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Motivated by recent experiments on molecular quantum dots we investigate the relaxation of pure spin

states when coupled to metallic leads. Under suitable conditions these systems are well described by a

ferromagnetic Kondo model. Using two recently developed theoretical approaches, the time-dependent

numerical renormalization group and an extended flow equation method, we calculate the real-time

evolution of a Kondo spin into its partially screened steady state. We obtain exact analytical results which

agree well with numerical implementations of both methods. Analytical expressions for the steady state

magnetization and the dependence of the long-time relaxation on microscopic parameters are established.

We find the long-time relaxation process to be much faster in the regime of anisotropic Kondo couplings.

The steady state magnetization is found to deviate significantly from its thermal equilibrium value.

DOI: 10.1103/PhysRevLett.102.196601 PACS numbers: 72.25.Rb, 72.10.Fk

Introduction.—Recently it has become experimentally
feasible to trap isolated single molecules in nanogaps
forming transistor geometries. In such molecular quantum
dots a variety of interesting new phenomena have been
observed. In case of a single C60-molecule attached to
metallic leads (sketched in Fig. 1) the quantum phase
transition between a singlet and a triplet eigenstate of the
molecule has been studied in detail [1–3]. In particular, if
the isolated molecule is prepared in the triplet configura-
tion, its spin is partially screened by the conduction band.
In this case the resulting effective exchange interaction
between the residual spin and the conduction band is
known to be ferromagnetic [4,5].

Replacing C60 by a single-molecule magnet (SMM)
such as Mn12 gives rise to even more complex quantum
impurity physics [6]. As a result of magnetic anisotropy
induced by spin-orbit coupling, the large intrinsic spin of
the SMM tends to align along the easy axis of the mole-
cule. This gives rise to an energy barrier which suppresses
magnetization reversal and makes SMMs promising can-
didates for applications such as high-density magnetic
storage and quantum-information processing [7]. When
coupled to metallic leads, the SMM can be described by
an effective Kondo Hamiltonian with anisotropic exchange
coupling between the impurity spin and the conduction
band [8,9]
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In the cotunneling regime it has been shown [10] that the
exchange interaction is ferromagnetic, i.e., Jk � J? < 0,

if adding or subtracting an electron to the molecule in-
creases the spin of the SMM. Preparing the system in a
well-defined spin state and measuring the real-time spin
dynamics can be achieved using electrical [11] or optical
[12,13] field pulses, albeit experimental challenges in ap-
plying these techniques to molecular quantum dots still
remain.
Although the Kondo Hamiltonian has been studied in

great detail, the ferromagnetic regime has often been ne-
glected (an exception is the investigation of the spatial
equal-time spin-correlations of an underscreened spin-1
impurity [14]). In this Letter we will focus on two impor-
tant questions arising in this context: By studying the
magnetization dynamics we will investigate how fast an
initially polarized spin will reduce its magnetization due to
spin-flip scattering. For the antiferromagnetic Kondo
model this question has been answered in [15–17]. Our
analysis yields important information about the dominant
relaxation mechanism in related experiments.

FIG. 1 (color online). Sketch of a C60 molecule coupled to
metallic leads.
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One further important question regarding the relaxation
process is the nature of the final state of the quantum
system. Since a pure state remains pure under unitary
time evolution, the complete system is not expected to
behave like an equilibrium state even at long times. In
equilibrium, the conduction electrons will not fully screen
the spin, as is well known for the ferromagnetic Kondo
model [18]. Instead, the coupling J? provides weak spin-
flip scattering which renormalizes the magnetization of the
impurity spin to some finite value in the presence of a
symmetry-breaking infinitesimal magnetic field. In the
case of isotropic couplings and a spin S, this value is known
as [18]

hSzi ¼ S

�
1þ J�

2
þOðJ2Þ

�
; (2)

where � is the density of states in the conduction band with
support [�D, D] (we assumed � ¼ ð2DÞ�1 and employ
units in which @ ¼ kB ¼ D ¼ 1 in the following).
However, the fact that the system’s final state differs
from thermal equilibrium does not necessarily imply that
local observables retain a memory of the initial prepara-
tion, and in fact even for certain integrable systems the
reduced density matrix of a local subsystem is known to
thermalize [19]. For the ferromagnetic Kondo model, the
low-energy spin-flip scattering rate renormalizes to zero,
leaving open the question whether in the steady state at
long times the impurity has finite magnetization or not. We
will give a definite answer to this question in this letter and
show that the asymptotic nonequilibrium magnetization at
long times differs from the equilibrium value. Therefore in
our model information about the initial preparation of the
system is never completely lost, even for local observables.

