2.6 the oscillations are very regular
such that for an equidistant choice of z the z-averaged result is very accurate. Besides
the computation of less sites this method has also the advantage of parallel computing
speeding up calculations tremendously.
We found that a very good choice was Λ = 1.8, L = 34, z ∈

{
1
8
, . . . , 1

}
. A further increase

of Λ and decrease of L effected only additional errors and less benefit of computation time.
By way of comparison, the simulation of the z-averaged curve in Fig.2.6 took about 1
minute whereas the L = 2000 one needed 1 hour on a single cpu core.
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Chapter 3

The Periodically Driven Qubit

In quantum optics and quantum information processing a frequently used technique to
manipulate qubits is the application of π-pulses. With this tool it is possible to exactly
control the state of a qubit by using certain pulse protocols like spin echo [21] or bang-bang
[15]. These protocols can be used to recover quantum information which degenerates as the
qubit loses its coherence through unavoidable interactions with its environment. However
the precision of the pulse manipulations is also affected by the external noise and the effect
is not easy to describe analytically. Hence it will be simulated and analyzed in this chapter.

3.1 The Full Model

The external driving field representing the pulses is added to the Hamiltonian of the QTNM

H =
∆

2
σz +

1

2
~v~σ · d†d+ ǫdd

†d+
∑

k

(

tkc
†
kd+ t∗kd

†ck

)

+
∑

k

ǫkc
†
kck + Ωcos(ωdt)σx. (3.1)

The field with amplitude Ω and driving frequency ωd is treated here in a classical way since
it is simple to implement and correct for classical fields. Hence the interaction between
qubit and field in absence of the QTN will be handled in a semi-classical way in the
following section 3.2 and explicitly calculated in Ch.A.3. An alternative fully quantum
mechanical description by the Jaynes-Cummings-Hamiltonian is presented in Ch.A.4.
Afterwards the effect of the QTN will be analyzed in Ch.3.4 and pulse protocols will be
simulated in Ch.3.5.

3.2 Rabi Oscillations

When a two-level system is transverse coupled to an external oscillating field, its proba-
bility of being found in one of its two states will perform oscillations between [0, 1] with a
certain transition frequency (see Fig.3.1). These Rabi oscillations can be described with
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Figure 3.1: Rabi oscillations of the probability of the excited state P↑(t) for strong driving.
The Rabi oscillations become smooth in the case of a weak driving.

the Hamiltonian of the qubit-field interaction

H =
∆

2
σz + Ωcos(ωdt)σx, (3.2)

with the Rabi frequency Ω and driving frequency ωd. The Rabi problem is usually cal-
culated under the Rotating-Wave-Approximation (RWA) where the driving amplitude is
assumed to be weak Ω ≪ ∆. The explicit derivation in Ch.A.3.1 shows that the transition
frequency, called the generalized Rabi frequency Ω′ is:

Ω′ =
√

Ω2 + (∆− ωd)2. (3.3)

We can see that Ω′ is minimized and equals Ω only at a resonant driving (∆ = ωd).
The Rabi oscillation of the qubit’s probability P↑(t) of the excited state is given by

P↑(t) =
Ω2

Ω′2
sin2

(
Ω′t

2

)

=
1

2

1

1 +
(
∆−ωd

Ω

)2 (1− cos (Ω′t)) , (3.4)

where we used the initial conditions P↑(0) = 0, P↓(0) = 1. Here it can be seen that the
amplitude depends on the detuning ∆− ωd as well as on the driving strength Ω and it is
maximized for a resonant driving. In Fig.3.1 Rabi oscillations and their spectrum in Fig.3.2
are plotted in the case of a strong driving. We can see the predominant Rabi oscillation
with frequency Ω′ between [0, 1] as well as smaller higher order oscillations of 2ω called
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Figure 3.2: Spectrum of P↑(t) obtained via discrete Fourier transform with zero padding.
The peak to the left ist the Rabi peak at Ω′. The three peaks in the middle are the
Bloch-Siegert oscillations at 2ωd − Ω′, 2ωd, 2ωd + Ω′.

Bloch-Siegert oscillations [30]. These Bloch-Siegert oscillations and weaker higher order
generalized Bloch-Siegert oscillations (GBSO) at frequencies of multiples of 2ω cannot be
calculated with the RWA [24]. Although these GBSOs are weak compared to the main
Rabi oscillation, they become stronger at higher amplitudes Ω and make it difficult to
perform exact Qubit manipulations.

3.2.1 Pulses

Based on Rabi oscillations, the state of a qubit can be controlled very accurately with
pulses defined by

π − Pulse : Ω′t = π,
π

2
− Pulse : Ω′t =

π

2
.

(3.5)

With these definitions a π-pulse flips the qubit from ground to excited state whereas a
π
2
-pulse brings it from the ground state into a σy eigenstate. Using the bloch vector rep-

resentation a π-pulse rotates the bloch vector by 180◦ around the x-axis and a π
2
-pulse by

90◦.
Additionally π-pulses can be performed in different ways, either strong and short in dura-
tion, or weak but long. Considering the QTN it might be desirable to perform pulses which
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are relative short compared to the fluctuation rate of the QTN in order to get distortion-free
manipulations. Hence it is necessary to study the effect of strong driving fields.

3.3 Bloch-Siegert Shift

In the strong driving regime Ω
∆

> 0.1 the Bloch-Siegert shift of the resonance frequency
to values greater than ∆ is observable [3, 5, 31]. This shift is relevant for accurate pulses
as it leads to a change of Ω′ (see Fig.3.4). The Bloch-Siegert shift can be derived from
the Schrödinger equation by doing an assumption different from the RWA (explicitly in
Ch.A.3.2). In the RWA time scales given by the weak driving Ω ≪ ∆ were considered
and rapidly oscillating terms with e±i(∆+ωd)t were averaged out. But as driving becomes
stronger these terms give contribution to the qubit’s energy level splitting in form of a level
shift λ+. Therefore the corrected qubit energy ∆′

BS respecting the Bloch-Siegert shift can
be calculated to

λ± = −∆+ ωd

2
± 1

2

√

(∆ + ωd)2 + Ω2, (3.6)

∆′
BS = ∆+ 2λ+ = −ωd +

√

(∆ + ωd)2 + Ω2. (3.7)

A resonant driving is now obtained via ωd = ∆′
BS =: ωBS and the resonance condition for

ωBS is:

ωBS =
1

2

√

(∆ + ωBS)2 + Ω2, (3.8)

ωBS = ∆

(

1

3
+

2

3

√

1 +
3Ω2

4∆2

)

(3.9)

Ω<∆
⋍ ∆

(

1 +
Ω2

4∆2

)

, (3.10)

⇒ ∆ωBS ⋍

Ω2

4∆
. (3.11)

Here the last expression is the approximated Bloch-Siegert shift of the qubit energy-level
splitting in case of resonant driving and Ω < ∆.

3.3.1 Finding the Bloch-Siegert Shift

To confirm the Bloch-Siegert shift, two ways of finding the resonance might be used. The
first one is to search for the maximum amplitude of the Rabi oscillations with respect to
different driving frequencies. Another possibility is to vary ωd and search for a minimum
in the position of the generalized Rabi frequency Ω′. As both methods analyze the peak of
the Rabi oscillations Ω′ in the spectrum, the discrete Fourier transformation (DFT) used
here is explained in Ch.A.2.
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Figure 3.3: Averaged amplitudes Ā(Ω′) of Rabi oscillations Ω′ for driving frequencies ωd

(blue) calculated with a flat-top windowed DFT. The vertical line marks the maximum
amplitude found and the ∆′ obtained via fitting Eq.3.12. The green curve shows expected
values calculated with Eq.3.12, whereas the red curve accords to the amplitude without
modification. With Eq.3.9 calculated value of resonance frequency: ωBS = 0.847853.

Evaluating Rabi Amplitude

The assumption made in this method was that the corrected energy level spacing of the
qubit ∆′

BS from the Bloch-Siegert shift could be inserted into Eq.3.4 leading to a corrected
behaviour of the amplitudes

ABS(ωd) =
1

2

1

1 +
(
∆′−ωd

Ω

)2 . (3.12)

The peak values Ā(Ω′) were measured for different driving frequencies ωd. In Fig.3.3 these
peak values are compared with the predicted amplitude behavior (green) and the original
one (red). It was assumed that the resonant driving ωd = ∆′ could be found by searching
for the maximum Ā(Ω′). The assumption does obviously not hold as resonance is in this
case at ωBS = 0.847853 and the amplitude is maximized for ωd = 0.799528.
The measurements were performed using zero-padding and a flat-top window in the DFT.
This DFT method has very small errors in measuring peak amplitudes and should be very
accurate. But as amplitudes are not shifting, the assumption leading to Eq.3.12 has to be
wrong and cannot be used to measure the resonance frequency and Bloch-Siegert shift.
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Figure 3.4: Plot shows the measured generalized Rabi frequency Ω′ for driving frequencies
ωd (blue). The minimum is reached for resonant driving ωd = ∆′

BS, which is marked by
the line. Comparison with theoretical curves from Eq.3.13(green) and Eq.3.3(red) show
that the shift is measurable. Expected: ωBS = 0.847853.

Evaluating Rabi Frequency

Similar to the first method, a corrected generalized Rabi frequency Ω′
BS is obtained by

taking Eq.3.3 and replacing ∆ with the corrected ∆′
BS .

Ω′
BS =

√

Ω2 + (∆′
BS − ωd)2 =

√

Ω2 + (∆− ωd + 2λ+)2. (3.13)

From this equation we see that the generalized Rabi frequency is minimized at the shifted
resonance ωd = ∆′

BS. This also means that Ω′
BS is simply shifted by 2λ+ compared to Ω′.

In Fig.3.4 the measured Rabi peak frequencies Ω′(ωd) for different ωd are compared to the
original (red) and corrected (green) formula for the generalized Rabi frequency. The plot
exhibits a very good agreement between the measurements and Eq.3.13 with a relative
error of 4×10−4 and assures that the replacement of ∆ with ∆′

BS in this case is legitimate.

Using the second method, we can confirm Eq.3.9 of the Bloch-Siegert shift as shown in
Fig.3.5. The measured and exact values agree in the range Ω

∆
< 0.5. The measurements

at Ω
∆

> 0.5 have errors as the curve in Fig.3.4 flattens, thus making the curve fitting
inaccurate. Overall we confirmed that the evaluation of Rabi frequency presented here
can be used to find the resonance frequency and to analyze the effect of QTN in t-DMRG
simulations.
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Figure 3.5: Comparison of the measured Bloch-Siegert shift (red) and the exact solution
(blue) of Eq.3.9.

3.4 Driven Qubit Coupled to QTN

To properly understand the effect of QTN on pulses, its influence on Rabi oscillations is
studied here. Simulations were done with a qubit, initially prepared in the ground state |0〉
under weak and resonant driving Ω

∆
= 0.02. We tested longitudinal vz

γ
= 1 and transverse

vx
γ

= 1 coupling to the bath. From Fig.3.6 it can be seen that the vz ≫ Ω coupled QTN
inhibits resonant Rabi oscillations, but adds no damping. The green line oscillates with a
frequency of Ω′ = 0.0485 and has a maximum excitation of P↑,max = 0.03. This result can
be explained as the qubit’s energy level splitting is modified by the fluctuating charge:

∆̃

2
σz =

(
∆

2
+

vz

2
d†d

)

σz , (3.14)

where Q = d†d equals 1 if an electron occupies the impurity and 0 otherwise. In contrast to
the situation of Q = 0 where Ω′ = Ω and P↑,max = 1, the case Q = 1 leads to modifications
because of a detuned driving δ = ∆̃− ω = vz:

Ω̃′ = Ω

√

1 +
(vz

Ω

)2

,

P̃↑,max = 2Ã(Ω̃) =
1

1 +
(
vz
Ω

)2 .