Methods.—In recent years, several numerical ap-
proaches have been developed to calculate real-time dy-
namics of quantum impurity systems [17,20–23]. How-
ever, the accuracy of numerical data is usually not suffi-
cient to give precise answers about the nature of the long-
time decay, i.e., to identify analytical laws for the long-
time tails and steady state values. We therefore use an
analytical approach to identify the long-time behavior
and compare it against numerical calculations to validate
our analytical approximations. We first describe our ana-
lytical approach, before briefly sketching the numerical
technique.

Within a poor man’s scaling analysis a ferromagnetic
exchange coupling of an impurity spin to a fermionic bath
renormalizes to zero at the Fermi energy. This allows
perturbative renormalization techniques to accurately de-
scribe the low-energy physics of such a system. In this
context, a powerful technique is the flow equation method
as invented by Wegner [24] and independently by Głazek
and Wilson [25,26]. In a recent modification of the original
flow equation method it has been shown that the underlying
renormalization scheme can be extended to calculate the
real-time evolution of interacting many-body systems [27–
29]. As a notable feature, this approach allows to derive

exact analytical results. For further details of the flow
equation approach and its application to the Kondo prob-
lem we refer to Ref. [30].
We briefly outline the main steps of the flow equation

calculation. Details of this calculation will be published
elsewhere [31]. As usual, the impurity spin operator is first
transformed by a sequence of infinitesimal unitary trans-
formations. The flowing spin operator has the form

SzðBÞ ¼ hðBÞSz þ
X
kk0

�k0kðBÞ: ðSþs�k0k þ S�sþk0kÞ:; (3)

where the initial form of the operator is obtained for B ¼ 0
[30]. Here, the operators s�k0k are matrix elements of the

conduction electron spin density raising and lowering op-
erators. The coupling constants hðBÞ and �k0kðBÞ obey the
flow equations

dh
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¼ X

kk0
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where nðkÞ denotes the Fermi distribution function. In

addition, the flowing couplings J?k0kðBÞ and Jk
k0kðBÞ of the

Hamiltonian enter, which have to be calculated separately
[30]. The fixed point of the transformation is reached in the
limit B ! 1, where we denote coupling constants in this

basis by a tilde, e.g., ~h. The Heisenberg equation of motion
of the impurity spin can be solved efficiently by solving it
first for the transformed impurity spin and reverting the
unitary flow afterwards [27,28]. By solving the equations
of motion in the diagonal basis of the Hamiltonian, one
avoids secular terms that grow in an uncontrolled way with
time and can obtain controlled analytical results even for
the asymptotic long-time behavior.
In order to verify this semianalytical approach we em-

ploy the recently introduced time-dependent numerical
renormalization group method (TD NRG) by Anders and
Schiller [16]. Describing this method in detail is beyond
the scope of this Letter. Let us only mention here that it is
tailored to calculate the response of an (arbitrary) quantum
impurity system to a sudden quench at time t ¼ 0 and is
able to access the long-time-scales characteristic for
Kondo physics. We refer the interested reader to
Ref. [17] for more details on this method.
Results.—For our analytical calculations, we assume

that the impurity spin is prepared in the up state of the
spin projection operator Sz before the thermalized conduc-
tion electron bath (jFSi) is coupled to it, leading to a
product initial state

jc i ¼ j"i � jFSi: (5)

At time t ¼ 0, the spin is coupled to the conduction
electrons, which would, e.g., be realized by attaching
metallic leads to the single-molecule magnet. In the fol-
lowing, we restrict our calculations to spin S ¼ 1=2 and
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zero magnetic field. Numerical calculations which we
performed for the dynamics of larger spins S all satisfied
the trivial relation hSzðtÞi ¼ Sh�zðtÞi, which is exact up to
OðJ2S2Þ from higher order flow equations [31]. Here S
denotes the size of the spin and �z is the spin operator for
spin S ¼ 1=2. After solving the Heisenberg equation of
motion for the operator Sz, the formal result for the mag-
netization reads

hSzðtÞi¼
~h

2
þX

kk0

~�2
kk0

2

�
eitð"k�"k0 Þ �1

2

�
nðk0Þ½1�nðkÞ�: (6)

In the following, we will only discuss the purely quan-
tum mechanical case, corresponding to T ¼ 0. It turns out
that the magnetization dynamics can be fully understood
by the energy dependency of the couplings ~�kk0 , which are
obtained from a solution to Eq. (4).

Isotropic Kondo Model.—Let us first investigate an iso-
tropically coupled spin. In equilibrium, perturbative scal-
ing shows [32] that the isotropic coupling J logarithmically
decreases upon reducing the half band width from D to
some �<D,

Jð�Þ ¼ J

1þ �J lnð�DÞ
: (7)

At the low-energy fixed point, an infinitesimal magnetic
field is sufficient to polarize the free spin, leading to a finite
magnetization according to Eq. (2).