(3.15)

If we calculate these quantities according to the simulation in Fig.3.6, we get Ω̃′ ≈ 0.1 and
P̃↑,max ≈ 0.01. The values measured in the simulation are right between the calculations
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Figure 3.6: Different couplings to QTN with weak driving: without coupling (blue); vx =
0.1, vz = 0 (red); vx = 0, vz = 0.1 (green). t-DMRG result (above) and its spectrum
(below).
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with Q = 0 and Q = 1 as the Rabi oscillations under QTN are a mixture of the two
situations. The dominance of either case depends on the occupation rate of the impurity
level. The influence of the QTN can be decreased if vz

Ω
≪ 1 such that Ω̃′ ≈ Ω′ and P̃↑,max ≈

1. Thus it can be inferred, that reliable π-pulses can be performed under longitudinal QTN
if the driving field is very strong Ω ≫ vz. In particular for vz

Ω
≪ 1 the maximum achievable

probability P↑,max can be estimated to

P↑,max = 1−
(vz

Ω

)2

. (3.16)

In contrast to that a vx coupled QTN leads to damped Rabi oscillations. These damped
oscillations can be roughly described with Γ↑ and Γ↓ by numerical evaluation of Eq.2.15
if the driving field term is added to H0. Under this transverse noise, pulses can operate
properly if the Rabi cycle is short compared to the damping Ω ≫ vx.
It can be concluded that a longitudinal noise changes the generalized Rabi frequency and
resonance frequency which strongly reduces the Rabi amplitude, whereas the transverse
coupled QTN causes damping which still allows relatively high Rabi amplitudes. Thus
for dynamical decoupling it is very important to use strong and resonant pulses to get an
effective noise cancelling.

3.5 Simulations of Spin Echo and Bang-Bang with Ideal

π-Pulses

The t-DMRG simulation of pulses and pulse protocols together with QTN has various
difficulties in choosing the right parameters and coupling strengths as described previously.
Hence to obtain a result which can be used as a reference for later simulations, in the
following part we do not use the term Ωcos(ωdt)σx in the Hamiltonian. Instead π-pulses
are implemented artificially by directly applying an operator U = ei

π
2
σx on the qubit state

at a certain time τ . This performs an ideal infinitely strong and short π-pulse with the
benefit that the pulse itself is not influenced by the QTN and only the time evolution of
the pulse protocol can be observed. As in the following calculations the coherence of the
qubit is the main observable, the qubit is initially prepared in an eigenstate of σx and vz
coupled to the QTN.
The first test case was the simulation of the spin echo protocol applied on a qubit coupled
to QTN which was already done in Ref.[1]. This was performed by measuring the visibility
|Decho(t)| where previously a π-pulse was applied at time τ = t

2
. The resulting spin echo

signal is plotted in Fig.3.7 and it is very similar to the one presented in Ref.[1] Fig.5d
which indicates that the t-DMRG implementation works properly. It can be seen that the
decoherence of the qubit under the spin echo protocol is slower than without the pulses,
however for longer times γt > 2.5 the protocol has no positive effect.
In order to understand why the spin echo protocol does not work properly a simulation
with iterated pulses with a spacing of tpulse was done.
In Fig.3.8 it is clearly visible that after applying a π-pulse at time τ the qubit recovers
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Figure 3.7: Spin-Echo: The purple curve shows visibility for times t when π-pulses were
applied at τ = t

2
. The red curve shows the free decoherence. z-averaging was used.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D = 1, ∆ = 0.2, Λ = 1.8, L = 34, v
x
 = 0, v

z
 = 0.3, γ = 0.1

Time γt

V
is

ib
ili

ty
 |D

(t
)|

 

 

γt
pulse

 = 0.25

γt
pulse

 = 0.5

γt
pulse

 = 1

no pulse

Figure 3.8: Bang-Bang protocol on a qubit prepared in σx eigenstate with QTN. π-pulses
were applied after each interval of length γtpulse. z-averaging was used.



3.5 Simulations of Spin Echo and Bang-Bang with Ideal π-Pulses 25

a part of its coherence already at times < 2τ . Subsequently it loses its coherence again
leading to a decreased effect of the spin echo protocol. However this plot shows a much
more interesting effect which is called bang-bang refocusing [15]. The iterated application
of the pulses averages out the influence of the QTN leading to an almost only linearly
decrease in coherence. Furthermore smaller intervals tpulse between the bang-bang pulses
improve the decoupling from the noise which is a result also found in the paper Ref.[15].
The improvement by the protocol mainly depends on the ratio τbb

τnoise
of the time interval

τbb between two bang-bang pulses and the mean separation τnoise between two flips in the
telegraph noise.
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Chapter 4

Conclusion and Outlook

In this thesis the interaction between a qubit, a quantum telegraph noise (QTN) and an
external periodical driving field was studied analytically, by deriving a quantum master
equation for the qubit-QTN interaction and by presenting the Rabi problem and the Bloch-
Siegert shift for the interaction between qubit and driving field. As this was only valid for
the weak coupling regimes, t-DMRG simulations of the compound system were made to
derive conditions under which π-pulses can be performed with good precision.
We started in Ch.2 with the description of the quantum telegraph noise model and found
by calculating the bath correlation function that the quantum master equation in the
Born-Markov approximation is valid for the case of γ > ∆. This holds for high charge
fluctuations on the impurity leading to a spectral broadening of γ

2
of its energy level which

should be larger than the energy level spacing ∆ of the qubit. Furthermore this can be
brought to Lindblad form if the relaxation rate Γ of the qubit fulfills γ > Γ > ∆. However
as this analytical solution can not be applied to the case of v

γ
≥ 1, where the QTN exhibits

its non-Gaussian behavior, t-DMRG was used for all QTN calculations.
In Ch.3 Rabi oscillations were presented focusing on the Bloch-Siegert shift of the resonance
frequency which occurs for strong driving amplitudes Ω

∆
≥ 0.1. As this effect also leads

to a shift of the generalized Rabi frequency Ω′ which determines the duration of a π-
pulse by π = Ω′t, we presented an accurate method for measuring the Bloch-Siegert shift.
Afterwards we have shown in Ch.3.4 that reliable π-pulses need to be very strong Ω ≫ v

compared to the coupling strength of the noise.
Finally simulations with ideal π-pulses in Ch.3.5 exhibited that the bang-bang protocol is
very effective in preserving the coherence of a qubit whereas the spin echo protocol only
marginally improved coherence time.
Further study could be conducted in the simulation of several pulse protocols, realized with
the periodical driving field, for weak and strong coupling strengths to the QTN. Thereby
the most suitable dynamical decoupling method for QTN can be found and the limits of
protocol efficiency can be examined. An interesting extension of the model would be to
investigate the coupling to more fluctuators and the influence on the coherence for different
combinations of transverse and longitudinal coupling to a qubit. Another related topic is
the effect of QTN on the Landau-Zener interference which can be simulated using an almost
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similar Hamiltonian. This is very interesting as Landau-Zener interference could be used
to measure decoherence rate of a qubit as proposed in Ref.[27].



Appendix A

Derivations

A.1 Master Equation

A.1.1 Projection Operator Method

The full derivation can be seen in Ref.[6, Ch.9.1] or Ref.[4, Ch.4]
We define the Liouville super operator L acting on the density matrix

d

dt
ρ(t) = −i[H(t), ρ(t)] = L(t)ρ(t), (A.1)

and a set of orthogonal projection operators:

Pρ = trB(ρ)⊗ ρB = ρS ⊗ ρB,

Qρ = (1− P)ρ,

(P +Q) = 1. (A.2)

For a Hamiltonian

H(t) = H0 + αHI(t), (A.3)

we start from the Liouville super operator in the interaction picture L:

d

dt
ρ̃(t) = −iα[H̃I(t), ρ̃(t)] = αL(t)ρ̃(t). (A.4)

After inserting ones of projection operators

d

dt
ρ̃(t) =

d

dt
(P +Q)ρ̃(t) = αL(t)(P +Q)ρ̃(t), (A.5)

we obtain two coupled differential equations

d

dt
P ρ̃(t) = αPLP ρ̃+ αPLQρ̃, (A.6)

d

dt
Qρ̃(t) = αQLP ρ̃

︸ ︷︷ ︸

inhomogeneous

+ αQLQρ̃
︸ ︷︷ ︸

homogeneous

. (A.7)
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First we solve homogeneous

d

dt
Qρ̃(t) = αQLQρ̃ → U(t, t0) = G(t, t0) = T e

α
∫ t
t0

QL(s)ds
, (A.8)

and inhomogeneous part

⇒ Qρ̃(t) = G(t, t0)Qρ̃(t0) + α

∫ t

t0

dsG(t, s)QL(s)P ρ̃(s), (A.9)

of the differential equation in Q and put the solution into Eq.A.6

d

dt
P ρ̃(t) = αPLP ρ̃+ αPL(t)G(t, t0)Qρ̃(t0) + α2

∫ t

t0

dsPL(t)G(t, s)QL(s)P ρ̃(s). (A.10)

With pure initial states in system and bath ρ(t0) = ρS(t0) ⊗ ρB(t0) and for a vanishing
thermal expectation value 〈HI(t)〉ρB = 0 we get

⇒ Qρ(t0) = 0,

PLP ρ̃(t) = 0,
(A.11)

reducing Eq.A.10 to

d

dt
P ρ̃(t) =

∫ t

t0

ds α2PL(t)G(t, s)QL(s)
︸ ︷︷ ︸

K(t,s)

P ρ̃(s). (A.12)

For the weak coupling limit we expand Kernel K(t, s) to lowest order in α

G(t, s) = T e
α
∫ t

t0
QL(s)ds ≈ 1 +O(α),

⇒ K(t, s) ≈ α2PL(t)QL(s).
(A.13)

Thus

d

dt
P ρ̃(t) =

∫ t

t0

ds α2PL(t)QL(s)P ρ̃(s),

with Q = (1−P); PL(t)P = 0,

d

dt
P ρ̃(t) =

∫ t

t0

ds α2PL(t)L(s)P ρ̃(s)

= (−i)2α2

∫ t

t0

dsP
[

H̃I(t),
[

H̃I(s), ρ̃S(s)⊗ ρB

]]

⊗ ρB,

(A.14)

where the Born approximation was made in the last step. This assumes that the coupling
between the bath and the qubit system is weak such that the influence of the open system
on the bath is small. Therefore the state of the whole system can be expressed as ρ̃(t) ≈
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ρ̃S(t)⊗ ρB.
Finally we can apply P

d

dt
ρ̃S(t) = −α2

∫ t

t0

ds trB

[

H̃I(t),
[

H̃I(s), ρ̃S(s)⊗ ρB

]]

. (A.15)

The Markov approximation assumes bath excitations to be decaying very fast which means
that the whole system has no memory and does only depend on the present state ρ̃S(t)
[6, p 127]. Therefore ρ̃S(s) can be replaced with ρ̃S(t) which makes the master equation
local in time. Additionally a substitution s → t − s will be made and the upper limit
of the integral will be extended to infinity, as the bath correlation function is considered
to be fast decaying. Thus we obtain the quantum master equation in the Born-Markov
approximation

d

dt
ρ̃S(t) = −α2

∫ ∞

0

ds trB

[

H̃I(t),
[

H̃I(t− s), ρ̃S(t)⊗ ρB

]]

. (A.16)

A.1.2 Interaction Picture Hamiltonian

An arbitrary interaction Hamiltonian

HI =
∑

α

Aα ⊗ Bα, (A.17)

can be decomposed into eigenoperators Π(ǫi) of HS which are the projectors into the
eigenspaces of energies ǫi to simplify the calculation of H̃I

Π (ǫi)HS = ǫi. (A.18)

For a basis |i〉 diagonalizing HS these are simply given by

Π (ǫi) = |i〉 〈i| . (A.19)

The decomposition is defined as

Aα(ω) =
∑

ǫ′−ǫ=ω

Π(ǫ)AαΠ(ǫ
′),

Aα =
∑

ω

Aα(ω),

Aα(−ω) = A†
α(ω).