In nonequilibrium, our results show that the magnetiza-
tion saturates as well, but to a different value than in
equilibrium. Using the exact low-energy behavior of the
couplings ~�kk0 in Eq. (6), the asymptotic behavior of the
magnetization is obtained as

hSzðtÞi ¼ 1

2

�
1

lnðtÞ � 1
�J

þ 1þ �J þOðJ2Þ
�
: (8)

This behavior can be understood from the logarithmic
renormalization of the coupling J, which directly enters
the low-energy flow of the couplings �kk0 via Eq. (4).

The steady state magnetization hSzðt ! 1Þi ¼ 1
2 �½1þ �J þOðJ2Þ� therefore differs from the equilibrium

value as given by Eq. (2). The reduction from full polar-
ization is �J=2, which is twice the equilibrium value. This
can be attributed to the fact that the nonequilibrium dy-
namics starts with an impurity spin that is not dressed with
a conduction band electron cloud: it therefore relaxes to a
smaller value of the magnetization as compared to the
dressed impurity spin in equilibrium.

A direct numerical solution of the flow equations allows
to accurately determine the relaxation process also at
intermediate and short time scales. Together with the ana-
lytical result from Eq. (8), this calculation can be compared
to TD NRG calculations. Both methods yield very good
agreement up to time scales of order t � 104 where the
asymptotic logarithmic relaxation is clearly visible; see
Fig. 2. Increasing deviation of the curves for larger cou-

pling strength J can be explained by the OðJ2Þ corrections
to the flow equation result, which we neglected. We
checked that the relative deviation of the two methods in
terms of the quantity hSzðtÞi � 1=2 at some large but fixed
time indeed grows approximately linearly in J. A fit of the
TD NRG curves and the numerical implementation of the
flow equation approach are in good agreement with the
analytical result of Eq. (8).
Anisotropic Kondo model.—Studying the anisotropic

Kondo model we restrict ourselves to the experimentally
relevant case J? > Jk in the following. From a poor man’s

scaling analysis [32], it is known that the coupling J?
renormalizes as J?ð�Þ / �

�
ffiffiffiffiffiffiffiffiffiffiffi
J2k�J2?

p
at low energies �.

As in the isotropic case, the flow equation analysis shows
that this behavior determines the asymptotic long-time
relaxation of the spin, given explicitly by the power law

hSzðtÞi ¼ 0:5

�
1� �2

2~gk
t2~gk þ �2

2~gk
þOðJ2Þ

�
; (9)

where ~gk ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2k � J2?

q
. The constant � derives from

the scaling equations for J? and Jk. Numerical checks

show that it can be replaced by � � �J? as long as Jk &
2J?. In comparison to the isotropic case, the power-law
decay of spin-flip scattering at low energies leads to much
faster relaxation of the magnetization, whereas the steady
state magnetization is enhanced. This behavior is repro-
duced by our numerical calculations shown in Fig. 3.
Again, our calculations showed that the steady state mag-
netization hSzðt ! 1Þi ¼ 1=2þ ½�2=ð4~gkÞ� is reduced

twice as much from full polarization than in equilibrium.
The analytical results are confirmed by numerical fits of
our data; see Fig. 3. Let us point out that for the anisotropic
Kondo model, our methods are starting from slightly dif-
ferent initial states. Using the flow equation approach one
is restricted to a situation where the spin is initially com-

FIG. 2 (color online). Results for the isotropic ferromagnetic
Kondo model (�: TD NRG data, h: flow equation data). Using
our analytical result we fitted our data against hSzðtÞi ¼ ð1þ
aJk þ ½lnðtÞ � 1=ðcJkÞ��1Þ=2 using a, c as fit parameters (lines).
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pletely decoupled from the fermionic bath. On the other
hand, stability of the TD NRG algorithm in the anisotropic
model requires preparing the polarized spin at time t < 0
by applying a large magnetic field, while still allowing for
a small exchange coupling to the metallic leads. The same
long-time power-law relaxation was obtained with both
methods. However, the slightly different initial states
used in both methods become significant on short and
intermediate time scales.

Conclusions.—We employed two different methods to
analyze the real-time evolution of a ferromagnetically
coupled Kondo spin, which is initially prepared in a polar-
ized state. Exact analytical results for the long-time behav-
ior of the magnetization were obtained for two different
situations. For the isotropic ferromagnetic Kondo model,
the long-time relaxation is logarithmic in time, whereas
anisotropic couplings lead to a power-law decay at large
times. Furthermore, exact analytical results for the asymp-
totic nonequilibrium magnetization were presented, which
differ from the equilibrium magnetizations. They confirm
that the local quantum impurity retains a memory of the
initial preparation for asymptotically large times. This is
due to the combined effect of nonequilibrium preparation
and ergodicity breaking already in the equilibrium system.
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FIG. 3 (color online). For the anisotropic ferromagnetic
Kondo model our numerical findings coincide with our analyti-
cal results using both methods. Fitting our data against hSzðtÞi ¼
at
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ffiffiffiffiffiffiffiffiffiffiffi
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p
þ c we found good agreement for the fit parameters

a, c.
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