(A.20)

With the properties

[HS, Aα(ω)] = −ωAα(ω),

⇒ U
†
0(t)Aα(ω)U0(t) = e−iωtAα(ω) = Ãα(ω)(t),

(A.21)
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the interaction picture Hamiltonian is

H̃I(t) = U
†
0(t)

(
∑

α,ω

Aα(ω)⊗ Bα

)

U0(t)

=
∑

α,ω

e−iωtAα(ω)⊗ B̃α(t),

(A.22)

which can be put into the master equation Eq.A.16

d

dt
ρ̃S(t) =

∑

ω,ω′

∑

α,β

ei(ω
′−ω)tΓαβ(ω)

(
Aβ(ω)ρ̃S(t)A

†
α(ω

′)−A†
α(ω

′)Aβ(ω)ρ̃S(t)
)
+ h.c,

and Γαβ(ω) =

∫ ∞

0

ds eiωs 〈B̃†
α(t)B̃β(t− s)〉

ρB
.

(A.23)

Here Γαβ(ω) are the one-sided Fourier transforms of the bath correlation functions
〈B̃†

α(t)B̃β(t− s)〉
ρB

. For the next step, the secular approximation, three important time
scales have to be considered [6, p 130]. In accordance to the Markov approximation, the
reservoir correlation functions 〈B̃†

α(s)B̃β(0)〉ρB decay fast over a time τB, if it is infinitely
large and has a continuum of frequencies. This also means that relaxation time τR of the
open system shall be large compared to τB. Above these the time scale of the intrinsic
evolution of the open system τS, typically defined by 1

|ω′−ω|
the inverse of the frequencies

occurring, is large compared to τR and τB. This leads to the assumption that terms where
ω′ 6= ω in Eq.A.23 are fast oscillating over τR and can be therefore neglected. With a
decomposition of Γαβ(ω)

Γαβ(ω) =
1

2
γαβ(ω) + iSαβ(ω),

γαβ(ω) =

∫ ∞

−∞

ds eiωs 〈B̃†
α(s)B̃β(0)〉ρB ,

Sαβ(ω) =
1

2i

(
Γαβ(ω)− Γ∗

βα(ω)
)
,

(A.24)

and the definition of the Lamb shift Hamiltonian HLS

HLS =
∑

ω

∑

α,β

Sαβ(ω)A
†
α(ω)Aβ(ω), (A.25)

the master equation in the interaction picture under the assumption mentioned can be
written as

d

dt
ρ̃S(t) = −i [HLS, ρ̃S(t)] +D(ρ̃S(t)),

D(ρ̃S(t)) =
∑

ω

∑

α,β

γαβ(ω)

(

Aβ(ω)ρ̃S(t)A
†
α(ω)−

1

2

{
A†

α(ω)Aβ(ω), ρ̃S(t)
}
)

.
(A.26)

The last term D is also called the dissipator. As Aα(ω) can be easily calculated for a
given Hamiltonian, the only difficult expression is Γαβ(ω) which will be investigated in the
following Chapter.
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A.1.3 Bath Correlation Functions

In this section the Fourier transform of the bath correlation function according to our
problem shall be calculated. The Hamiltonian we consider is normal ordered : n := n −
〈n〉ρB which leads to vanishing thermal expectation values of normal ordered operators.
We start from

B̃(t) = d̃†(t)d̃(t), (A.27)

Γ(ω) =

∫ ∞

0

ds eiωs 〈B̃†(t)B̃(t− s)〉ρB (A.28)

Using Wick’s theorem the 4-point correlation function can be expressed by 2-point corre-
lation functions

〈B̃†(t)B̃(t− s)〉ρB = 〈B̃†(s)B̃(0)〉ρB = 〈d̃†(s)d̃(s)d̃†(0)d̃(0)〉ρB (A.29)

= d̃†(s)d̃(s)d̃†(0)d̃(0) = 〈d̃†(s)d̃(0)〉ρB 〈d̃(s)d̃†(0)〉ρB (A.30)

From here we need certain relations on Green’s functions

iG>
dd†

(t) = 〈d̃(t)d̃†(0)〉ρB , (A.31)

iG<
dd†

(t) = −〈d̃†(0)d̃(t)〉ρB , (A.32)

G>
dd†

(ω) =
GR

dd†
(ω)−GA

dd†
(ω)

e−βω + 1
, (A.33)

G<
dd†

(ω) = −GR
dd†

(ω)−GA
dd†

(ω)

eβω + 1
, (A.34)

GR
dd†(ω) =

1

ω − ǫd + iγ
2

, (A.35)

GA
dd†(ω) =

1

ω − ǫd − iγ
2

, (A.36)

γ = 2π
∑

k

‖tk‖2 δ(ǫk − ǫd). (A.37)

The relations for GR(ω), GA(ω) can be derived from equation of motion theory in imaginary
time resulting in the Matsubara Green’s function. This can be analytically continued to
the retarded and advanced Green’s functions. γ is the FWHM of the spectral broadening
of the impurity level and corresponds to the parameter of the t-DMRG implementation. As
it will be shown, γ also relates to the decay time of the bath correlation function τB = 1

γ
,

which is important for the Born-Markov approximation.
With these relations the expectation values can be identified

〈d̃†(s)d̃(0)〉ρB 〈d̃(s)d̃†(0)〉ρB = G<
dd†

(−s)G>
dd†

(s), (A.38)
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and the lesser and greater Green’s functions can be calculated. We show the calculation
in more detail for G>(t) starting from the explicit form of Eq.A.33

G>
dd†

(t) =

∫ ∞

−∞

dω

2π
e−iωt 1

e−βω + 1

(
1

ω − ǫd + iγ
2

− 1

ω − ǫd − iγ
2

)

. (A.39)

We perform the Fourier transformation using the residue theorem. As the function G>
dd†

(s)
is needed for times s > 0, the contour chosen must be closed over the lower half of the
complex plane with ℑ(ω) < 0 to ensure the convergence of e−iωt. Therefore we need to
consider the poles of the first term at ωn = −iπ

β
(2n + 1) and of GR

dd†
(ω) at ω = ǫd − iγ

2
.

For the residue of the Fermi-Dirac distribution we have for n ∈ Z

Res

(
1

e±βω + 1
, i
π

β
(2n + 1)

)

= ∓ 1

β
. (A.40)

Together with the series expansion of the Fermi-Dirac distribution

1

e±βω + 1
=

1

2
∓ 1

β

∞∑

n=−∞

1

ω − iπ
β
(2n+ 1)

, (A.41)

the integral can be evaluated

iG>
dd†

(t) =
i

4π

∫ ∞

−∞

dωe−iωt

(
1

ω − ǫd + iγ
2

− 1

ω − ǫd − iγ
2

)

+

+
i

2πβ

∞∑

n=−∞

∫ ∞

−∞

dω
e−iωt

ω − iπ
β
(2n+ 1)

(
1

ω − ǫd + iγ
2

− 1

ω − ǫd − iγ
2

)

t>0
=

1

2
e−i(ǫd−i γ

2
)t +

1

β

∞∑

n=−∞

e−i(ǫd−i γ
2
)t

ǫd − iγ
2
− iπ

β
(2n+ 1)

+
1

β

∞∑

n=0

e−
π
β
(2n+1)t

(

1

−iπ
β
(2n+ 1)− ǫd + iγ

2

− 1

−iπ
β
(2n+ 1)− ǫd − iγ

2

)

.

(A.42)

The second expression can be rewritten using the partial fraction expansion of the hyper-
bolic tangent

tanh(z) =

∞∑

n=0

2

2z − i(2n+ 1)π
+

2

2z + i(2n+ 1)π
, (A.43)
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∞∑

n=−∞

1

ǫd − iγ
2
− iπ

β
(2n+ 1)

=

∞∑

n=0

(

1

ǫd − iγ
2
− iπ

β
(2n+ 1)

+
1

ǫd − iγ
2
+ iπ

β
(2n + 1)

)

=
β

2

∞∑

n=0

(
2

β(ǫd − iγ
2
)− i(2n+ 1)π

+
2

β(ǫd − iγ
2
) + i(2n+ 1)π

)

=
β

2
tanh

(
β

2

(

ǫd − i
γ

2

))

.

(A.44)

Hence we get

iG>
dd†

(t)
t>0
=

e−i(ǫd−i γ
2
)t

2

(

tanh

(
β

2

(

ǫd − i
γ

2

))

+ 1

)

+
1

β

∞∑

n=0

−iγe
−π

β
(2n+1)t

(

ǫd + iπ
β
(2n+ 1)

)2

+
(
γ

2

)2
.

(A.45)

By analogy an expression for G<
dd†

(t) can be found by closing the contour over the upper
half plane as we need t < 0

iG<
dd†

(t)
t<0
=

e−i(ǫd+i γ
2
)t

2

(

tanh

(
β

2

(

ǫd + i
γ

2

))

− 1

)

− 1

β

∞∑

n=0

−iγe
π
β
(2n+1)t

(

ǫd − iπ
β
(2n+ 1)

)2

+
(
γ

2

)2
.

(A.46)

Since these expressions are very long and complicated, the limit of low temperatures will
be considered. For β → ∞ the last term vanishes

iG
>
<
dd†

(t) = θ(±t)
e−i(ǫd∓i γ

2
)t

2

(

tanh

(
β

2

(

ǫd ∓ i
γ

2

))

± 1

)

. (A.47)

It can be seen that the bath correlation function decays with the time τB = 1
γ

as it has
terms which are products of two Green’s functions each decaying with rate γ

2
.

From here it is possible to continue calculating Eq.A.28

Γ(ω) =

∫ ∞

0

ds eiωs 〈B̃†(t)B̃(t− s)〉ρB =

∫ ∞

0

ds eiωsG>
dd†

(s)G<
dd†

(−s) (A.48)

=
1

4

−iω − γ

ω2 + γ2

(

tanh

(
β

2

(

ǫd − i
γ

2

))

+ 1

)(

tanh

(
β

2

(

ǫd + i
γ

2

))

− 1

)

. (A.49)

In order to get the relaxation and dephasing rates for the master equation and the Lamb
shift we have to calculate

γ(ω) = Γ(ω) + Γ(ω)∗, (A.50)

S(ω) =
1

2i
(Γ(ω)− Γ(ω)∗) , (A.51)

which can be done numerically and is shown in Fig.2.2 for different temperatures. It should
be mentioned that γ(ω) 6= γ.
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Figure A.1: Peak of Ω′ after DFT from numerical results with very weak damping.
Lorentzian fit (red) is not accurate enough for amplitude measurement.

A.2 Discrete Fourier Transformation

For the spectral evaluation of the Rabi peak in both methods, a Fourier transformation
is needed. As data from the DMRG simulation as well as from calculations with Mathe-
matica/MATLAB are only given as a finite number of discrete values, a discrete Fourier
transformation must be applied. There are several normalization conventions in the liter-
ature, depending on the specific application. We use

H(ωk) =
1

N

N−1∑

n=0

P↑(tn)e
2πink

N ,

Ā(ωk) = |2H(ωk)| ,
(A.52)

where N = T · fs. This normalizes the peaks such that H(ωk) equals to the half average
amplitude of an oscillation with frequency |ωk|, as it contains only values for ωk and not
for −ωk. Thus the average amplitude is given by Ā(ωk), which will be used as the result
of the DFT. With these definitions a full resonant Rabi oscillation without damping gives
Ā(Ω′) = 0.5 as the maximum amplitude equals to 0.5.
As only a discrete Fourier transformation is performed, the total time T should be as
long as possible to get a high frequency resolution (small ∆ω) together with a small er-
ror in peak amplitudes. The sampling frequency fs, determining the maximal resolvable
frequency ω = πfs according to the Nyquist-Shannon sampling theorem, should also be
as large as possible. If we consider computation time, smaller values of both are better.
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However smaller values have to be chosen cautiously, as a too small fs results in artifacts
due to cutting a not bandwidth limited signal. Thus fs ∼ 2ωd +2Ω will be used as a good
compromise, for higher order peaks being of a negligible strength. This choice still allows
seeing the higher order peaks which produce the steps in Fig.3.1.
The peaks retrieved from the spectrum are of a very sharp Lorentzian type shape consisting
only of a few points which makes it impossible to read off the desired values of amplitude
and position precisely (see Fig.A.1). Therefore two ways of improving this measurement
were used.
The first one takes advantage of a broadened peak when adding a damping to the qubit
which then enables to fit a modified Lorentzian curve and read off the values as fit parame-
ters. While the data generated by DMRG already contain the damping from the QTN and
can be used directly, the simulation in Mathematica needs a modified differential equation.
Therefore the equation of motion for the density matrix with the damping coefficient Γ is

d

dt
ρ = −i[H, ρ] + Γ

(
L[σ+]ρ+ L[σ−]ρ

)
, (A.53)

with the Hamiltonian H given by Eq.3.2. This differential equation can be numerically
solved to receive the data. After applying the DFT a modified Lorentzian function of the
form

F (x) = C
1

π

s

s2 + (x−m)2
+ a, (A.54)

is fitted to the peak yielding the desired results:

Ā(Ω′) =
C

πs
+ a,

Ω′ = m.

(A.55)

The second method is called zero padding using a rectangular window which on the one
hand adds artifacts, known as the spectral leakage, to the Fourier transformed data but on
the other hand enhances peak resolution. Hence the peaks cannot be fitted anymore but
read off directly instead, which is quite accurate for measuring the peak positions. Before
applying the DFT, the dataset will be enlarged to a size M by filling it with zeros which
costs much less computing time than increasing N and actually calculating the data. As
it can be seen in Fig.A.2 this method interpolates the standard DFT. But as this padding
has also an effect similar to multiplying the data by a rectangular window function, the
Fourier transform is now a convolution of the original DFT and a Sinc-function, which
results in the spectral leakage. Because only the peak itself is to be measured this is not
such an important problem, but it contributes errors to the amplitude measurement.
A similar effect can be achieved by rescaling the transformation without adding zeros to
the dataset

H(ωk) =
1

N

N−1∑

n=0

P↑(tn)e
2πink

N
∗ωmax

2πfs . (A.56)
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Figure A.2: Peak shape with standard DFT (red) and with zero padding by a factor of
M
N

= 21 using a rectangular window (blue). Spectral leakage is visible as oscillating errors
next to the peak.

This is equivalent to the DFT calculation of only the first N frequencies of a dataset which
was enlarged by a factor of M

N
= 2πfs

ωmax
with zero padding.

The data can also be multiplied with a flat-top window before performing the zero padding
and the DFT. The window is defined according to the MATLAB definition

w(n) = a0 + a1 cos
(

2π
n

N

)

+ a2 cos
(

4π
n

N

)

+ a3 cos
(

6π
n

N

)

+ a4 cos
(

8π
n

N

)

,

a0 = 0.21557895,

a1 = −0.41663158,

a2 = 0.277263158,

a3 = −0.083578947,

a4 = 0.006947368.

(A.57)

It has the advantage of a better amplitude measurement but with a higher error in peak
position. Using the second method a Lorentzian fit is not sensible anymore, because of the
sinc-type peak shape and the spectral leakage, but the position and amplitude of the Rabi
peak can now easily be extracted by searching for the maximum without fitting.
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A.3 Solution of the Rabi Problem

The Schrödinger equation for the driven two-level system will now be solved explicitly under
the two mentioned approximations in order to derive the relations given in Ch.3.2. For
convenience the convention ~ = 1 will be used throughout all calculations. The Schrödinger
equation is given by

i
d

dt
|Ψ(t)〉 = (H0 +H1(t)) |Ψ(t)〉 =

(
∆

2
σz + Ωcos(ωdt)σx

)

|Ψ(t)〉 . (A.58)

First the homogenous part H0 will be solved with the ansatz

|Ψ(t)〉 = C1(t)e
−i∆

2
t |↑〉+ C2(t)e

i∆
2
t |↓〉 , (A.59)

where already the variation of the constants Ci(t) has been applied. The states |↑〉 , |↓〉
are the eigenstates of the σz operator according to the eigenvalues 1,−1. Putting this into
Eq.A.58 yields a coupled differential equation in the interaction picture for the interaction
term H1(t)

iĊ1(t) = Ω cos(ωdt)e
i∆tC2(t),

iĊ2(t) = Ω cos(ωdt)e
−i∆tC1(t).

(A.60)

With the relation cos(ωt) = 1
2
(eiωt + e−iωt) this gives

iĊ1(t) =
Ω

2

(
ei(∆+ωd)t + ei(∆−ωd)t

)
C2(t),

iĊ2(t) =
Ω

2

(
e−i(∆+ωd)t + e−i(∆−ωd)t

)
C1(t).

(A.61)

As this coupled differential equation is not easy to solve two different approximations will
be made to get the wanted relations.

A.3.1 Rotating-Wave-Approximation

The reason for applying the Rotating-Wave-Approximation is that the result of interest is
the overall transition behavior between up and down state of the qubit, which happens on
a long time scale of order 2π

Ω
with Ω < ∆. Therefore terms with e±i(∆+ωd)t will be neglected

in the RWA as they are rapidly oscillating in comparison to terms with e±i(∆−ωd)t especially
for a nearly resonant driving ωd ∼ ∆. This simplifies the differential equations to

iĊ1(t) =
Ω

2
ei(∆−ωd)tC2(t),

iĊ2(t) =
Ω

2
e−i(∆−ωd)tC1(t),

(A.62)
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which can be solved with the ansatz of C1(t) = Ae−iλt. Putting this into both equations
and eliminating Ċ2 by taking the derivative of the first expression gives

iĊ2(t) =
AΩ

2
e−i(∆−ωd+λ)t = (∆− ωd + λ)

2Aλ

Ω
e−i(∆−ωd+λ)t, (A.63)

λ± = −∆− ωd

2
± 1

2

√

(∆− ωd)2 + Ω2

︸ ︷︷ ︸

Ω′

. (A.64)

As a remark, for resonance ωd = ∆: λ± = ±Ω
2
.

The solution in the interaction picture is as follows

C1(t) = Ae−iλ+t +Be−iλ−t,

C2(t) =
2

Ω
e−i(∆−ωd)t

(
Aλ+e

−iλ+t +Bλ−e
−iλ−t

)
.

(A.65)

Together with the initial conditions C1(0) = 0, C2(0) = 1, meaning that the qubit is
prepared in its ground state, this gives

C1(t) = i
Ω

Ω′
sin

(
Ω′

2
t

)

ei
∆−ωd

2
t,

C2(t) =

(

cos

(
Ω′

2
t

)

+ i
∆− ωd

Ω′
sin

(
Ω′

2
t

))

e−i
∆−ωd

2
t.

(A.66)

From these amplitudes the probabilities are calculated by Pi(t) = |Ci(t)|2

P↑(t) =
Ω2

Ω′2
sin2

(
Ω′

2
t

)

,

P↓(t) = 1− Ω2

Ω′2
sin2

(
Ω′

2
t

)

.

(A.67)

A.3.2 Bloch-Siegert Shift

Starting from Eq.A.61 in this calculation the terms with e±i(∆−ω)t will be neglected as we
are now only interested in the contribution of the high oscillating field near resonance [31].
This simplifies the equations to

iĊ1(t) =
Ω

2
ei(∆+ωd)tC2(t),

iĊ2(t) =
Ω

2
e−i(∆+ωd)tC1(t),

(A.68)

which can be solved with an ansatz C1(t) = Ae−iλt yielding

λ± = −∆+ ωd

2
± 1

2

√

(∆ + ωd)2 + Ω2. (A.69)
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This gives the solution in the interaction picture with arbitrary constants A,B

C1(t) = Ae−iλ+t +
2λ−

Ω
Be−iλ−t,

C2(t) =
2λ+

Ω
Aeiλ−t +Beiλ+t.

(A.70)

After this step the assumption of Ω < ωd,∆ will be made. This allows the approximations
λ+ ⋍

Ω2

4(∆+ωd)
, λ− ⋍ −(∆+ωd) which can further simplify the solution by ignoring small

amplitudes of order Ω
∆
≪ 1

C1(t) = Ae−iλ+t,

C2(t) = Beiλ+t.
(A.71)

Back in the Schrödinger picture we get

Ψ(t) ⋍

(

Ae−i(∆
2
+λ+)t

Bei(
∆

2
+λ+)t

)

. (A.72)

From this we can see that the energies of the upper and lower levels are shifted by λ+ and
the corrected energy spacing of the qubit due to the shift is

∆′ = ∆+ 2λ+ = −ωd +
√

(∆ + ωd)2 + Ω2. (A.73)

So a resonant driving is now obtained via ωd = ∆′, which gives the resonance condition
according to the Bloch-Siegert shift for ωBS

ωBS =
1

2

√

(∆ + ωBS)2 + Ω2,

ωBS = ∆

(

1

3
+

2

3

√

1 +
3Ω2

4∆2

)

Ω<∆
⋍ ∆

(

1 +
Ω2

4∆2

)

,

⇒ ∆ωBS ⋍

Ω2

4∆
.

(A.74)

The last expression is known as the Bloch-Siegert shift. The same result can be obtained by
claiming the generalized Rabi frequency under the Bloch-Siegert shift Ω′

BS to be minimized
at resonance.

A.4 Jaynes-Cummings-Hamiltonian

After describing the semi-classical Rabi dynamics in Ch.A.3, the fully quantum mechanical
Jaynes-Cummings-model will be explained here. The first step is the replacement of the
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classical driving with the quantized field in Eq.3.2. The following Hamiltonian is of a form
commonly used in quantum optics

H =
~ω0

2
σz + ~ωd

(

b†b+
1

2

)

+ ~gÊσx = Hqubit +HEM +HI . (A.75)

With symbols and conventions used in this thesis, the operator of a single mode electro-

magnetic field Ê =
√

~ωd

ǫ0V

(
b+ b†

)
as well as σx = σ+ + σ− this can be rewritten as

H =
∆

2
σz + ωd

(

b†b+
1

2

)

+
Ω0

2

(
σ+b+ σ−b† + σ+b† + σ−b

)
. (A.76)

With H0 = Hqubit +HEM and Eq.A.21 the interaction picture Hamiltonian reads

H̃I(t) = U
†
0(t)HI(t)U0(t)

=
Ω0

2

(
σ+bei(∆−ωd)t + σ−b†e−i(∆−ωd)t + σ+b†ei(∆+ωd)t + σ−be−i(∆+ωd)t

)
.

(A.77)

Similar to the RWA in Ch.A.3.1 terms with e±i(∆+ωd) will be neglected here as well yielding
the Jaynes-Cummings-Hamiltonian

HJC =
∆

2
σz + ωd

(

b†b+
1

2

)

+
Ω0

2

(
σ+b+ σ−b†

)
, (A.78)

with ∆ as the qubit energy level splitting and Ω0 the vacuum Rabi frequency. b† and b

are the creation and annihilation operators of a photon with field energy ωd (here only one
mode will be considered e.g. laser). We are interested in the time-evolution of the states
|g, n+ 1〉, for the system in ground state and n+1 photons in field, and |e, n〉 corresponding
to an excited system and n photons in the field

|Ψ0〉 = bg,n+1(0) |g, n+ 1〉+ be,n(0) |e, n〉 . (A.79)

By solving the two coupled differential equations retrived from the Schrödinger equation
for this initial state, we get the quantized Rabi frequency Ωn

Ωn = Ω0

√
n + 1, (A.80)

which depends on the number of photons in the field mode. For the initial state |Ψ(0)〉 =
|g, n+ 1〉 and resonance we obtain

|Ψ(t)〉 = cos

(
Ωnt

2

)

|g, n+ 1〉+ i
Ω0

|Ω0|
sin

(
Ωnt

2

)

|e, n〉 . (A.81)

Thus the probabilities for ground and excited state are

Pg(t) = | 〈g|Ψ(t)〉 |2 = cos2
(
Ωnt

2

)

, (A.82)

Pe(t) = | 〈e|Ψ(t)〉 |2 = sin2

(
Ωnt

2

)

. (A.83)
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The result is very close to the semiclassical solution. Considering Ωn we can also see that
for a field mode with many photons n ≫ 1 the Rabi frequency loses its quantized character,
which can basically be understood as the classical limit. This means that strong π-pulses
which have high intensities 〈I〉 = 〈b†b〉 = 〈N〉 can be described by using the classical fields
leading to the semiclassical description of Rabi dynamics Ch.A.3.
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